| //===--- JumpDiagnostics.cpp - Analyze Jump Targets for VLA issues --------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the JumpScopeChecker class, which is used to diagnose |
| // jumps that enter a VLA scope in an invalid way. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Sema.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/StmtObjC.h" |
| #include "clang/AST/StmtCXX.h" |
| using namespace clang; |
| |
| namespace { |
| |
| /// JumpScopeChecker - This object is used by Sema to diagnose invalid jumps |
| /// into VLA and other protected scopes. For example, this rejects: |
| /// goto L; |
| /// int a[n]; |
| /// L: |
| /// |
| class JumpScopeChecker { |
| Sema &S; |
| |
| /// GotoScope - This is a record that we use to keep track of all of the |
| /// scopes that are introduced by VLAs and other things that scope jumps like |
| /// gotos. This scope tree has nothing to do with the source scope tree, |
| /// because you can have multiple VLA scopes per compound statement, and most |
| /// compound statements don't introduce any scopes. |
| struct GotoScope { |
| /// ParentScope - The index in ScopeMap of the parent scope. This is 0 for |
| /// the parent scope is the function body. |
| unsigned ParentScope; |
| |
| /// Diag - The diagnostic to emit if there is a jump into this scope. |
| unsigned Diag; |
| |
| /// Loc - Location to emit the diagnostic. |
| SourceLocation Loc; |
| |
| GotoScope(unsigned parentScope, unsigned diag, SourceLocation L) |
| : ParentScope(parentScope), Diag(diag), Loc(L) {} |
| }; |
| |
| llvm::SmallVector<GotoScope, 48> Scopes; |
| llvm::DenseMap<Stmt*, unsigned> LabelAndGotoScopes; |
| llvm::SmallVector<Stmt*, 16> Jumps; |
| public: |
| JumpScopeChecker(Stmt *Body, Sema &S); |
| private: |
| void BuildScopeInformation(Stmt *S, unsigned ParentScope); |
| void VerifyJumps(); |
| void CheckJump(Stmt *From, Stmt *To, |
| SourceLocation DiagLoc, unsigned JumpDiag); |
| }; |
| } // end anonymous namespace |
| |
| |
| JumpScopeChecker::JumpScopeChecker(Stmt *Body, Sema &s) : S(s) { |
| // Add a scope entry for function scope. |
| Scopes.push_back(GotoScope(~0U, ~0U, SourceLocation())); |
| |
| // Build information for the top level compound statement, so that we have a |
| // defined scope record for every "goto" and label. |
| BuildScopeInformation(Body, 0); |
| |
| // Check that all jumps we saw are kosher. |
| VerifyJumps(); |
| } |
| |
| /// GetDiagForGotoScopeDecl - If this decl induces a new goto scope, return a |
| /// diagnostic that should be emitted if control goes over it. If not, return 0. |
| static unsigned GetDiagForGotoScopeDecl(const Decl *D) { |
| if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { |
| if (VD->getType()->isVariablyModifiedType()) |
| return diag::note_protected_by_vla; |
| if (VD->hasAttr<CleanupAttr>()) |
| return diag::note_protected_by_cleanup; |
| if (VD->hasAttr<BlocksAttr>()) |
| return diag::note_protected_by___block; |
| } else if (const TypedefDecl *TD = dyn_cast<TypedefDecl>(D)) { |
| if (TD->getUnderlyingType()->isVariablyModifiedType()) |
| return diag::note_protected_by_vla_typedef; |
| } |
| |
| return 0; |
| } |
| |
| |
| /// BuildScopeInformation - The statements from CI to CE are known to form a |
| /// coherent VLA scope with a specified parent node. Walk through the |
| /// statements, adding any labels or gotos to LabelAndGotoScopes and recursively |
| /// walking the AST as needed. |
| void JumpScopeChecker::BuildScopeInformation(Stmt *S, unsigned ParentScope) { |
| |
| // If we found a label, remember that it is in ParentScope scope. |
| if (isa<LabelStmt>(S) || isa<DefaultStmt>(S) || isa<CaseStmt>(S)) { |
| LabelAndGotoScopes[S] = ParentScope; |
| } else if (isa<GotoStmt>(S) || isa<SwitchStmt>(S) || |
| isa<IndirectGotoStmt>(S) || isa<AddrLabelExpr>(S)) { |
| // Remember both what scope a goto is in as well as the fact that we have |
| // it. This makes the second scan not have to walk the AST again. |
| LabelAndGotoScopes[S] = ParentScope; |
| Jumps.push_back(S); |
| } |
| |
| for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E; |
| ++CI) { |
| Stmt *SubStmt = *CI; |
| if (SubStmt == 0) continue; |
| |
