| //===--- Expr.cpp - Expression AST Node Implementation --------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the Expr class and subclasses. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/APValue.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/DeclTemplate.h" |
| #include "clang/AST/RecordLayout.h" |
| #include "clang/AST/StmtVisitor.h" |
| #include "clang/Lex/LiteralSupport.h" |
| #include "clang/Lex/Lexer.h" |
| #include "clang/Sema/SemaDiagnostic.h" |
| #include "clang/Basic/Builtins.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <cstring> |
| using namespace clang; |
| |
| /// isKnownToHaveBooleanValue - Return true if this is an integer expression |
| /// that is known to return 0 or 1. This happens for _Bool/bool expressions |
| /// but also int expressions which are produced by things like comparisons in |
| /// C. |
| bool Expr::isKnownToHaveBooleanValue() const { |
| const Expr *E = IgnoreParens(); |
| |
| // If this value has _Bool type, it is obvious 0/1. |
| if (E->getType()->isBooleanType()) return true; |
| // If this is a non-scalar-integer type, we don't care enough to try. |
| if (!E->getType()->isIntegralOrEnumerationType()) return false; |
| |
| if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { |
| switch (UO->getOpcode()) { |
| case UO_Plus: |
| return UO->getSubExpr()->isKnownToHaveBooleanValue(); |
| default: |
| return false; |
| } |
| } |
| |
| // Only look through implicit casts. If the user writes |
| // '(int) (a && b)' treat it as an arbitrary int. |
| if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) |
| return CE->getSubExpr()->isKnownToHaveBooleanValue(); |
| |
| if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { |
| switch (BO->getOpcode()) { |
| default: return false; |
| case BO_LT: // Relational operators. |
| case BO_GT: |
| case BO_LE: |
| case BO_GE: |
| case BO_EQ: // Equality operators. |
| case BO_NE: |
| case BO_LAnd: // AND operator. |
| case BO_LOr: // Logical OR operator. |
| return true; |
| |
| case BO_And: // Bitwise AND operator. |
| case BO_Xor: // Bitwise XOR operator. |
| case BO_Or: // Bitwise OR operator. |
| // Handle things like (x==2)|(y==12). |
| return BO->getLHS()->isKnownToHaveBooleanValue() && |
| BO->getRHS()->isKnownToHaveBooleanValue(); |
| |
| case BO_Comma: |
| case BO_Assign: |
| return BO->getRHS()->isKnownToHaveBooleanValue(); |
| } |
| } |
| |
| if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) |
| return CO->getTrueExpr()->isKnownToHaveBooleanValue() && |
| CO->getFalseExpr()->isKnownToHaveBooleanValue(); |
| |
| return false; |
| } |
| |
| // Amusing macro metaprogramming hack: check whether a class provides |
| // a more specific implementation of getExprLoc(). |
| namespace { |
| /// This implementation is used when a class provides a custom |
| /// implementation of getExprLoc. |
| template <class E, class T> |
| SourceLocation getExprLocImpl(const Expr *expr, |
| SourceLocation (T::*v)() const) { |
| return static_cast<const E*>(expr)->getExprLoc(); |
| } |
| |
| /// This implementation is used when a class doesn't provide |
| /// a custom implementation of getExprLoc. Overload resolution |
| /// should pick it over the implementation above because it's |
| /// more specialized according to function template partial ordering. |
| template <class E> |
| SourceLocation getExprLocImpl(const Expr *expr, |
| SourceLocation (Expr::*v)() const) { |
| return static_cast<const E*>(expr)->getSourceRange().getBegin(); |
| } |
| } |
| |
| SourceLocation Expr::getExprLoc() const { |
| switch (getStmtClass()) { |
| case Stmt::NoStmtClass: llvm_unreachable("statement without class"); |
| #define ABSTRACT_STMT(type) |
| #define STMT(type, base) \ |
| case Stmt::type##Class: llvm_unreachable(#type " is not an Expr"); break; |
| #define EXPR(type, base) \ |
| case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc); |
| #include "clang/AST/StmtNodes.inc" |
| } |
| llvm_unreachable("unknown statement kind"); |
| return SourceLocation(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Primary Expressions. |
| //===----------------------------------------------------------------------===// |
| |
| /// \brief Compute the type-, value-, and instantiation-dependence of a |
| /// declaration reference |
| /// based on the declaration being referenced. |
| static void computeDeclRefDependence(NamedDecl *D, QualType T, |
| bool &TypeDependent, |
| bool &ValueDependent, |
| bool &InstantiationDependent) { |
| TypeDependent = false; |
| ValueDependent = false; |
| InstantiationDependent = false; |
| |
| // (TD) C++ [temp.dep.expr]p3: |
| // An id-expression is type-dependent if it contains: |
| // |
| // and |
| // |
| // (VD) C++ [temp.dep.constexpr]p2: |
| // An identifier is value-dependent if it is: |
| |
| // (TD) - an identifier that was declared with dependent type |
| // (VD) - a name declared with a dependent type, |
| if (T->isDependentType()) { |
| TypeDependent = true; |
| ValueDependent = true; |
| InstantiationDependent = true; |
| return; |
| } else if (T->isInstantiationDependentType()) { |
| InstantiationDependent = true; |
| } |
| |
| // (TD) - a conversion-function-id that specifies a dependent type |
| if (D->getDeclName().getNameKind() |
| == DeclarationName::CXXConversionFunctionName) { |
| QualType T = D->getDeclName().getCXXNameType(); |
| if (T->isDependentType()) { |
| TypeDependent = true; |
| ValueDependent = true; |
| InstantiationDependent = true; |
| return; |
| } |
| |
| if (T->isInstantiationDependentType()) |
| InstantiationDependent = true; |
| } |
| |
| // (VD) - the name of a non-type template parameter, |
| if (isa<NonTypeTemplateParmDecl>(D)) { |
| ValueDependent = true; |
| InstantiationDependent = true; |
| return; |
| } |
| |
| // (VD) - a constant with integral or enumeration type and is |
| // initialized with an expression that is value-dependent. |
| if (VarDecl *Var = dyn_cast<VarDecl>(D)) { |
| if (Var->getType()->isIntegralOrEnumerationType() && |
| Var->getType().getCVRQualifiers() == Qualifiers::Const) { |
| if (const Expr *Init = Var->getAnyInitializer()) |
| if (Init->isValueDependent()) { |
| ValueDependent = true; |
| InstantiationDependent = true; |
| } |
| } |
| |
| // (VD) - FIXME: Missing from the standard: |
| // - a member function or a static data member of the current |
| // instantiation |
| else if (Var->isStaticDataMember() && |
| Var->getDeclContext()->isDependentContext()) { |
| ValueDependent = true; |
| InstantiationDependent = true; |
| } |
| |
| return; |
| } |
| |
| // (VD) - FIXME: Missing from the standard: |
| // - a member function or a static data member of the current |
| // instantiation |
| if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) { |
| ValueDependent = true; |
| InstantiationDependent = true; |
| return; |
| } |
| } |
| |
| void DeclRefExpr::computeDependence() { |
| bool TypeDependent = false; |
| bool ValueDependent = false; |
| bool InstantiationDependent = false; |
| computeDeclRefDependence(getDecl(), getType(), TypeDependent, ValueDependent, |
| InstantiationDependent); |
| |
| // (TD) C++ [temp.dep.expr]p3: |
| // An id-expression is type-dependent if it contains: |
| // |
| // and |
| // |
| // (VD) C++ [temp.dep.constexpr]p2: |
| // An identifier is value-dependent if it is: |
| if (!TypeDependent && !ValueDependent && |
| hasExplicitTemplateArgs() && |
| TemplateSpecializationType::anyDependentTemplateArguments( |
| getTemplateArgs(), |
| getNumTemplateArgs(), |
| InstantiationDependent)) { |
| TypeDependent = true; |
| ValueDependent = true; |
| InstantiationDependent = true; |
| } |
| |
| ExprBits.TypeDependent = TypeDependent; |
| ExprBits.ValueDependent = ValueDependent; |
| ExprBits.InstantiationDependent = InstantiationDependent; |
| |
| // Is the declaration a parameter pack? |
| if (getDecl()->isParameterPack()) |
| ExprBits.ContainsUnexpandedParameterPack = true; |
| } |
| |
| DeclRefExpr::DeclRefExpr(NestedNameSpecifierLoc QualifierLoc, |
| ValueDecl *D, const DeclarationNameInfo &NameInfo, |
| NamedDecl *FoundD, |
| const TemplateArgumentListInfo *TemplateArgs, |
| QualType T, ExprValueKind VK) |
| : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false), |
| D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) { |
| DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0; |
| if (QualifierLoc) |
| getInternalQualifierLoc() = QualifierLoc; |
| DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0; |
| if (FoundD) |
| getInternalFoundDecl() = FoundD; |
| DeclRefExprBits.HasExplicitTemplateArgs = TemplateArgs ? 1 : 0; |
| if (TemplateArgs) { |
| bool Dependent = false; |
| bool InstantiationDependent = false; |
| bool ContainsUnexpandedParameterPack = false; |
| getExplicitTemplateArgs().initializeFrom(*TemplateArgs, Dependent, |
| InstantiationDependent, |
| ContainsUnexpandedParameterPack); |
| if (InstantiationDependent) |
| setInstantiationDependent(true); |
| } |
| DeclRefExprBits.HadMultipleCandidates = 0; |
| |
| computeDependence(); |
| } |
| |
| DeclRefExpr *DeclRefExpr::Create(ASTContext &Context, |
| NestedNameSpecifierLoc QualifierLoc, |
| ValueDecl *D, |
| SourceLocation NameLoc, |
| QualType T, |
| ExprValueKind VK, |
| NamedDecl *FoundD, |
| const TemplateArgumentListInfo *TemplateArgs) { |
| return Create(Context, QualifierLoc, D, |
| DeclarationNameInfo(D->getDeclName(), NameLoc), |
| T, VK, FoundD, TemplateArgs); |
| } |
| |
| DeclRefExpr *DeclRefExpr::Create(ASTContext &Context, |
| NestedNameSpecifierLoc QualifierLoc, |
| ValueDecl *D, |
| const DeclarationNameInfo &NameInfo, |
| QualType T, |
| ExprValueKind VK, |
| NamedDecl *FoundD, |
| const TemplateArgumentListInfo *TemplateArgs) { |
| // Filter out cases where the found Decl is the same as the value refenenced. |
| if (D == FoundD) |
| FoundD = 0; |
| |
| std::size_t Size = sizeof(DeclRefExpr); |
| if (QualifierLoc != 0) |
| Size += sizeof(NestedNameSpecifierLoc); |
| if (FoundD) |
| Size += sizeof(NamedDecl *); |
| if (TemplateArgs) |
| Size += ASTTemplateArgumentListInfo::sizeFor(*TemplateArgs); |
| |
| void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>()); |
| return new (Mem) DeclRefExpr(QualifierLoc, D, NameInfo, FoundD, TemplateArgs, |
| T, VK); |
| } |
| |
| DeclRefExpr *DeclRefExpr::CreateEmpty(ASTContext &Context, |
| bool HasQualifier, |
| bool HasFoundDecl, |
| bool HasExplicitTemplateArgs, |
| unsigned NumTemplateArgs) { |
| std::size_t Size = sizeof(DeclRefExpr); |
| if (HasQualifier) |
| Size += sizeof(NestedNameSpecifierLoc); |
| if (HasFoundDecl) |
| Size += sizeof(NamedDecl *); |
| if (HasExplicitTemplateArgs) |
| Size += ASTTemplateArgumentListInfo::sizeFor(NumTemplateArgs); |
| |
| void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>()); |
| return new (Mem) DeclRefExpr(EmptyShell()); |
| } |
| |
| SourceRange DeclRefExpr::getSourceRange() const { |
| SourceRange R = getNameInfo().getSourceRange(); |
| if (hasQualifier()) |
| R.setBegin(getQualifierLoc().getBeginLoc()); |
| if (hasExplicitTemplateArgs()) |
| R.setEnd(getRAngleLoc()); |
| return R; |
| } |
| |
| // FIXME: Maybe this should use DeclPrinter with a special "print predefined |
| // expr" policy instead. |
| std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) { |
| ASTContext &Context = CurrentDecl->getASTContext(); |
| |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) { |
| if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual) |
| return FD->getNameAsString(); |
| |
| llvm::SmallString<256> Name; |
| llvm::raw_svector_ostream Out(Name); |
| |
| if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { |
| if (MD->isVirtual() && IT != PrettyFunctionNoVirtual) |
| Out << "virtual "; |
| if (MD->isStatic()) |
| Out << "static "; |
| } |
| |
| PrintingPolicy Policy(Context.getLangOptions()); |
| |
| std::string Proto = FD->getQualifiedNameAsString(Policy); |
| |
| const FunctionType *AFT = FD->getType()->getAs<FunctionType>(); |