| // FIXME: diagnose jumps past initialization: required in C++, warning in C. |
| // goto L; int X = 4; L: ; |
| |
| // If this is a declstmt with a VLA definition, it defines a scope from here |
| // to the end of the containing context. |
| if (DeclStmt *DS = dyn_cast<DeclStmt>(SubStmt)) { |
| // The decl statement creates a scope if any of the decls in it are VLAs or |
| // have the cleanup attribute. |
| for (DeclStmt::decl_iterator I = DS->decl_begin(), E = DS->decl_end(); |
| I != E; ++I) { |
| // If this decl causes a new scope, push and switch to it. |
| if (unsigned Diag = GetDiagForGotoScopeDecl(*I)) { |
| Scopes.push_back(GotoScope(ParentScope, Diag, (*I)->getLocation())); |
| ParentScope = Scopes.size()-1; |
| } |
| |
| // If the decl has an initializer, walk it with the potentially new |
| // scope we just installed. |
| if (VarDecl *VD = dyn_cast<VarDecl>(*I)) |
| if (Expr *Init = VD->getInit()) |
| BuildScopeInformation(Init, ParentScope); |
| } |
| continue; |
| } |
| |
| // Disallow jumps into any part of an @try statement by pushing a scope and |
| // walking all sub-stmts in that scope. |
| if (ObjCAtTryStmt *AT = dyn_cast<ObjCAtTryStmt>(SubStmt)) { |
| // Recursively walk the AST for the @try part. |
| Scopes.push_back(GotoScope(ParentScope,diag::note_protected_by_objc_try, |
| AT->getAtTryLoc())); |
| if (Stmt *TryPart = AT->getTryBody()) |
| BuildScopeInformation(TryPart, Scopes.size()-1); |
| |
| // Jump from the catch to the finally or try is not valid. |
| for (ObjCAtCatchStmt *AC = AT->getCatchStmts(); AC; |
| AC = AC->getNextCatchStmt()) { |
| Scopes.push_back(GotoScope(ParentScope, |
| diag::note_protected_by_objc_catch, |
| AC->getAtCatchLoc())); |
| // @catches are nested and it isn't |
| BuildScopeInformation(AC->getCatchBody(), Scopes.size()-1); |
| } |
| |
| // Jump from the finally to the try or catch is not valid. |
| if (ObjCAtFinallyStmt *AF = AT->getFinallyStmt()) { |
| Scopes.push_back(GotoScope(ParentScope, |
| diag::note_protected_by_objc_finally, |
| AF->getAtFinallyLoc())); |
| BuildScopeInformation(AF, Scopes.size()-1); |
| } |
| |
| continue; |
| } |
| |
| // Disallow jumps into the protected statement of an @synchronized, but |
| // allow jumps into the object expression it protects. |
| if (ObjCAtSynchronizedStmt *AS = dyn_cast<ObjCAtSynchronizedStmt>(SubStmt)){ |
| // Recursively walk the AST for the @synchronized object expr, it is |
| // evaluated in the normal scope. |
| BuildScopeInformation(AS->getSynchExpr(), ParentScope); |
| |
| // Recursively walk the AST for the @synchronized part, protected by a new |
| // scope. |
| Scopes.push_back(GotoScope(ParentScope, |
| diag::note_protected_by_objc_synchronized, |
| AS->getAtSynchronizedLoc())); |
| BuildScopeInformation(AS->getSynchBody(), Scopes.size()-1); |
| continue; |
| } |
| |
| // Disallow jumps into any part of a C++ try statement. This is pretty |
| // much the same as for Obj-C. |
| if (CXXTryStmt *TS = dyn_cast<CXXTryStmt>(SubStmt)) { |
| Scopes.push_back(GotoScope(ParentScope, diag::note_protected_by_cxx_try, |
| TS->getSourceRange().getBegin())); |
| if (Stmt *TryBlock = TS->getTryBlock()) |
| BuildScopeInformation(TryBlock, Scopes.size()-1); |
| |
| // Jump from the catch into the try is not allowed either. |
| for (unsigned I = 0, E = TS->getNumHandlers(); I != E; ++I) { |
| CXXCatchStmt *CS = TS->getHandler(I); |
| Scopes.push_back(GotoScope(ParentScope, |
| diag::note_protected_by_cxx_catch, |
| CS->getSourceRange().getBegin())); |
| BuildScopeInformation(CS->getHandlerBlock(), Scopes.size()-1); |
| } |
| |
| continue; |
| } |
| |
| // Recursively walk the AST. |
| BuildScopeInformation(SubStmt, ParentScope); |
| } |
| } |
| |
| /// VerifyJumps - Verify each element of the Jumps array to see if they are |
| /// valid, emitting diagnostics if not. |
| void JumpScopeChecker::VerifyJumps() { |
| while (!Jumps.empty()) { |
| Stmt *Jump = Jumps.pop_back_val(); |
| |
| // With a goto, |
| if (GotoStmt *GS = dyn_cast<GotoStmt>(Jump)) { |
| CheckJump(GS, GS->getLabel(), GS->getGotoLoc(), |
| diag::err_goto_into_protected_scope); |
| continue; |
| } |
| |
| if (SwitchStmt *SS = dyn_cast<SwitchStmt>(Jump)) { |