| const FunctionProtoType *FT = 0; |
| if (FD->hasWrittenPrototype()) |
| FT = dyn_cast<FunctionProtoType>(AFT); |
| |
| Proto += "("; |
| if (FT) { |
| llvm::raw_string_ostream POut(Proto); |
| for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { |
| if (i) POut << ", "; |
| std::string Param; |
| FD->getParamDecl(i)->getType().getAsStringInternal(Param, Policy); |
| POut << Param; |
| } |
| |
| if (FT->isVariadic()) { |
| if (FD->getNumParams()) POut << ", "; |
| POut << "..."; |
| } |
| } |
| Proto += ")"; |
| |
| if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { |
| Qualifiers ThisQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers()); |
| if (ThisQuals.hasConst()) |
| Proto += " const"; |
| if (ThisQuals.hasVolatile()) |
| Proto += " volatile"; |
| } |
| |
| if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD)) |
| AFT->getResultType().getAsStringInternal(Proto, Policy); |
| |
| Out << Proto; |
| |
| Out.flush(); |
| return Name.str().str(); |
| } |
| if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) { |
| llvm::SmallString<256> Name; |
| llvm::raw_svector_ostream Out(Name); |
| Out << (MD->isInstanceMethod() ? '-' : '+'); |
| Out << '['; |
| |
| // For incorrect code, there might not be an ObjCInterfaceDecl. Do |
| // a null check to avoid a crash. |
| if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) |
| Out << *ID; |
| |
| if (const ObjCCategoryImplDecl *CID = |
| dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext())) |
| Out << '(' << CID << ')'; |
| |
| Out << ' '; |
| Out << MD->getSelector().getAsString(); |
| Out << ']'; |
| |
| Out.flush(); |
| return Name.str().str(); |
| } |
| if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) { |
| // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string. |
| return "top level"; |
| } |
| return ""; |
| } |
| |
| void APNumericStorage::setIntValue(ASTContext &C, const llvm::APInt &Val) { |
| if (hasAllocation()) |
| C.Deallocate(pVal); |
| |
| BitWidth = Val.getBitWidth(); |
| unsigned NumWords = Val.getNumWords(); |
| const uint64_t* Words = Val.getRawData(); |
| if (NumWords > 1) { |
| pVal = new (C) uint64_t[NumWords]; |
| std::copy(Words, Words + NumWords, pVal); |
| } else if (NumWords == 1) |
| VAL = Words[0]; |
| else |
| VAL = 0; |
| } |
| |
| IntegerLiteral * |
| IntegerLiteral::Create(ASTContext &C, const llvm::APInt &V, |
| QualType type, SourceLocation l) { |
| return new (C) IntegerLiteral(C, V, type, l); |
| } |
| |
| IntegerLiteral * |
| IntegerLiteral::Create(ASTContext &C, EmptyShell Empty) { |
| return new (C) IntegerLiteral(Empty); |
| } |
| |
| FloatingLiteral * |
| FloatingLiteral::Create(ASTContext &C, const llvm::APFloat &V, |
| bool isexact, QualType Type, SourceLocation L) { |
| return new (C) FloatingLiteral(C, V, isexact, Type, L); |
| } |
| |
| FloatingLiteral * |
| FloatingLiteral::Create(ASTContext &C, EmptyShell Empty) { |
| return new (C) FloatingLiteral(Empty); |
| } |
| |
| /// getValueAsApproximateDouble - This returns the value as an inaccurate |
| /// double. Note that this may cause loss of precision, but is useful for |
| /// debugging dumps, etc. |
| double FloatingLiteral::getValueAsApproximateDouble() const { |
| llvm::APFloat V = getValue(); |
| bool ignored; |
| V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven, |
| &ignored); |
| return V.convertToDouble(); |
| } |
| |
| int StringLiteral::mapCharByteWidth(TargetInfo const &target,StringKind k) { |
| int CharByteWidth; |
| switch(k) { |
| case Ascii: |
| case UTF8: |
| CharByteWidth = target.getCharWidth(); |
| break; |
| case Wide: |
| CharByteWidth = target.getWCharWidth(); |
| break; |
| case UTF16: |
| CharByteWidth = target.getChar16Width(); |
| break; |
| case UTF32: |
| CharByteWidth = target.getChar32Width(); |
| } |
| assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple"); |
| CharByteWidth /= 8; |
| assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4) |
| && "character byte widths supported are 1, 2, and 4 only"); |
| return CharByteWidth; |
| } |
| |
| StringLiteral *StringLiteral::Create(ASTContext &C, StringRef Str, |
| StringKind Kind, bool Pascal, QualType Ty, |
| const SourceLocation *Loc, |
| unsigned NumStrs) { |
| // Allocate enough space for the StringLiteral plus an array of locations for |
| // any concatenated string tokens. |
| void *Mem = C.Allocate(sizeof(StringLiteral)+ |
| sizeof(SourceLocation)*(NumStrs-1), |
| llvm::alignOf<StringLiteral>()); |
| StringLiteral *SL = new (Mem) StringLiteral(Ty); |
| |
| // OPTIMIZE: could allocate this appended to the StringLiteral. |
| SL->setString(C,Str,Kind,Pascal); |
| |
| SL->TokLocs[0] = Loc[0]; |
| SL->NumConcatenated = NumStrs; |
| |
| if (NumStrs != 1) |
| memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1)); |
| return SL; |
| } |
| |
| StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) { |
| void *Mem = C.Allocate(sizeof(StringLiteral)+ |
| sizeof(SourceLocation)*(NumStrs-1), |
| llvm::alignOf<StringLiteral>()); |
| StringLiteral *SL = new (Mem) StringLiteral(QualType()); |
| SL->CharByteWidth = 0; |
| SL->Length = 0; |
| SL->NumConcatenated = NumStrs; |
| return SL; |
| } |
| |
| void StringLiteral::setString(ASTContext &C, StringRef Str, |
| StringKind Kind, bool IsPascal) { |
| //FIXME: we assume that the string data comes from a target that uses the same |
| // code unit size and endianess for the type of string. |
| this->Kind = Kind; |
| this->IsPascal = IsPascal; |
| |
| CharByteWidth = mapCharByteWidth(C.getTargetInfo(),Kind); |
| assert((Str.size()%CharByteWidth == 0) |
| && "size of data must be multiple of CharByteWidth"); |
| Length = Str.size()/CharByteWidth; |
| |
| switch(CharByteWidth) { |
| case 1: { |
| char *AStrData = new (C) char[Length]; |
| std::memcpy(AStrData,Str.data(),Str.size()); |
| StrData.asChar = AStrData; |
| break; |
| } |
| case 2: { |
| uint16_t *AStrData = new (C) uint16_t[Length]; |
| std::memcpy(AStrData,Str.data(),Str.size()); |
| StrData.asUInt16 = AStrData; |
| break; |
| } |
| case 4: { |
| uint32_t *AStrData = new (C) uint32_t[Length]; |
| std::memcpy(AStrData,Str.data(),Str.size()); |
| StrData.asUInt32 = AStrData; |
| break; |
| } |
| default: |
| assert(false && "unsupported CharByteWidth"); |
| } |
| } |
| |
| /// getLocationOfByte - Return a source location that points to the specified |
| /// byte of this string literal. |
| /// |
| /// Strings are amazingly complex. They can be formed from multiple tokens and |
| /// can have escape sequences in them in addition to the usual trigraph and |
| /// escaped newline business. This routine handles this complexity. |
| /// |
| SourceLocation StringLiteral:: |
| getLocationOfByte(unsigned ByteNo, const SourceManager &SM, |
| const LangOptions &Features, const TargetInfo &Target) const { |
| assert(Kind == StringLiteral::Ascii && "This only works for ASCII strings"); |
| |
| // Loop over all of the tokens in this string until we find the one that |
| // contains the byte we're looking for. |
| unsigned TokNo = 0; |
| while (1) { |
| assert(TokNo < getNumConcatenated() && "Invalid byte number!"); |
| SourceLocation StrTokLoc = getStrTokenLoc(TokNo); |
| |
| // Get the spelling of the string so that we can get the data that makes up |
| // the string literal, not the identifier for the macro it is potentially |
| // expanded through. |
| SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc); |
| |
| // Re-lex the token to get its length and original spelling. |
| std::pair<FileID, unsigned> LocInfo =SM.getDecomposedLoc(StrTokSpellingLoc); |
| bool Invalid = false; |
| StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid); |
| if (Invalid) |
| return StrTokSpellingLoc; |
| |
| const char *StrData = Buffer.data()+LocInfo.second; |
| |
| // Create a langops struct and enable trigraphs. This is sufficient for |
| // relexing tokens. |
| LangOptions LangOpts; |
| LangOpts.Trigraphs = true; |
| |
| // Create a lexer starting at the beginning of this token. |
| Lexer TheLexer(StrTokSpellingLoc, Features, Buffer.begin(), StrData, |
| Buffer.end()); |
| Token TheTok; |
| TheLexer.LexFromRawLexer(TheTok); |
| |
| // Use the StringLiteralParser to compute the length of the string in bytes. |
| StringLiteralParser SLP(&TheTok, 1, SM, Features, Target); |
| unsigned TokNumBytes = SLP.GetStringLength(); |
| |
| // If the byte is in this token, return the location of the byte. |
| if (ByteNo < TokNumBytes || |
| (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) { |
| unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo); |
| |
| // Now that we know the offset of the token in the spelling, use the |
| // preprocessor to get the offset in the original source. |
| return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features); |
| } |
| |
| // Move to the next string token. |
| ++TokNo; |
| ByteNo -= TokNumBytes; |
| } |
| } |
| |
| |
| |
| /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it |
| /// corresponds to, e.g. "sizeof" or "[pre]++". |
| const char *UnaryOperator::getOpcodeStr(Opcode Op) { |
| switch (Op) { |
| default: llvm_unreachable("Unknown unary operator"); |
| case UO_PostInc: return "++"; |
| case UO_PostDec: return "--"; |
| case UO_PreInc: return "++"; |
| case UO_PreDec: return "--"; |
| case UO_AddrOf: return "&"; |
| case UO_Deref: return "*"; |
| case UO_Plus: return "+"; |
| case UO_Minus: return "-"; |
| case UO_Not: return "~"; |
| case UO_LNot: return "!"; |
| case UO_Real: return "__real"; |
| case UO_Imag: return "__imag"; |
| case UO_Extension: return "__extension__"; |
| } |
| } |
| |
| UnaryOperatorKind |
| UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) { |
| switch (OO) { |
| default: llvm_unreachable("No unary operator for overloaded function"); |
| case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc; |
| case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec; |
| case OO_Amp: return UO_AddrOf; |
| case OO_Star: return UO_Deref; |
| case OO_Plus: return UO_Plus; |
| case OO_Minus: return UO_Minus; |
| case OO_Tilde: return UO_Not; |
| case OO_Exclaim: return UO_LNot; |
| } |
| } |
| |
| OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) { |
| switch (Opc) { |
| case UO_PostInc: case UO_PreInc: return OO_PlusPlus; |
| case UO_PostDec: case UO_PreDec: return OO_MinusMinus; |
| case UO_AddrOf: return OO_Amp; |
| case UO_Deref: return OO_Star; |
| case UO_Plus: return OO_Plus; |
| case UO_Minus: return OO_Minus; |
| case UO_Not: return OO_Tilde; |
| case UO_LNot: return OO_Exclaim; |
| default: return OO_None; |
| } |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Postfix Operators. |
| //===----------------------------------------------------------------------===// |
| |
| CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs, |
| Expr **args, unsigned numargs, QualType t, ExprValueKind VK, |
| SourceLocation rparenloc) |
| : Expr(SC, t, VK, OK_Ordinary, |
| fn->isTypeDependent(), |
| fn->isValueDependent(), |
| fn->isInstantiationDependent(), |
| fn->containsUnexpandedParameterPack()), |
| NumArgs(numargs) { |
| |
| SubExprs = new (C) Stmt*[numargs+PREARGS_START+NumPreArgs]; |
| SubExprs[FN] = fn; |
| for (unsigned i = 0; i != numargs; ++i) { |
| if (args[i]->isTypeDependent()) |
| ExprBits.TypeDependent = true; |
| if (args[i]->isValueDependent()) |
| ExprBits.ValueDependent = true; |
| if (args[i]->isInstantiationDependent()) |
| ExprBits.InstantiationDependent = true; |
| if (args[i]->containsUnexpandedParameterPack()) |
| ExprBits.ContainsUnexpandedParameterPack = true; |
| |
| SubExprs[i+PREARGS_START+NumPreArgs] = args[i]; |
| } |
| |
| CallExprBits.NumPreArgs = NumPreArgs; |
| RParenLoc = rparenloc; |
| } |
| |
| CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, |
| QualType t, ExprValueKind VK, SourceLocation rparenloc) |
| : Expr(CallExprClass, t, VK, OK_Ordinary, |
| fn->isTypeDependent(), |
| fn->isValueDependent(), |
| fn->isInstantiationDependent(), |
| fn->containsUnexpandedParameterPack()), |
| NumArgs(numargs) { |
| |
| SubExprs = new (C) Stmt*[numargs+PREARGS_START]; |
| SubExprs[FN] = fn; |
| for (unsigned i = 0; i != numargs; ++i) { |
| if (args[i]->isTypeDependent()) |
| ExprBits.TypeDependent = true; |
| if (args[i]->isValueDependent()) |
| ExprBits.ValueDependent = true; |
| if (args[i]->isInstantiationDependent()) |
| ExprBits.InstantiationDependent = true; |
| if (args[i]->containsUnexpandedParameterPack()) |
| ExprBits.ContainsUnexpandedParameterPack = true; |
| |
| SubExprs[i+PREARGS_START] = args[i]; |
| } |
| |
| CallExprBits.NumPreArgs = 0; |
| RParenLoc = rparenloc; |
| } |
| |
| CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty) |
| : Expr(SC, Empty), SubExprs(0), NumArgs(0) { |
| // FIXME: Why do we allocate this? |
| SubExprs = new (C) Stmt*[PREARGS_START]; |
| CallExprBits.NumPreArgs = 0; |
| } |
| |
| CallExpr::CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs, |
| EmptyShell Empty) |
| : Expr(SC, Empty), SubExprs(0), NumArgs(0) { |
| // FIXME: Why do we allocate this? |
| SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs]; |
| CallExprBits.NumPreArgs = NumPreArgs; |
| } |
| |
| Decl *CallExpr::getCalleeDecl() { |
| Expr *CEE = getCallee()->IgnoreParenImpCasts(); |
| |
| while (SubstNonTypeTemplateParmExpr *NTTP |
| = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) { |
| CEE = NTTP->getReplacement()->IgnoreParenCasts(); |
| } |
| |
| // If we're calling a dereference, look at the pointer instead. |
| if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) { |
| if (BO->isPtrMemOp()) |
| CEE = BO->getRHS()->IgnoreParenCasts(); |
| } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) { |
| if (UO->getOpcode() == UO_Deref) |
| CEE = UO->getSubExpr()->IgnoreParenCasts(); |
| } |
| if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) |
| return DRE->getDecl(); |
| if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE)) |
| return ME->getMemberDecl(); |
| |
| return 0; |
| } |
| |
| FunctionDecl *CallExpr::getDirectCallee() { |
| return dyn_cast_or_null<FunctionDecl>(getCalleeDecl()); |
| } |
| |
| /// setNumArgs - This changes the number of arguments present in this call. |
| /// Any orphaned expressions are deleted by this, and any new operands are set |
| /// to null. |
| void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) { |
| // No change, just return. |
| if (NumArgs == getNumArgs()) return; |
| |
| // If shrinking # arguments, just delete the extras and forgot them. |
| if (NumArgs < getNumArgs()) { |
| this->NumArgs = NumArgs; |
| return; |
| } |
| |
| // Otherwise, we are growing the # arguments. New an bigger argument array. |
| unsigned NumPreArgs = getNumPreArgs(); |
| Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs]; |
| // Copy over args. |
| for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i) |
| NewSubExprs[i] = SubExprs[i]; |
| // Null out new args. |
| for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs; |
| i != NumArgs+PREARGS_START+NumPreArgs; ++i) |
| NewSubExprs[i] = 0; |
| |
| if (SubExprs) C.Deallocate(SubExprs); |
| SubExprs = NewSubExprs; |
| this->NumArgs = NumArgs; |
| } |
| |
| /// isBuiltinCall - If this is a call to a builtin, return the builtin ID. If |
| /// not, return 0. |
| unsigned CallExpr::isBuiltinCall(const ASTContext &Context) const { |
| // All simple function calls (e.g. func()) are implicitly cast to pointer to |
| // function. As a result, we try and obtain the DeclRefExpr from the |
| // ImplicitCastExpr. |
| const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee()); |
| if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()). |
| return 0; |
| |
| const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()); |
| if (!DRE) |
| return 0; |
| |
| const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl()); |
| if (!FDecl) |
| return 0; |
| |
| if (!FDecl->getIdentifier()) |
| return 0; |
| |
| return FDecl->getBuiltinID(); |
| } |
| |
| QualType CallExpr::getCallReturnType() const { |
| QualType CalleeType = getCallee()->getType(); |
| if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>()) |
| CalleeType = FnTypePtr->getPointeeType(); |
| else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>()) |
| CalleeType = BPT->getPointeeType(); |
| else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) |
| // This should never be overloaded and so should never return null. |
| CalleeType = Expr::findBoundMemberType(getCallee()); |
| |
| const FunctionType *FnType = CalleeType->castAs<FunctionType>(); |
| return FnType->getResultType(); |
| } |
| |
| SourceRange CallExpr::getSourceRange() const { |
| if (isa<CXXOperatorCallExpr>(this)) |
| return cast<CXXOperatorCallExpr>(this)->getSourceRange(); |
| |
| SourceLocation begin = getCallee()->getLocStart(); |
| if (begin.isInvalid() && getNumArgs() > 0) |
| begin = getArg(0)->getLocStart(); |
| SourceLocation end = getRParenLoc(); |
| if (end.isInvalid() && getNumArgs() > 0) |
| end = getArg(getNumArgs() - 1)->getLocEnd(); |
| return SourceRange(begin, end); |
| } |
| |
| OffsetOfExpr *OffsetOfExpr::Create(ASTContext &C, QualType type, |
| SourceLocation OperatorLoc, |
| TypeSourceInfo *tsi, |
| OffsetOfNode* compsPtr, unsigned numComps, |
| Expr** exprsPtr, unsigned numExprs, |
| SourceLocation RParenLoc) { |
| void *Mem = C.Allocate(sizeof(OffsetOfExpr) + |
| sizeof(OffsetOfNode) * numComps + |
| sizeof(Expr*) * numExprs); |
| |
| return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, compsPtr, numComps, |
| exprsPtr, numExprs, RParenLoc); |
| } |
| |
| OffsetOfExpr *OffsetOfExpr::CreateEmpty(ASTContext &C, |
| unsigned numComps, unsigned numExprs) { |
| void *Mem = C.Allocate(sizeof(OffsetOfExpr) + |
| sizeof(OffsetOfNode) * numComps + |
| sizeof(Expr*) * numExprs); |
| return new (Mem) OffsetOfExpr(numComps, numExprs); |
| } |
| |
| OffsetOfExpr::OffsetOfExpr(ASTContext &C, QualType type, |
| SourceLocation OperatorLoc, TypeSourceInfo *tsi, |
| OffsetOfNode* compsPtr, unsigned numComps, |
| Expr** exprsPtr, unsigned numExprs, |
| SourceLocation RParenLoc) |
| : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary, |
| /*TypeDependent=*/false, |
| /*ValueDependent=*/tsi->getType()->isDependentType(), |
| tsi->getType()->isInstantiationDependentType(), |
| tsi->getType()->containsUnexpandedParameterPack()), |
| OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi), |
| NumComps(numComps), NumExprs(numExprs) |
| { |
| for(unsigned i = 0; i < numComps; ++i) { |
| setComponent(i, compsPtr[i]); |
| } |
| |
| for(unsigned i = 0; i < numExprs; ++i) { |
| if (exprsPtr[i]->isTypeDependent() || exprsPtr[i]->isValueDependent()) |
| ExprBits.ValueDependent = true; |
| if (exprsPtr[i]->containsUnexpandedParameterPack()) |
| ExprBits.ContainsUnexpandedParameterPack = true; |
| |
| setIndexExpr(i, exprsPtr[i]); |
| } |
| } |
| |
| IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const { |
| assert(getKind() == Field || getKind() == Identifier); |
| if (getKind() == Field) |
| return getField()->getIdentifier(); |
| |
| return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask); |
| } |
| |
| MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow, |
| NestedNameSpecifierLoc QualifierLoc, |
| ValueDecl *memberdecl, |
| DeclAccessPair founddecl, |
| DeclarationNameInfo nameinfo, |
| const TemplateArgumentListInfo *targs, |
| QualType ty, |
| ExprValueKind vk, |
| ExprObjectKind ok) { |
| std::size_t Size = sizeof(MemberExpr); |
| |
| bool hasQualOrFound = (QualifierLoc || |
| founddecl.getDecl() != memberdecl || |
| founddecl.getAccess() != memberdecl->getAccess()); |
| if (hasQualOrFound) |
| Size += sizeof(MemberNameQualifier); |
| |
| if (targs) |
| Size += ASTTemplateArgumentListInfo::sizeFor(*targs); |
| |
| void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>()); |
| MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, nameinfo, |
| ty, vk, ok); |
| |
| if (hasQualOrFound) { |
| // FIXME: Wrong. We should be looking at the member declaration we found. |
| if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) { |
| E->setValueDependent(true); |
| E->setTypeDependent(true); |
| E->setInstantiationDependent(true); |
| } |
| else if (QualifierLoc && |
| QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent()) |
| E->setInstantiationDependent(true); |
| |
| E->HasQualifierOrFoundDecl = true; |
| |
| MemberNameQualifier *NQ = E->getMemberQualifier(); |
| NQ->QualifierLoc = QualifierLoc; |
| NQ->FoundDecl = founddecl; |
| } |
| |
| if (targs) { |
| bool Dependent = false; |
| bool InstantiationDependent = false; |
| bool ContainsUnexpandedParameterPack = false; |
| E->HasExplicitTemplateArgumentList = true; |
| E->getExplicitTemplateArgs().initializeFrom(*targs, Dependent, |
| InstantiationDependent, |
| ContainsUnexpandedParameterPack); |
| if (InstantiationDependent) |
| E->setInstantiationDependent(true); |
| } |
| |
| return E; |
| } |
| |
| SourceRange MemberExpr::getSourceRange() const { |
| SourceLocation StartLoc; |
| if (isImplicitAccess()) { |
| if (hasQualifier()) |
| StartLoc = getQualifierLoc().getBeginLoc(); |
| else |
| StartLoc = MemberLoc; |
| } else { |
| // FIXME: We don't want this to happen. Rather, we should be able to |
| // detect all kinds of implicit accesses more cleanly. |
| StartLoc = getBase()->getLocStart(); |
| if (StartLoc.isInvalid()) |
| StartLoc = MemberLoc; |
| } |
| |
| SourceLocation EndLoc = |
| HasExplicitTemplateArgumentList? getRAngleLoc() |
| : getMemberNameInfo().getEndLoc(); |
| |
| return SourceRange(StartLoc, EndLoc); |
| } |
| |
| void CastExpr::CheckCastConsistency() const { |
| switch (getCastKind()) { |
| case CK_DerivedToBase: |
| case CK_UncheckedDerivedToBase: |
| case CK_DerivedToBaseMemberPointer: |
| case CK_BaseToDerived: |
| case CK_BaseToDerivedMemberPointer: |
| assert(!path_empty() && "Cast kind should have a base path!"); |
| break; |
| |
| case CK_CPointerToObjCPointerCast: |
| assert(getType()->isObjCObjectPointerType()); |
| assert(getSubExpr()->getType()->isPointerType()); |
| goto CheckNoBasePath; |
| |
| case CK_BlockPointerToObjCPointerCast: |
| assert(getType()->isObjCObjectPointerType()); |
| assert(getSubExpr()->getType()->isBlockPointerType()); |
| goto CheckNoBasePath; |
| |
| case CK_BitCast: |
| // Arbitrary casts to C pointer types count as bitcasts. |
| // Otherwise, we should only have block and ObjC pointer casts |
| // here if they stay within the type kind. |
| if (!getType()->isPointerType()) { |
| assert(getType()->isObjCObjectPointerType() == |
| getSubExpr()->getType()->isObjCObjectPointerType()); |
| assert(getType()->isBlockPointerType() == |
| getSubExpr()->getType()->isBlockPointerType()); |
| } |
| goto CheckNoBasePath; |
| |
| case CK_AnyPointerToBlockPointerCast: |
| assert(getType()->isBlockPointerType()); |
| assert(getSubExpr()->getType()->isAnyPointerType() && |
| !getSubExpr()->getType()->isBlockPointerType()); |
| goto CheckNoBasePath; |
| |
| // These should not have an inheritance path. |
| case CK_Dynamic: |
| case CK_ToUnion: |
| case CK_ArrayToPointerDecay: |
| case CK_FunctionToPointerDecay: |
| case CK_NullToMemberPointer: |
| case CK_NullToPointer: |
| case CK_ConstructorConversion: |
| case CK_IntegralToPointer: |
| case CK_PointerToIntegral: |
| case CK_ToVoid: |
| case CK_VectorSplat: |
| case CK_IntegralCast: |
| case CK_IntegralToFloating: |
| case CK_FloatingToIntegral: |
| case CK_FloatingCast: |
| case CK_ObjCObjectLValueCast: |
| case CK_FloatingRealToComplex: |
| case CK_FloatingComplexToReal: |
| case CK_FloatingComplexCast: |
| case CK_FloatingComplexToIntegralComplex: |
| case CK_IntegralRealToComplex: |
| case CK_IntegralComplexToReal: |
| case CK_IntegralComplexCast: |
| case CK_IntegralComplexToFloatingComplex: |
| case CK_ARCProduceObject: |
| case CK_ARCConsumeObject: |
| case CK_ARCReclaimReturnedObject: |