| for (SwitchCase *SC = SS->getSwitchCaseList(); SC; |
| SC = SC->getNextSwitchCase()) { |
| assert(LabelAndGotoScopes.count(SC) && "Case not visited?"); |
| CheckJump(SS, SC, SC->getLocStart(), |
| diag::err_switch_into_protected_scope); |
| } |
| continue; |
| } |
| |
| unsigned DiagnosticScope; |
| |
| // We don't know where an indirect goto goes, require that it be at the |
| // top level of scoping. |
| if (IndirectGotoStmt *IG = dyn_cast<IndirectGotoStmt>(Jump)) { |
| assert(LabelAndGotoScopes.count(Jump) && |
| "Jump didn't get added to scopes?"); |
| unsigned GotoScope = LabelAndGotoScopes[IG]; |
| if (GotoScope == 0) continue; // indirect jump is ok. |
| S.Diag(IG->getGotoLoc(), diag::err_indirect_goto_in_protected_scope); |
| DiagnosticScope = GotoScope; |
| } else { |
| // We model &&Label as a jump for purposes of scope tracking. We actually |
| // don't care *where* the address of label is, but we require the *label |
| // itself* to be in scope 0. If it is nested inside of a VLA scope, then |
| // it is possible for an indirect goto to illegally enter the VLA scope by |
| // indirectly jumping to the label. |
| assert(isa<AddrLabelExpr>(Jump) && "Unknown jump type"); |
| LabelStmt *TheLabel = cast<AddrLabelExpr>(Jump)->getLabel(); |
| |
| assert(LabelAndGotoScopes.count(TheLabel) && |
| "Referenced label didn't get added to scopes?"); |
| unsigned LabelScope = LabelAndGotoScopes[TheLabel]; |
| if (LabelScope == 0) continue; // Addr of label is ok. |
| |
| S.Diag(Jump->getLocStart(), diag::err_addr_of_label_in_protected_scope); |
| DiagnosticScope = LabelScope; |
| } |
| |
| // Report all the things that would be skipped over by this &&label or |
| // indirect goto. |
| while (DiagnosticScope != 0) { |
| S.Diag(Scopes[DiagnosticScope].Loc, Scopes[DiagnosticScope].Diag); |
| DiagnosticScope = Scopes[DiagnosticScope].ParentScope; |
| } |
| } |
| } |
| |
| /// CheckJump - Validate that the specified jump statement is valid: that it is |
| /// jumping within or out of its current scope, not into a deeper one. |
| void JumpScopeChecker::CheckJump(Stmt *From, Stmt *To, |
| SourceLocation DiagLoc, unsigned JumpDiag) { |
| assert(LabelAndGotoScopes.count(From) && "Jump didn't get added to scopes?"); |
| unsigned FromScope = LabelAndGotoScopes[From]; |
| |
| assert(LabelAndGotoScopes.count(To) && "Jump didn't get added to scopes?"); |
| unsigned ToScope = LabelAndGotoScopes[To]; |
| |
| // Common case: exactly the same scope, which is fine. |
| if (FromScope == ToScope) return; |
| |
| // The only valid mismatch jump case happens when the jump is more deeply |
| // nested inside the jump target. Do a quick scan to see if the jump is valid |
| // because valid code is more common than invalid code. |
| unsigned TestScope = Scopes[FromScope].ParentScope; |
| while (TestScope != ~0U) { |
| // If we found the jump target, then we're jumping out of our current scope, |
| // which is perfectly fine. |
| if (TestScope == ToScope) return; |
| |
| // Otherwise, scan up the hierarchy. |
| TestScope = Scopes[TestScope].ParentScope; |
| } |
| |
| // If we get here, then we know we have invalid code. Diagnose the bad jump, |
| // and then emit a note at each VLA being jumped out of. |
| S.Diag(DiagLoc, JumpDiag); |
| |
| // Eliminate the common prefix of the jump and the target. Start by |
| // linearizing both scopes, reversing them as we go. |
| std::vector<unsigned> FromScopes, ToScopes; |
| for (TestScope = FromScope; TestScope != ~0U; |
| TestScope = Scopes[TestScope].ParentScope) |
| FromScopes.push_back(TestScope); |
| for (TestScope = ToScope; TestScope != ~0U; |
| TestScope = Scopes[TestScope].ParentScope) |
| ToScopes.push_back(TestScope); |
| |
| // Remove any common entries (such as the top-level function scope). |
| while (!FromScopes.empty() && FromScopes.back() == ToScopes.back()) { |
| FromScopes.pop_back(); |
| ToScopes.pop_back(); |
| } |
| |
| // Emit diagnostics for whatever is left in ToScopes. |
| for (unsigned i = 0, e = ToScopes.size(); i != e; ++i) |
| S.Diag(Scopes[ToScopes[i]].Loc, Scopes[ToScopes[i]].Diag); |
| } |
| |
| void Sema::DiagnoseInvalidJumps(Stmt *Body) { |
| (void)JumpScopeChecker(Body, *this); |
| } |