| case CK_ARCExtendBlockObject: |
| assert(!getType()->isBooleanType() && "unheralded conversion to bool"); |
| goto CheckNoBasePath; |
| |
| case CK_Dependent: |
| case CK_LValueToRValue: |
| case CK_NoOp: |
| case CK_PointerToBoolean: |
| case CK_IntegralToBoolean: |
| case CK_FloatingToBoolean: |
| case CK_MemberPointerToBoolean: |
| case CK_FloatingComplexToBoolean: |
| case CK_IntegralComplexToBoolean: |
| case CK_LValueBitCast: // -> bool& |
| case CK_UserDefinedConversion: // operator bool() |
| CheckNoBasePath: |
| assert(path_empty() && "Cast kind should not have a base path!"); |
| break; |
| } |
| } |
| |
| const char *CastExpr::getCastKindName() const { |
| switch (getCastKind()) { |
| case CK_Dependent: |
| return "Dependent"; |
| case CK_BitCast: |
| return "BitCast"; |
| case CK_LValueBitCast: |
| return "LValueBitCast"; |
| case CK_LValueToRValue: |
| return "LValueToRValue"; |
| case CK_NoOp: |
| return "NoOp"; |
| case CK_BaseToDerived: |
| return "BaseToDerived"; |
| case CK_DerivedToBase: |
| return "DerivedToBase"; |
| case CK_UncheckedDerivedToBase: |
| return "UncheckedDerivedToBase"; |
| case CK_Dynamic: |
| return "Dynamic"; |
| case CK_ToUnion: |
| return "ToUnion"; |
| case CK_ArrayToPointerDecay: |
| return "ArrayToPointerDecay"; |
| case CK_FunctionToPointerDecay: |
| return "FunctionToPointerDecay"; |
| case CK_NullToMemberPointer: |
| return "NullToMemberPointer"; |
| case CK_NullToPointer: |
| return "NullToPointer"; |
| case CK_BaseToDerivedMemberPointer: |
| return "BaseToDerivedMemberPointer"; |
| case CK_DerivedToBaseMemberPointer: |
| return "DerivedToBaseMemberPointer"; |
| case CK_UserDefinedConversion: |
| return "UserDefinedConversion"; |
| case CK_ConstructorConversion: |
| return "ConstructorConversion"; |
| case CK_IntegralToPointer: |
| return "IntegralToPointer"; |
| case CK_PointerToIntegral: |
| return "PointerToIntegral"; |
| case CK_PointerToBoolean: |
| return "PointerToBoolean"; |
| case CK_ToVoid: |
| return "ToVoid"; |
| case CK_VectorSplat: |
| return "VectorSplat"; |
| case CK_IntegralCast: |
| return "IntegralCast"; |
| case CK_IntegralToBoolean: |
| return "IntegralToBoolean"; |
| case CK_IntegralToFloating: |
| return "IntegralToFloating"; |
| case CK_FloatingToIntegral: |
| return "FloatingToIntegral"; |
| case CK_FloatingCast: |
| return "FloatingCast"; |
| case CK_FloatingToBoolean: |
| return "FloatingToBoolean"; |
| case CK_MemberPointerToBoolean: |
| return "MemberPointerToBoolean"; |
| case CK_CPointerToObjCPointerCast: |
| return "CPointerToObjCPointerCast"; |
| case CK_BlockPointerToObjCPointerCast: |
| return "BlockPointerToObjCPointerCast"; |
| case CK_AnyPointerToBlockPointerCast: |
| return "AnyPointerToBlockPointerCast"; |
| case CK_ObjCObjectLValueCast: |
| return "ObjCObjectLValueCast"; |
| case CK_FloatingRealToComplex: |
| return "FloatingRealToComplex"; |
| case CK_FloatingComplexToReal: |
| return "FloatingComplexToReal"; |
| case CK_FloatingComplexToBoolean: |
| return "FloatingComplexToBoolean"; |
| case CK_FloatingComplexCast: |
| return "FloatingComplexCast"; |
| case CK_FloatingComplexToIntegralComplex: |
| return "FloatingComplexToIntegralComplex"; |
| case CK_IntegralRealToComplex: |
| return "IntegralRealToComplex"; |
| case CK_IntegralComplexToReal: |
| return "IntegralComplexToReal"; |
| case CK_IntegralComplexToBoolean: |
| return "IntegralComplexToBoolean"; |
| case CK_IntegralComplexCast: |
| return "IntegralComplexCast"; |
| case CK_IntegralComplexToFloatingComplex: |
| return "IntegralComplexToFloatingComplex"; |
| case CK_ARCConsumeObject: |
| return "ARCConsumeObject"; |
| case CK_ARCProduceObject: |
| return "ARCProduceObject"; |
| case CK_ARCReclaimReturnedObject: |
| return "ARCReclaimReturnedObject"; |
| case CK_ARCExtendBlockObject: |
| return "ARCCExtendBlockObject"; |
| } |
| |
| llvm_unreachable("Unhandled cast kind!"); |
| return 0; |
| } |
| |
| Expr *CastExpr::getSubExprAsWritten() { |
| Expr *SubExpr = 0; |
| CastExpr *E = this; |
| do { |
| SubExpr = E->getSubExpr(); |
| |
| // Skip through reference binding to temporary. |
| if (MaterializeTemporaryExpr *Materialize |
| = dyn_cast<MaterializeTemporaryExpr>(SubExpr)) |
| SubExpr = Materialize->GetTemporaryExpr(); |
| |
| // Skip any temporary bindings; they're implicit. |
| if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr)) |
| SubExpr = Binder->getSubExpr(); |
| |
| // Conversions by constructor and conversion functions have a |
| // subexpression describing the call; strip it off. |
| if (E->getCastKind() == CK_ConstructorConversion) |
| SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0); |
| else if (E->getCastKind() == CK_UserDefinedConversion) |
| SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument(); |
| |
| // If the subexpression we're left with is an implicit cast, look |
| // through that, too. |
| } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr))); |
| |
| return SubExpr; |
| } |
| |
| CXXBaseSpecifier **CastExpr::path_buffer() { |
| switch (getStmtClass()) { |
| #define ABSTRACT_STMT(x) |
| #define CASTEXPR(Type, Base) \ |
| case Stmt::Type##Class: \ |
| return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1); |
| #define STMT(Type, Base) |
| #include "clang/AST/StmtNodes.inc" |
| default: |
| llvm_unreachable("non-cast expressions not possible here"); |
| return 0; |
| } |
| } |
| |
| void CastExpr::setCastPath(const CXXCastPath &Path) { |
| assert(Path.size() == path_size()); |
| memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*)); |
| } |
| |
| ImplicitCastExpr *ImplicitCastExpr::Create(ASTContext &C, QualType T, |
| CastKind Kind, Expr *Operand, |
| const CXXCastPath *BasePath, |
| ExprValueKind VK) { |
| unsigned PathSize = (BasePath ? BasePath->size() : 0); |
| void *Buffer = |
| C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*)); |
| ImplicitCastExpr *E = |
| new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK); |
| if (PathSize) E->setCastPath(*BasePath); |
| return E; |
| } |
| |
| ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(ASTContext &C, |
| unsigned PathSize) { |
| void *Buffer = |
| C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*)); |
| return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize); |
| } |
| |
| |
| CStyleCastExpr *CStyleCastExpr::Create(ASTContext &C, QualType T, |
| ExprValueKind VK, CastKind K, Expr *Op, |
| const CXXCastPath *BasePath, |
| TypeSourceInfo *WrittenTy, |
| SourceLocation L, SourceLocation R) { |
| unsigned PathSize = (BasePath ? BasePath->size() : 0); |
| void *Buffer = |
| C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*)); |
| CStyleCastExpr *E = |
| new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R); |
| if (PathSize) E->setCastPath(*BasePath); |
| return E; |
| } |
| |
| CStyleCastExpr *CStyleCastExpr::CreateEmpty(ASTContext &C, unsigned PathSize) { |
| void *Buffer = |
| C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*)); |
| return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize); |
| } |
| |
| /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it |
| /// corresponds to, e.g. "<<=". |
| const char *BinaryOperator::getOpcodeStr(Opcode Op) { |
| switch (Op) { |
| case BO_PtrMemD: return ".*"; |
| case BO_PtrMemI: return "->*"; |
| case BO_Mul: return "*"; |
| case BO_Div: return "/"; |
| case BO_Rem: return "%"; |
| case BO_Add: return "+"; |
| case BO_Sub: return "-"; |
| case BO_Shl: return "<<"; |
| case BO_Shr: return ">>"; |
| case BO_LT: return "<"; |
| case BO_GT: return ">"; |
| case BO_LE: return "<="; |
| case BO_GE: return ">="; |
| case BO_EQ: return "=="; |
| case BO_NE: return "!="; |
| case BO_And: return "&"; |
| case BO_Xor: return "^"; |
| case BO_Or: return "|"; |
| case BO_LAnd: return "&&"; |
| case BO_LOr: return "||"; |
| case BO_Assign: return "="; |
| case BO_MulAssign: return "*="; |
| case BO_DivAssign: return "/="; |
| case BO_RemAssign: return "%="; |
| case BO_AddAssign: return "+="; |
| case BO_SubAssign: return "-="; |
| case BO_ShlAssign: return "<<="; |
| case BO_ShrAssign: return ">>="; |
| case BO_AndAssign: return "&="; |
| case BO_XorAssign: return "^="; |
| case BO_OrAssign: return "|="; |
| case BO_Comma: return ","; |
| } |
| |
| return ""; |
| } |
| |
| BinaryOperatorKind |
| BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) { |
| switch (OO) { |
| default: llvm_unreachable("Not an overloadable binary operator"); |
| case OO_Plus: return BO_Add; |
| case OO_Minus: return BO_Sub; |
| case OO_Star: return BO_Mul; |
| case OO_Slash: return BO_Div; |
| case OO_Percent: return BO_Rem; |
| case OO_Caret: return BO_Xor; |
| case OO_Amp: return BO_And; |
| case OO_Pipe: return BO_Or; |
| case OO_Equal: return BO_Assign; |
| case OO_Less: return BO_LT; |
| case OO_Greater: return BO_GT; |
| case OO_PlusEqual: return BO_AddAssign; |
| case OO_MinusEqual: return BO_SubAssign; |
| case OO_StarEqual: return BO_MulAssign; |
| case OO_SlashEqual: return BO_DivAssign; |
| case OO_PercentEqual: return BO_RemAssign; |
| case OO_CaretEqual: return BO_XorAssign; |
| case OO_AmpEqual: return BO_AndAssign; |
| case OO_PipeEqual: return BO_OrAssign; |
| case OO_LessLess: return BO_Shl; |
| case OO_GreaterGreater: return BO_Shr; |
| case OO_LessLessEqual: return BO_ShlAssign; |
| case OO_GreaterGreaterEqual: return BO_ShrAssign; |
| case OO_EqualEqual: return BO_EQ; |
| case OO_ExclaimEqual: return BO_NE; |
| case OO_LessEqual: return BO_LE; |
| case OO_GreaterEqual: return BO_GE; |
| case OO_AmpAmp: return BO_LAnd; |
| case OO_PipePipe: return BO_LOr; |
| case OO_Comma: return BO_Comma; |
| case OO_ArrowStar: return BO_PtrMemI; |
| } |
| } |
| |
| OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) { |
| static const OverloadedOperatorKind OverOps[] = { |
| /* .* Cannot be overloaded */OO_None, OO_ArrowStar, |
| OO_Star, OO_Slash, OO_Percent, |
| OO_Plus, OO_Minus, |
| OO_LessLess, OO_GreaterGreater, |
| OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual, |
| OO_EqualEqual, OO_ExclaimEqual, |
| OO_Amp, |
| OO_Caret, |
| OO_Pipe, |
| OO_AmpAmp, |
| OO_PipePipe, |
| OO_Equal, OO_StarEqual, |
| OO_SlashEqual, OO_PercentEqual, |
| OO_PlusEqual, OO_MinusEqual, |
| OO_LessLessEqual, OO_GreaterGreaterEqual, |
| OO_AmpEqual, OO_CaretEqual, |
| OO_PipeEqual, |
| OO_Comma |
| }; |
| return OverOps[Opc]; |
| } |
| |
| InitListExpr::InitListExpr(ASTContext &C, SourceLocation lbraceloc, |
| Expr **initExprs, unsigned numInits, |
| SourceLocation rbraceloc) |
| : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false, |
| false, false), |
| InitExprs(C, numInits), |
| LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0), |
| HadArrayRangeDesignator(false) |
| { |
| for (unsigned I = 0; I != numInits; ++I) { |
| if (initExprs[I]->isTypeDependent()) |
| ExprBits.TypeDependent = true; |
| if (initExprs[I]->isValueDependent()) |
| ExprBits.ValueDependent = true; |
| if (initExprs[I]->isInstantiationDependent()) |
| ExprBits.InstantiationDependent = true; |
| if (initExprs[I]->containsUnexpandedParameterPack()) |
| ExprBits.ContainsUnexpandedParameterPack = true; |
| } |
| |
| InitExprs.insert(C, InitExprs.end(), initExprs, initExprs+numInits); |
| } |
| |
| void InitListExpr::reserveInits(ASTContext &C, unsigned NumInits) { |
| if (NumInits > InitExprs.size()) |
| InitExprs.reserve(C, NumInits); |
| } |
| |
| void InitListExpr::resizeInits(ASTContext &C, unsigned NumInits) { |
| InitExprs.resize(C, NumInits, 0); |
| } |
| |
| Expr *InitListExpr::updateInit(ASTContext &C, unsigned Init, Expr *expr) { |
| if (Init >= InitExprs.size()) { |
| InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, 0); |
| InitExprs.back() = expr; |
| return 0; |
| } |
| |
| Expr *Result = cast_or_null<Expr>(InitExprs[Init]); |
| InitExprs[Init] = expr; |
| return Result; |
| } |
| |
| void InitListExpr::setArrayFiller(Expr *filler) { |
| assert(!hasArrayFiller() && "Filler already set!"); |
| ArrayFillerOrUnionFieldInit = filler; |
| // Fill out any "holes" in the array due to designated initializers. |
| Expr **inits = getInits(); |
| for (unsigned i = 0, e = getNumInits(); i != e; ++i) |
| if (inits[i] == 0) |
| inits[i] = filler; |
| } |
| |
| SourceRange InitListExpr::getSourceRange() const { |
| if (SyntacticForm) |
| return SyntacticForm->getSourceRange(); |
| SourceLocation Beg = LBraceLoc, End = RBraceLoc; |
| if (Beg.isInvalid()) { |
| // Find the first non-null initializer. |
| for (InitExprsTy::const_iterator I = InitExprs.begin(), |
| E = InitExprs.end(); |
| I != E; ++I) { |
| if (Stmt *S = *I) { |
| Beg = S->getLocStart(); |
| break; |
| } |
| } |
| } |
| if (End.isInvalid()) { |
| // Find the first non-null initializer from the end. |
| for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(), |
| E = InitExprs.rend(); |
| I != E; ++I) { |
| if (Stmt *S = *I) { |
| End = S->getSourceRange().getEnd(); |
| break; |
| } |
| } |
| } |
| return SourceRange(Beg, End); |
| } |
| |
| /// getFunctionType - Return the underlying function type for this block. |
| /// |
| const FunctionType *BlockExpr::getFunctionType() const { |
| return getType()->getAs<BlockPointerType>()-> |
| getPointeeType()->getAs<FunctionType>(); |
| } |
| |
| SourceLocation BlockExpr::getCaretLocation() const { |
| return TheBlock->getCaretLocation(); |
| } |
| const Stmt *BlockExpr::getBody() const { |
| return TheBlock->getBody(); |
| } |
| Stmt *BlockExpr::getBody() { |
| return TheBlock->getBody(); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Generic Expression Routines |
| //===----------------------------------------------------------------------===// |
| |
| /// isUnusedResultAWarning - Return true if this immediate expression should |
| /// be warned about if the result is unused. If so, fill in Loc and Ranges |
| /// with location to warn on and the source range[s] to report with the |
| /// warning. |
| bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1, |
| SourceRange &R2, ASTContext &Ctx) const { |
| // Don't warn if the expr is type dependent. The type could end up |
| // instantiating to void. |
| if (isTypeDependent()) |
| return false; |
| |
| switch (getStmtClass()) { |
| default: |
| if (getType()->isVoidType()) |
| return false; |
| Loc = getExprLoc(); |
| R1 = getSourceRange(); |
| return true; |
| case ParenExprClass: |
| return cast<ParenExpr>(this)->getSubExpr()-> |
| isUnusedResultAWarning(Loc, R1, R2, Ctx); |
| case GenericSelectionExprClass: |
| return cast<GenericSelectionExpr>(this)->getResultExpr()-> |
| isUnusedResultAWarning(Loc, R1, R2, Ctx); |
| case UnaryOperatorClass: { |
| const UnaryOperator *UO = cast<UnaryOperator>(this); |
| |
| switch (UO->getOpcode()) { |
| default: break; |
| case UO_PostInc: |
| case UO_PostDec: |
| case UO_PreInc: |
| case UO_PreDec: // ++/-- |
| return false; // Not a warning. |
| case UO_Deref: |
| // Dereferencing a volatile pointer is a side-effect. |
| if (Ctx.getCanonicalType(getType()).isVolatileQualified()) |
| return false; |
| break; |
| case UO_Real: |
| case UO_Imag: |
| // accessing a piece of a volatile complex is a side-effect. |
| if (Ctx.getCanonicalType(UO->getSubExpr()->getType()) |
| .isVolatileQualified()) |
| return false; |
| break; |
| case UO_Extension: |
| return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx); |
| } |
| Loc = UO->getOperatorLoc(); |
| R1 = UO->getSubExpr()->getSourceRange(); |
| return true; |
| } |
| case BinaryOperatorClass: { |
| const BinaryOperator *BO = cast<BinaryOperator>(this); |
| switch (BO->getOpcode()) { |
| default: |
| break; |
| // Consider the RHS of comma for side effects. LHS was checked by |
| // Sema::CheckCommaOperands. |
| case BO_Comma: |
| // ((foo = <blah>), 0) is an idiom for hiding the result (and |
| // lvalue-ness) of an assignment written in a macro. |
| if (IntegerLiteral *IE = |
| dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens())) |
| if (IE->getValue() == 0) |
| return false; |
| return BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx); |
| // Consider '||', '&&' to have side effects if the LHS or RHS does. |
| case BO_LAnd: |
| case BO_LOr: |
| if (!BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx) || |
| !BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx)) |
| return false; |
| break; |
| } |
| if (BO->isAssignmentOp()) |
| return false; |
| Loc = BO->getOperatorLoc(); |
| R1 = BO->getLHS()->getSourceRange(); |
| R2 = BO->getRHS()->getSourceRange(); |
| return true; |
| } |
| case CompoundAssignOperatorClass: |
| case VAArgExprClass: |
| case AtomicExprClass: |
| return false; |
| |
| case ConditionalOperatorClass: { |
| // If only one of the LHS or RHS is a warning, the operator might |
| // be being used for control flow. Only warn if both the LHS and |
| // RHS are warnings. |
| const ConditionalOperator *Exp = cast<ConditionalOperator>(this); |
| if (!Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx)) |
| return false; |
| if (!Exp->getLHS()) |
| return true; |
| return Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx); |
| } |
| |
| case MemberExprClass: |
| // If the base pointer or element is to a volatile pointer/field, accessing |
| // it is a side effect. |
| if (Ctx.getCanonicalType(getType()).isVolatileQualified()) |
| return false; |
| Loc = cast<MemberExpr>(this)->getMemberLoc(); |
| R1 = SourceRange(Loc, Loc); |
| R2 = cast<MemberExpr>(this)->getBase()->getSourceRange(); |
| return true; |
| |
| case ArraySubscriptExprClass: |
| // If the base pointer or element is to a volatile pointer/field, accessing |
| // it is a side effect. |
| if (Ctx.getCanonicalType(getType()).isVolatileQualified()) |
| return false; |
| Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc(); |
| R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange(); |
| R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange(); |
| return true; |
| |
| case CXXOperatorCallExprClass: { |
| // We warn about operator== and operator!= even when user-defined operator |
| // overloads as there is no reasonable way to define these such that they |
| // have non-trivial, desirable side-effects. See the -Wunused-comparison |
| // warning: these operators are commonly typo'ed, and so warning on them |
| // provides additional value as well. If this list is updated, |
| // DiagnoseUnusedComparison should be as well. |
| const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this); |
| if (Op->getOperator() == OO_EqualEqual || |
| Op->getOperator() == OO_ExclaimEqual) { |
| Loc = Op->getOperatorLoc(); |
| R1 = Op->getSourceRange(); |
| return true; |
| } |
| |
| // Fallthrough for generic call handling. |
| } |
| case CallExprClass: |
| case CXXMemberCallExprClass: { |
| // If this is a direct call, get the callee. |
| const CallExpr *CE = cast<CallExpr>(this); |
| if (const Decl *FD = CE->getCalleeDecl()) { |
| // If the callee has attribute pure, const, or warn_unused_result, warn |
| // about it. void foo() { strlen("bar"); } should warn. |
| // |
| // Note: If new cases are added here, DiagnoseUnusedExprResult should be |
| // updated to match for QoI. |
| if (FD->getAttr<WarnUnusedResultAttr>() || |
| FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) { |
| Loc = CE->getCallee()->getLocStart(); |
| R1 = CE->getCallee()->getSourceRange(); |
| |
| if (unsigned NumArgs = CE->getNumArgs()) |
| R2 = SourceRange(CE->getArg(0)->getLocStart(), |
| CE->getArg(NumArgs-1)->getLocEnd()); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| case CXXTemporaryObjectExprClass: |
| case CXXConstructExprClass: |
| return false; |
| |
| case ObjCMessageExprClass: { |
| const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this); |
| if (Ctx.getLangOptions().ObjCAutoRefCount && |
| ME->isInstanceMessage() && |
| !ME->getType()->isVoidType() && |
| ME->getSelector().getIdentifierInfoForSlot(0) && |
| ME->getSelector().getIdentifierInfoForSlot(0) |
| ->getName().startswith("init")) { |
| Loc = getExprLoc(); |
| R1 = ME->getSourceRange(); |
| return true; |
| } |
| |
| const ObjCMethodDecl *MD = ME->getMethodDecl(); |
| if (MD && MD->getAttr<WarnUnusedResultAttr>()) { |
| Loc = getExprLoc(); |
| return true; |
| } |
| return false; |
| } |
| |
| case ObjCPropertyRefExprClass: |
| Loc = getExprLoc(); |
| R1 = getSourceRange(); |
| return true; |
| |
| case PseudoObjectExprClass: { |
| const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this); |
| |
| // Only complain about things that have the form of a getter. |
| if (isa<UnaryOperator>(PO->getSyntacticForm()) || |
| isa<BinaryOperator>(PO->getSyntacticForm())) |
| return false; |
| |
| Loc = getExprLoc(); |
| R1 = getSourceRange(); |
| return true; |
| } |
| |
| case StmtExprClass: { |
| // Statement exprs don't logically have side effects themselves, but are |
| // sometimes used in macros in ways that give them a type that is unused. |
| // For example ({ blah; foo(); }) will end up with a type if foo has a type. |
| // however, if the result of the stmt expr is dead, we don't want to emit a |
| // warning. |
| const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt(); |
| if (!CS->body_empty()) { |
| if (const Expr *E = dyn_cast<Expr>(CS->body_back())) |
| return E->isUnusedResultAWarning(Loc, R1, R2, Ctx); |
| if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back())) |
| if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt())) |
| return E->isUnusedResultAWarning(Loc, R1, R2, Ctx); |
| } |
| |
| if (getType()->isVoidType()) |
| return false; |
| Loc = cast<StmtExpr>(this)->getLParenLoc(); |
| R1 = getSourceRange(); |
| return true; |
| } |
| case CStyleCastExprClass: |
| // If this is an explicit cast to void, allow it. People do this when they |
| // think they know what they're doing :). |
| if (getType()->isVoidType()) |
| return false; |
| Loc = cast<CStyleCastExpr>(this)->getLParenLoc(); |
| R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange(); |
| return true; |
| case CXXFunctionalCastExprClass: { |
| if (getType()->isVoidType()) |
| return false; |
| const CastExpr *CE = cast<CastExpr>(this); |
| |
| // If this is a cast to void or a constructor conversion, check the operand. |
| // Otherwise, the result of the cast is unused. |
| if (CE->getCastKind() == CK_ToVoid || |
| CE->getCastKind() == CK_ConstructorConversion) |
| return (cast<CastExpr>(this)->getSubExpr() |
| ->isUnusedResultAWarning(Loc, R1, R2, Ctx)); |
| Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc(); |
| R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange(); |
| return true; |
| } |
| |
| case ImplicitCastExprClass: |
| // Check the operand, since implicit casts are inserted by Sema |
| return (cast<ImplicitCastExpr>(this) |
| ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx)); |
| |
| case CXXDefaultArgExprClass: |
| return (cast<CXXDefaultArgExpr>(this) |
| ->getExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx)); |
| |
| case CXXNewExprClass: |
| // FIXME: In theory, there might be new expressions that don't have side |
| // effects (e.g. a placement new with an uninitialized POD). |
| case CXXDeleteExprClass: |
| return false; |
| case CXXBindTemporaryExprClass: |
| return (cast<CXXBindTemporaryExpr>(this) |
| ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx)); |
| case ExprWithCleanupsClass: |
| return (cast<ExprWithCleanups>(this) |
| ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx)); |
| } |
| } |
| |
| /// isOBJCGCCandidate - Check if an expression is objc gc'able. |
| /// returns true, if it is; false otherwise. |
| bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const { |
| const Expr *E = IgnoreParens(); |
| switch (E->getStmtClass()) { |
| default: |
| return false; |
| case ObjCIvarRefExprClass: |
| return true; |
| case Expr::UnaryOperatorClass: |
| return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); |
| case ImplicitCastExprClass: |
| return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); |
| case MaterializeTemporaryExprClass: |
| return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr() |
| ->isOBJCGCCandidate(Ctx); |
| case CStyleCastExprClass: |
| return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); |
| case BlockDeclRefExprClass: |
| case DeclRefExprClass: { |
| |
| const Decl *D; |
| if (const BlockDeclRefExpr *BDRE = dyn_cast<BlockDeclRefExpr>(E)) |
| D = BDRE->getDecl(); |
| else |
| D = cast<DeclRefExpr>(E)->getDecl(); |
| |
| if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { |
| if (VD->hasGlobalStorage()) |
| return true; |
| QualType T = VD->getType(); |
| // dereferencing to a pointer is always a gc'able candidate, |
| // unless it is __weak. |
| return T->isPointerType() && |
| (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak); |
| } |
| return false; |
| } |
| case MemberExprClass: { |
| const MemberExpr *M = cast<MemberExpr>(E); |
| return M->getBase()->isOBJCGCCandidate(Ctx); |
| } |
| case ArraySubscriptExprClass: |
| return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx); |
| } |
| } |
| |
| bool Expr::isBoundMemberFunction(ASTContext &Ctx) const { |
| if (isTypeDependent()) |
| return false; |
| return ClassifyLValue(Ctx) == Expr::LV_MemberFunction; |
| } |
| |
| QualType Expr::findBoundMemberType(const Expr *expr) { |
| assert(expr->hasPlaceholderType(BuiltinType::BoundMember)); |
| |
| // Bound member expressions are always one of these possibilities: |
| // x->m x.m x->*y x.*y |
| // (possibly parenthesized) |
| |
| expr = expr->IgnoreParens(); |
| if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) { |
| assert(isa<CXXMethodDecl>(mem->getMemberDecl())); |
| return mem->getMemberDecl()->getType(); |
| } |
| |
| if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) { |
| QualType type = op->getRHS()->getType()->castAs<MemberPointerType>() |
| ->getPointeeType(); |
| assert(type->isFunctionType()); |
| return type; |
| } |
| |
| assert(isa<UnresolvedMemberExpr>(expr)); |
| return QualType(); |
| } |
| |
| static Expr::CanThrowResult MergeCanThrow(Expr::CanThrowResult CT1, |
| Expr::CanThrowResult CT2) { |
| // CanThrowResult constants are ordered so that the maximum is the correct |
| // merge result. |
| return CT1 > CT2 ? CT1 : CT2; |
| } |
| |
| static Expr::CanThrowResult CanSubExprsThrow(ASTContext &C, const Expr *CE) { |
| Expr *E = const_cast<Expr*>(CE); |
| Expr::CanThrowResult R = Expr::CT_Cannot; |
| for (Expr::child_range I = E->children(); I && R != Expr::CT_Can; ++I) { |
| R = MergeCanThrow(R, cast<Expr>(*I)->CanThrow(C)); |
| } |
| return R; |
| } |
| |
| static Expr::CanThrowResult CanCalleeThrow(ASTContext &Ctx, const Expr *E, |
| const Decl *D, |
| bool NullThrows = true) { |
| if (!D) |
| return NullThrows ? Expr::CT_Can : Expr::CT_Cannot; |
| |
| // See if we can get a function type from the decl somehow. |
| const ValueDecl *VD = dyn_cast<ValueDecl>(D); |
| if (!VD) // If we have no clue what we're calling, assume the worst. |
| return Expr::CT_Can; |
| |
| // As an extension, we assume that __attribute__((nothrow)) functions don't |
| // throw. |
| if (isa<FunctionDecl>(D) && D->hasAttr<NoThrowAttr>()) |
| return Expr::CT_Cannot; |
| |
| QualType T = VD->getType(); |
| const FunctionProtoType *FT; |
| if ((FT = T->getAs<FunctionProtoType>())) { |
| } else if (const PointerType *PT = T->getAs<PointerType>()) |
| FT = PT->getPointeeType()->getAs<FunctionProtoType>(); |
| else if (const ReferenceType *RT = T->getAs<ReferenceType>()) |
| FT = RT->getPointeeType()->getAs<FunctionProtoType>(); |
| else if (const MemberPointerType *MT = T->getAs<MemberPointerType>()) |
| FT = MT->getPointeeType()->getAs<FunctionProtoType>(); |
| else if (const BlockPointerType *BT = T->getAs<BlockPointerType>()) |
| FT = BT->getPointeeType()->getAs<FunctionProtoType>(); |
| |
| if (!FT) |
| return Expr::CT_Can; |
| |
| if (FT->getExceptionSpecType() == EST_Delayed) { |
| assert(isa<CXXConstructorDecl>(D) && |
| "only constructor exception specs can be unknown"); |
| Ctx.getDiagnostics().Report(E->getLocStart(), |
| diag::err_exception_spec_unknown) |
| << E->getSourceRange(); |
| return Expr::CT_Can; |
| } |
| |
| return FT->isNothrow(Ctx) ? Expr::CT_Cannot : Expr::CT_Can; |
| } |
| |
| static Expr::CanThrowResult CanDynamicCastThrow(const CXXDynamicCastExpr *DC) { |
| if (DC->isTypeDependent()) |
| return Expr::CT_Dependent; |
| |
| if (!DC->getTypeAsWritten()->isReferenceType()) |
| return Expr::CT_Cannot; |
| |
| if (DC->getSubExpr()->isTypeDependent()) |
| return Expr::CT_Dependent; |
| |
| return DC->getCastKind() == clang::CK_Dynamic? Expr::CT_Can : Expr::CT_Cannot; |
| } |
| |
| static Expr::CanThrowResult CanTypeidThrow(ASTContext &C, |
| const CXXTypeidExpr *DC) { |
| if (DC->isTypeOperand()) |
| return Expr::CT_Cannot; |
| |
| Expr *Op = DC->getExprOperand(); |
| if (Op->isTypeDependent()) |
| return Expr::CT_Dependent; |
| |
| const RecordType *RT = Op->getType()->getAs<RecordType>(); |
| if (!RT) |
| return Expr::CT_Cannot; |
| |
| if (!cast<CXXRecordDecl>(RT->getDecl())->isPolymorphic()) |
| return Expr::CT_Cannot; |
| |
| if (Op->Classify(C).isPRValue()) |
| return Expr::CT_Cannot; |
| |
| return Expr::CT_Can; |
| } |
| |
| Expr::CanThrowResult Expr::CanThrow(ASTContext &C) const { |
| // C++ [expr.unary.noexcept]p3: |
| // [Can throw] if in a potentially-evaluated context the expression would |
| // contain: |
| switch (getStmtClass()) { |
| case CXXThrowExprClass: |
| // - a potentially evaluated throw-expression |
| return CT_Can; |
| |
| case CXXDynamicCastExprClass: { |
| // - a potentially evaluated dynamic_cast expression dynamic_cast<T>(v), |
| // where T is a reference type, that requires a run-time check |
| CanThrowResult CT = CanDynamicCastThrow(cast<CXXDynamicCastExpr>(this)); |
| if (CT == CT_Can) |
| return CT; |
| return MergeCanThrow(CT, CanSubExprsThrow(C, this)); |
| } |
| |
| case CXXTypeidExprClass: |
| // - a potentially evaluated typeid expression applied to a glvalue |
| // expression whose type is a polymorphic class type |
| return CanTypeidThrow(C, cast<CXXTypeidExpr>(this)); |
| |
| // - a potentially evaluated call to a function, member function, function |
| // pointer, or member function pointer that does not have a non-throwing |
| // exception-specification |
| case CallExprClass: |
| case CXXOperatorCallExprClass: |
| case CXXMemberCallExprClass: { |
| const CallExpr *CE = cast<CallExpr>(this); |
| CanThrowResult CT; |
| if (isTypeDependent()) |
| CT = CT_Dependent; |
| else if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) |
| CT = CT_Cannot; |
| else |
| CT = CanCalleeThrow(C, this, CE->getCalleeDecl()); |
| if (CT == CT_Can) |
| return CT; |
| return MergeCanThrow(CT, CanSubExprsThrow(C, this)); |
| } |
| |
| case CXXConstructExprClass: |
| case CXXTemporaryObjectExprClass: { |
| CanThrowResult CT = CanCalleeThrow(C, this, |
| cast<CXXConstructExpr>(this)->getConstructor()); |
| if (CT == CT_Can) |
| return CT; |
| return MergeCanThrow(CT, CanSubExprsThrow(C, this)); |
| } |
| |
| case CXXNewExprClass: { |
| CanThrowResult CT; |
| if (isTypeDependent()) |
| CT = CT_Dependent; |
| else |
| CT = MergeCanThrow( |
| CanCalleeThrow(C, this, cast<CXXNewExpr>(this)->getOperatorNew()), |
| CanCalleeThrow(C, this, cast<CXXNewExpr>(this)->getConstructor(), |
| /*NullThrows*/false)); |
| if (CT == CT_Can) |
| return CT; |
| return MergeCanThrow(CT, CanSubExprsThrow(C, this)); |
| } |
| |
| case CXXDeleteExprClass: { |
| CanThrowResult CT; |
| QualType DTy = cast<CXXDeleteExpr>(this)->getDestroyedType(); |
| if (DTy.isNull() || DTy->isDependentType()) { |
| CT = CT_Dependent; |
| } else { |
| CT = CanCalleeThrow(C, this, |
| cast<CXXDeleteExpr>(this)->getOperatorDelete()); |
| if (const RecordType *RT = DTy->getAs<RecordType>()) { |
| const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); |
| CT = MergeCanThrow(CT, CanCalleeThrow(C, this, RD->getDestructor())); |
| } |
| if (CT == CT_Can) |
| return CT; |
| } |
| return MergeCanThrow(CT, CanSubExprsThrow(C, this)); |
| } |
| |
| case CXXBindTemporaryExprClass: { |
| // The bound temporary has to be destroyed again, which might throw. |
| CanThrowResult CT = CanCalleeThrow(C, this, |
| cast<CXXBindTemporaryExpr>(this)->getTemporary()->getDestructor()); |
| if (CT == CT_Can) |
| return CT; |
| return MergeCanThrow(CT, CanSubExprsThrow(C, this)); |
| } |
| |
| // ObjC message sends are like function calls, but never have exception |
| // specs. |
| case ObjCMessageExprClass: |
| case ObjCPropertyRefExprClass: |
| return CT_Can; |
| |
| // Many other things have subexpressions, so we have to test those. |
| // Some are simple: |
| case ParenExprClass: |
| case MemberExprClass: |
| case CXXReinterpretCastExprClass: |
| case CXXConstCastExprClass: |
| case ConditionalOperatorClass: |
| case CompoundLiteralExprClass: |
| case ExtVectorElementExprClass: |
| case InitListExprClass: |
| case DesignatedInitExprClass: |
| case ParenListExprClass: |
| case VAArgExprClass: |
| case CXXDefaultArgExprClass: |
| case ExprWithCleanupsClass: |
| case ObjCIvarRefExprClass: |
| case ObjCIsaExprClass: |
| case ShuffleVectorExprClass: |
| return CanSubExprsThrow(C, this); |
| |
| // Some might be dependent for other reasons. |
| case UnaryOperatorClass: |
| case ArraySubscriptExprClass: |
| case ImplicitCastExprClass: |
| case CStyleCastExprClass: |
| case CXXStaticCastExprClass: |
| case CXXFunctionalCastExprClass: |
| case BinaryOperatorClass: |
| case CompoundAssignOperatorClass: |
| case MaterializeTemporaryExprClass: { |
| CanThrowResult CT = isTypeDependent() ? CT_Dependent : CT_Cannot; |
| return MergeCanThrow(CT, CanSubExprsThrow(C, this)); |
| } |
| |
| // FIXME: We should handle StmtExpr, but that opens a MASSIVE can of worms. |
| case StmtExprClass: |
| return CT_Can; |
| |
| case ChooseExprClass: |
| if (isTypeDependent() || isValueDependent()) |
| return CT_Dependent; |
| return cast<ChooseExpr>(this)->getChosenSubExpr(C)->CanThrow(C); |
| |
| case GenericSelectionExprClass: |
| if (cast<GenericSelectionExpr>(this)->isResultDependent()) |
| return CT_Dependent; |
| return cast<GenericSelectionExpr>(this)->getResultExpr()->CanThrow(C); |
| |
| // Some expressions are always dependent. |
| case DependentScopeDeclRefExprClass: |
| case CXXUnresolvedConstructExprClass: |
| case CXXDependentScopeMemberExprClass: |
| return CT_Dependent; |
| |
| default: |
| // All other expressions don't have subexpressions, or else they are |
| // unevaluated. |
| return CT_Cannot; |
| } |
| } |
| |
| Expr* Expr::IgnoreParens() { |
| Expr* E = this; |
| while (true) { |
| if (ParenExpr* P = dyn_cast<ParenExpr>(E)) { |
| E = P->getSubExpr(); |
| continue; |
| } |
| if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) { |
| if (P->getOpcode() == UO_Extension) { |
| E = P->getSubExpr(); |
| continue; |
| } |
| } |
| if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) { |
| if (!P->isResultDependent()) { |
| E = P->getResultExpr(); |
| continue; |
| } |
| } |
| return E; |
| } |
| } |
| |
| /// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr |
| /// or CastExprs or ImplicitCastExprs, returning their operand. |
| Expr *Expr::IgnoreParenCasts() { |
| Expr *E = this; |
| while (true) { |
| if (ParenExpr* P = dyn_cast<ParenExpr>(E)) { |
| E = P->getSubExpr(); |
| continue; |
| } |
| if (CastExpr *P = dyn_cast<CastExpr>(E)) { |
| E = P->getSubExpr(); |
| continue; |
| } |
| if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) { |
| if (P->getOpcode() == UO_Extension) { |
| E = P->getSubExpr(); |
| continue; |
| } |
| } |
| if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) { |
| if (!P->isResultDependent()) { |
| E = P->getResultExpr(); |
| continue; |
| } |
| } |
| if (MaterializeTemporaryExpr *Materialize |
| = dyn_cast<MaterializeTemporaryExpr>(E)) { |
| E = Materialize->GetTemporaryExpr(); |
| continue; |
| } |
| if (SubstNonTypeTemplateParmExpr *NTTP |
| = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { |
| E = NTTP->getReplacement(); |
| continue; |
| } |
| return E; |
| } |
| } |
| |
| /// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue |
| /// casts. This is intended purely as a temporary workaround for code |
| /// that hasn't yet been rewritten to do the right thing about those |
| /// casts, and may disappear along with the last internal use. |
| Expr *Expr::IgnoreParenLValueCasts() { |
| Expr *E = this; |
| while (true) { |
| if (ParenExpr *P = dyn_cast<ParenExpr>(E)) { |
| E = P->getSubExpr(); |
| continue; |
| } else if (CastExpr *P = dyn_cast<CastExpr>(E)) { |
| if (P->getCastKind() == CK_LValueToRValue) { |
| E = P->getSubExpr(); |
| continue; |
| } |
| } else if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) { |
| if (P->getOpcode() == UO_Extension) { |
| E = P->getSubExpr(); |
| continue; |
| } |
| } else if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) { |
| if (!P->isResultDependent()) { |
| E = P->getResultExpr(); |
| continue; |
| } |
| } else if (MaterializeTemporaryExpr *Materialize |
| = dyn_cast<MaterializeTemporaryExpr>(E)) { |
| E = Materialize->GetTemporaryExpr(); |
| continue; |
| } else if (SubstNonTypeTemplateParmExpr *NTTP |
| = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { |
| E = NTTP->getReplacement(); |
| continue; |
| } |
| break; |
| } |
| return E; |
| } |
| |
| Expr *Expr::IgnoreParenImpCasts() { |
| Expr *E = this; |
| while (true) { |
| if (ParenExpr *P = dyn_cast<ParenExpr>(E)) { |
| E = P->getSubExpr(); |
| continue; |
| } |
| if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) { |
| E = P->getSubExpr(); |
| continue; |
| } |
| if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) { |
| if (P->getOpcode() == UO_Extension) { |
| E = P->getSubExpr(); |
| continue; |
| } |
| } |
| if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) { |
| if (!P->isResultDependent()) { |
| E = P->getResultExpr(); |
| continue; |
| } |
| } |
| if (MaterializeTemporaryExpr *Materialize |
| = dyn_cast<MaterializeTemporaryExpr>(E)) { |
| E = Materialize->GetTemporaryExpr(); |
| continue; |
| } |
| if (SubstNonTypeTemplateParmExpr *NTTP |
| = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { |
| E = NTTP->getReplacement(); |
| continue; |
| } |
| return E; |
| } |
| } |
| |
| Expr *Expr::IgnoreConversionOperator() { |
| if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) { |
| if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl())) |
| return MCE->getImplicitObjectArgument(); |
| } |
| return this; |
| } |
| |
| /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the |
| /// value (including ptr->int casts of the same size). Strip off any |
| /// ParenExpr or CastExprs, returning their operand. |
| Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) { |
| Expr *E = this; |
| while (true) { |
| if (ParenExpr *P = dyn_cast<ParenExpr>(E)) { |
| E = P->getSubExpr(); |
| continue; |
| } |
| |
| if (CastExpr *P = dyn_cast<CastExpr>(E)) { |
| // We ignore integer <-> casts that are of the same width, ptr<->ptr and |
| // ptr<->int casts of the same width. We also ignore all identity casts. |
| Expr *SE = P->getSubExpr(); |
| |
| if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) { |
| E = SE; |
| continue; |
| } |
| |
| if ((E->getType()->isPointerType() || |
| E->getType()->isIntegralType(Ctx)) && |
| (SE->getType()->isPointerType() || |
| SE->getType()->isIntegralType(Ctx)) && |
| Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) { |
| E = SE; |
| continue; |
| } |
| } |
| |
| if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) { |
| if (P->getOpcode() == UO_Extension) { |
| E = P->getSubExpr(); |
| continue; |
| } |
| } |
| |
| if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) { |
| if (!P->isResultDependent()) { |
| E = P->getResultExpr(); |
| continue; |
| } |
| } |
| |
| if (SubstNonTypeTemplateParmExpr *NTTP |
| = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { |
| E = NTTP->getReplacement(); |
| continue; |
| } |
| |
| return E; |
| } |
| } |
| |
| bool Expr::isDefaultArgument() const { |
| const Expr *E = this; |
| if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) |
| E = M->GetTemporaryExpr(); |
| |
| while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) |
| E = ICE->getSubExprAsWritten(); |
| |
| return isa<CXXDefaultArgExpr>(E); |
| } |
| |
| /// \brief Skip over any no-op casts and any temporary-binding |
| /// expressions. |
| static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) { |
| if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) |
| E = M->GetTemporaryExpr(); |
| |
| while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { |
| if (ICE->getCastKind() == CK_NoOp) |
| E = ICE->getSubExpr(); |
| else |
| break; |
| } |
| |
| while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E)) |
| E = BE->getSubExpr(); |
| |
| while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { |
| if (ICE->getCastKind() == CK_NoOp) |
| E = ICE->getSubExpr(); |
| else |
| break; |
| } |
| |
| return E->IgnoreParens(); |
| } |
| |
| /// isTemporaryObject - Determines if this expression produces a |
| /// temporary of the given class type. |
| bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const { |
| if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy))) |
| return false; |
| |
| const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this); |
| |
| // Temporaries are by definition pr-values of class type. |
| if (!E->Classify(C).isPRValue()) { |
| // In this context, property reference is a message call and is pr-value. |
| if (!isa<ObjCPropertyRefExpr>(E)) |
| return false; |
| } |
| |
| // Black-list a few cases which yield pr-values of class type that don't |
| // refer to temporaries of that type: |
| |
| // - implicit derived-to-base conversions |
| if (isa<ImplicitCastExpr>(E)) { |
| switch (cast<ImplicitCastExpr>(E)->getCastKind()) { |
| case CK_DerivedToBase: |
| case CK_UncheckedDerivedToBase: |
| return false; |
| default: |
| break; |
| } |
| } |
| |
| // - member expressions (all) |
| if (isa<MemberExpr>(E)) |
| return false; |
| |
| // - opaque values (all) |
| if (isa<OpaqueValueExpr>(E)) |
| return false; |
| |
| return true; |
| } |
| |
| bool Expr::isImplicitCXXThis() const { |
| const Expr *E = this; |
| |
| // Strip away parentheses and casts we don't care about. |
| while (true) { |
| if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) { |
| E = Paren->getSubExpr(); |
| continue; |
| } |
| |
| if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { |
| if (ICE->getCastKind() == CK_NoOp || |
| ICE->getCastKind() == CK_LValueToRValue || |
| ICE->getCastKind() == CK_DerivedToBase || |
| ICE->getCastKind() == CK_UncheckedDerivedToBase) { |
| E = ICE->getSubExpr(); |
| continue; |
| } |
| } |
| |
| if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) { |
| if (UnOp->getOpcode() == UO_Extension) { |
| E = UnOp->getSubExpr(); |
| continue; |
| } |
| } |
| |
| if (const MaterializeTemporaryExpr *M |
| = dyn_cast<MaterializeTemporaryExpr>(E)) { |
| E = M->GetTemporaryExpr(); |
| continue; |
| } |
| |
| break; |
| } |
| |
| if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E)) |
| return This->isImplicit(); |
| |
| return false; |
| } |
| |
| /// hasAnyTypeDependentArguments - Determines if any of the expressions |
| /// in Exprs is type-dependent. |
| bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) { |
| for (unsigned I = 0; I < NumExprs; ++I) |
| if (Exprs[I]->isTypeDependent()) |
| return true; |
| |
| return false; |
| } |
| |
| /// hasAnyValueDependentArguments - Determines if any of the expressions |
| /// in Exprs is value-dependent. |
| bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) { |
| for (unsigned I = 0; I < NumExprs; ++I) |
| if (Exprs[I]->isValueDependent()) |
| return true; |
| |
| return false; |
| } |
| |
| bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef) const { |
| // This function is attempting whether an expression is an initializer |
| // which can be evaluated at compile-time. isEvaluatable handles most |
| // of the cases, but it can't deal with some initializer-specific |
| // expressions, and it can't deal with aggregates; we deal with those here, |
| // and fall back to isEvaluatable for the other cases. |
| |
| // If we ever capture reference-binding directly in the AST, we can |
| // kill the second parameter. |
| |
| if (IsForRef) { |
| EvalResult Result; |
| return EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects; |
| } |
| |
| switch (getStmtClass()) { |
| default: break; |
| case StringLiteralClass: |
| case ObjCStringLiteralClass: |
| case ObjCEncodeExprClass: |
| return true; |
| case CXXTemporaryObjectExprClass: |
| case CXXConstructExprClass: { |
| const CXXConstructExpr *CE = cast<CXXConstructExpr>(this); |
| |
| // Only if it's |
| // 1) an application of the trivial default constructor or |
| if (!CE->getConstructor()->isTrivial()) return false; |
| if (!CE->getNumArgs()) return true; |
| |
| // 2) an elidable trivial copy construction of an operand which is |
| // itself a constant initializer. Note that we consider the |
| // operand on its own, *not* as a reference binding. |
| return CE->isElidable() && |
| CE->getArg(0)->isConstantInitializer(Ctx, false); |
| } |
| case CompoundLiteralExprClass: { |
| // This handles gcc's extension that allows global initializers like |
| // "struct x {int x;} x = (struct x) {};". |
| // FIXME: This accepts other cases it shouldn't! |
| const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer(); |
| return Exp->isConstantInitializer(Ctx, false); |
| } |
| case InitListExprClass: { |
| // FIXME: This doesn't deal with fields with reference types correctly. |
| // FIXME: This incorrectly allows pointers cast to integers to be assigned |
| // to bitfields. |
| const InitListExpr *Exp = cast<InitListExpr>(this); |
| unsigned numInits = Exp->getNumInits(); |
| for (unsigned i = 0; i < numInits; i++) { |
| if (!Exp->getInit(i)->isConstantInitializer(Ctx, false)) |
| return false; |
| } |
| return true; |
| } |
| case ImplicitValueInitExprClass: |
| return true; |
| case ParenExprClass: |
| return cast<ParenExpr>(this)->getSubExpr() |
| ->isConstantInitializer(Ctx, IsForRef); |
| case GenericSelectionExprClass: |
| if (cast<GenericSelectionExpr>(this)->isResultDependent()) |
| return false; |
| return cast<GenericSelectionExpr>(this)->getResultExpr() |
| ->isConstantInitializer(Ctx, IsForRef); |
| case ChooseExprClass: |
| return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx) |
| ->isConstantInitializer(Ctx, IsForRef); |
| case UnaryOperatorClass: { |
| const UnaryOperator* Exp = cast<UnaryOperator>(this); |
| if (Exp->getOpcode() == UO_Extension) |
| return Exp->getSubExpr()->isConstantInitializer(Ctx, false); |
| break; |
| } |
| case BinaryOperatorClass: { |
| // Special case &&foo - &&bar. It would be nice to generalize this somehow |
| // but this handles the common case. |
| const BinaryOperator *Exp = cast<BinaryOperator>(this); |
| if (Exp->getOpcode() == BO_Sub && |
| isa<AddrLabelExpr>(Exp->getLHS()->IgnoreParenNoopCasts(Ctx)) && |
| isa<AddrLabelExpr>(Exp->getRHS()->IgnoreParenNoopCasts(Ctx))) |
| return true; |
| break; |
| } |
| case CXXFunctionalCastExprClass: |
| case CXXStaticCastExprClass: |
| case ImplicitCastExprClass: |
| case CStyleCastExprClass: |
| // Handle casts with a destination that's a struct or union; this |
| // deals with both the gcc no-op struct cast extension and the |
| // cast-to-union extension. |
| if (getType()->isRecordType()) |
| return cast<CastExpr>(this)->getSubExpr() |
| ->isConstantInitializer(Ctx, false); |
| |
| // Integer->integer casts can be handled here, which is important for |
| // things like (int)(&&x-&&y). Scary but true. |
| if (getType()->isIntegerType() && |
| cast<CastExpr>(this)->getSubExpr()->getType()->isIntegerType()) |
| return cast<CastExpr>(this)->getSubExpr() |
| ->isConstantInitializer(Ctx, false); |
| |
| break; |
| |
| case MaterializeTemporaryExprClass: |
| return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr() |
| ->isConstantInitializer(Ctx, false); |
| } |
| return isEvaluatable(Ctx); |
| } |
| |
| /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null |
| /// pointer constant or not, as well as the specific kind of constant detected. |
| /// Null pointer constants can be integer constant expressions with the |
| /// value zero, casts of zero to void*, nullptr (C++0X), or __null |
| /// (a GNU extension). |
| Expr::NullPointerConstantKind |
| Expr::isNullPointerConstant(ASTContext &Ctx, |
| NullPointerConstantValueDependence NPC) const { |
| if (isValueDependent()) { |
| switch (NPC) { |
| case NPC_NeverValueDependent: |
| llvm_unreachable("Unexpected value dependent expression!"); |
| case NPC_ValueDependentIsNull: |
| if (isTypeDependent() || getType()->isIntegralType(Ctx)) |
| return NPCK_ZeroInteger; |
| else |
| return NPCK_NotNull; |
| |
| case NPC_ValueDependentIsNotNull: |
| return NPCK_NotNull; |
| } |
| } |
| |
| // Strip off a cast to void*, if it exists. Except in C++. |
| if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) { |
| if (!Ctx.getLangOptions().CPlusPlus) { |
| // Check that it is a cast to void*. |
| if (const PointerType *PT = CE->getType()->getAs<PointerType>()) { |
| QualType Pointee = PT->getPointeeType(); |
| if (!Pointee.hasQualifiers() && |
| Pointee->isVoidType() && // to void* |
| CE->getSubExpr()->getType()->isIntegerType()) // from int. |
| return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC); |
| } |
| } |
| } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) { |
| // Ignore the ImplicitCastExpr type entirely. |
| return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC); |
| } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) { |
| // Accept ((void*)0) as a null pointer constant, as many other |
| // implementations do. |
| return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC); |
| } else if (const GenericSelectionExpr *GE = |
| dyn_cast<GenericSelectionExpr>(this)) { |
| return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC); |
| } else if (const CXXDefaultArgExpr *DefaultArg |
| = dyn_cast<CXXDefaultArgExpr>(this)) { |
| // See through default argument expressions |
| return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC); |
| } else if (isa<GNUNullExpr>(this)) { |
| // The GNU __null extension is always a null pointer constant. |
| return NPCK_GNUNull; |
| } else if (const MaterializeTemporaryExpr *M |
| = dyn_cast<MaterializeTemporaryExpr>(this)) { |
| return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC); |
| } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) { |
| if (const Expr *Source = OVE->getSourceExpr()) |
| return Source->isNullPointerConstant(Ctx, NPC); |
| } |
| |
| // C++0x nullptr_t is always a null pointer constant. |
| if (getType()->isNullPtrType()) |
| return NPCK_CXX0X_nullptr; |
| |
| if (const RecordType *UT = getType()->getAsUnionType()) |
| if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) |
| if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){ |
| const Expr *InitExpr = CLE->getInitializer(); |
| if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr)) |
| return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC); |
| } |
| // This expression must be an integer type. |
| if (!getType()->isIntegerType() || |
| (Ctx.getLangOptions().CPlusPlus && getType()->isEnumeralType())) |
| return NPCK_NotNull; |
| |
| // If we have an integer constant expression, we need to *evaluate* it and |
| // test for the value 0. |
| llvm::APSInt Result; |
| bool IsNull = isIntegerConstantExpr(Result, Ctx) && Result == 0; |
| |
| return (IsNull ? NPCK_ZeroInteger : NPCK_NotNull); |
| } |
| |
| /// \brief If this expression is an l-value for an Objective C |
| /// property, find the underlying property reference expression. |
| const ObjCPropertyRefExpr *Expr::getObjCProperty() const { |
| const Expr *E = this; |
| while (true) { |
| assert((E->getValueKind() == VK_LValue && |
| E->getObjectKind() == OK_ObjCProperty) && |
| "expression is not a property reference"); |
| E = E->IgnoreParenCasts(); |
| if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { |
| if (BO->getOpcode() == BO_Comma) { |
| E = BO->getRHS(); |
| continue; |
| } |
| } |
| |
| break; |
| } |
| |
| return cast<ObjCPropertyRefExpr>(E); |
| } |
| |
| FieldDecl *Expr::getBitField() { |
| Expr *E = this->IgnoreParens(); |
| |
| while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { |
| if (ICE->getCastKind() == CK_LValueToRValue || |
| (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp)) |
| E = ICE->getSubExpr()->IgnoreParens(); |
| else |
| break; |
| } |
| |
| if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E)) |
| if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl())) |
| if (Field->isBitField()) |
| return Field; |
| |
| if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) |
| if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl())) |
| if (Field->isBitField()) |
| return Field; |
| |
| if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) { |
| if (BinOp->isAssignmentOp() && BinOp->getLHS()) |
| return BinOp->getLHS()->getBitField(); |
| |
| if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS()) |
| return BinOp->getRHS()->getBitField(); |
| } |
| |
| return 0; |
| } |
| |
| bool Expr::refersToVectorElement() const { |
| const Expr *E = this->IgnoreParens(); |
| |
| while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { |
| if (ICE->getValueKind() != VK_RValue && |
| ICE->getCastKind() == CK_NoOp) |
| E = ICE->getSubExpr()->IgnoreParens(); |
| else |
| break; |
| } |
| |
| if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E)) |
| return ASE->getBase()->getType()->isVectorType(); |
| |
| if (isa<ExtVectorElementExpr>(E)) |
| return true; |
| |
| return false; |
| } |
| |
| /// isArrow - Return true if the base expression is a pointer to vector, |
| /// return false if the base expression is a vector. |
| bool ExtVectorElementExpr::isArrow() const { |
| return getBase()->getType()->isPointerType(); |
| } |
| |
| unsigned ExtVectorElementExpr::getNumElements() const { |
| if (const VectorType *VT = getType()->getAs<VectorType>()) |
| return VT->getNumElements(); |
| return 1; |
| } |
| |
| /// containsDuplicateElements - Return true if any element access is repeated. |
| bool ExtVectorElementExpr::containsDuplicateElements() const { |
| // FIXME: Refactor this code to an accessor on the AST node which returns the |
| // "type" of component access, and share with code below and in Sema. |
| StringRef Comp = Accessor->getName(); |
| |
| // Halving swizzles do not contain duplicate elements. |
| if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd") |
| return false; |
| |
| // Advance past s-char prefix on hex swizzles. |
| if (Comp[0] == 's' || Comp[0] == 'S') |
| Comp = Comp.substr(1); |
| |
| for (unsigned i = 0, e = Comp.size(); i != e; ++i) |
| if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos) |
| return true; |
| |
| return false; |
| } |
| |
| /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray. |
| void ExtVectorElementExpr::getEncodedElementAccess( |
| SmallVectorImpl<unsigned> &Elts) const { |
| StringRef Comp = Accessor->getName(); |
| if (Comp[0] == 's' || Comp[0] == 'S') |
| Comp = Comp.substr(1); |
| |
| bool isHi = Comp == "hi"; |
| bool isLo = Comp == "lo"; |
| bool isEven = Comp == "even"; |
| bool isOdd = Comp == "odd"; |
| |
| for (unsigned i = 0, e = getNumElements(); i != e; ++i) { |
| uint64_t Index; |
| |
| if (isHi) |
| Index = e + i; |
| else if (isLo) |
| Index = i; |
| else if (isEven) |
| Index = 2 * i; |
| else if (isOdd) |
| Index = 2 * i + 1; |
| else |
| Index = ExtVectorType::getAccessorIdx(Comp[i]); |
| |
| Elts.push_back(Index); |
| } |
| } |
| |
| ObjCMessageExpr::ObjCMessageExpr(QualType T, |
| ExprValueKind VK, |
| SourceLocation LBracLoc, |
| SourceLocation SuperLoc, |
| bool IsInstanceSuper, |
| QualType SuperType, |
| Selector Sel, |
| ArrayRef<SourceLocation> SelLocs, |
| SelectorLocationsKind SelLocsK, |
| ObjCMethodDecl *Method, |
| ArrayRef<Expr *> Args, |
| SourceLocation RBracLoc) |
| : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, |
| /*TypeDependent=*/false, /*ValueDependent=*/false, |
| /*InstantiationDependent=*/false, |
| /*ContainsUnexpandedParameterPack=*/false), |
| SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method |
| : Sel.getAsOpaquePtr())), |
| Kind(IsInstanceSuper? SuperInstance : SuperClass), |
| HasMethod(Method != 0), IsDelegateInitCall(false), SuperLoc(SuperLoc), |
| LBracLoc(LBracLoc), RBracLoc(RBracLoc) |
| { |
| initArgsAndSelLocs(Args, SelLocs, SelLocsK); |
| setReceiverPointer(SuperType.getAsOpaquePtr()); |
| } |
| |
| ObjCMessageExpr::ObjCMessageExpr(QualType T, |
| ExprValueKind VK, |
| SourceLocation LBracLoc, |
| TypeSourceInfo *Receiver, |
| Selector Sel, |
| ArrayRef<SourceLocation> SelLocs, |
| SelectorLocationsKind SelLocsK, |
| ObjCMethodDecl *Method, |
| ArrayRef<Expr *> Args, |
| SourceLocation RBracLoc) |
| : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, T->isDependentType(), |
| T->isDependentType(), T->isInstantiationDependentType(), |
| T->containsUnexpandedParameterPack()), |
| SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method |
| : Sel.getAsOpaquePtr())), |
| Kind(Class), |
| HasMethod(Method != 0), IsDelegateInitCall(false), |
| LBracLoc(LBracLoc), RBracLoc(RBracLoc) |
| { |
| initArgsAndSelLocs(Args, SelLocs, SelLocsK); |
| setReceiverPointer(Receiver); |
| } |
| |
| ObjCMessageExpr::ObjCMessageExpr(QualType T, |
| ExprValueKind VK, |
| SourceLocation LBracLoc, |
| Expr *Receiver, |
| Selector Sel, |
| ArrayRef<SourceLocation> SelLocs, |
| SelectorLocationsKind SelLocsK, |
| ObjCMethodDecl *Method, |
| ArrayRef<Expr *> Args, |
| SourceLocation RBracLoc) |
| : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, Receiver->isTypeDependent(), |
| Receiver->isTypeDependent(), |
| Receiver->isInstantiationDependent(), |
| Receiver->containsUnexpandedParameterPack()), |
| SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method |
| : Sel.getAsOpaquePtr())), |
| Kind(Instance), |
| HasMethod(Method != 0), IsDelegateInitCall(false), |
| LBracLoc(LBracLoc), RBracLoc(RBracLoc) |
| { |
| initArgsAndSelLocs(Args, SelLocs, SelLocsK); |
| setReceiverPointer(Receiver); |
| } |
| |
| void ObjCMessageExpr::initArgsAndSelLocs(ArrayRef<Expr *> Args, |
| ArrayRef<SourceLocation> SelLocs, |
| SelectorLocationsKind SelLocsK) { |
| setNumArgs(Args.size()); |
| Expr **MyArgs = getArgs(); |
| for (unsigned I = 0; I != Args.size(); ++I) { |
| if (Args[I]->isTypeDependent()) |
| ExprBits.TypeDependent = true; |
| if (Args[I]->isValueDependent()) |
| ExprBits.ValueDependent = true; |
| if (Args[I]->isInstantiationDependent()) |
| ExprBits.InstantiationDependent = true; |
| if (Args[I]->containsUnexpandedParameterPack()) |
| ExprBits.ContainsUnexpandedParameterPack = true; |
| |
| MyArgs[I] = Args[I]; |
| } |
| |
| SelLocsKind = SelLocsK; |
| if (SelLocsK == SelLoc_NonStandard) |
| std::copy(SelLocs.begin(), SelLocs.end(), getStoredSelLocs()); |
| } |
| |
| ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T, |
| ExprValueKind VK, |
| SourceLocation LBracLoc, |
| SourceLocation SuperLoc, |
| bool IsInstanceSuper, |
| QualType SuperType, |
| Selector Sel, |
| ArrayRef<SourceLocation> SelLocs, |
| ObjCMethodDecl *Method, |
| ArrayRef<Expr *> Args, |
| SourceLocation RBracLoc) { |
| SelectorLocationsKind SelLocsK; |
| ObjCMessageExpr *Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK); |
| return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, SuperLoc, IsInstanceSuper, |
| SuperType, Sel, SelLocs, SelLocsK, |
| Method, Args, RBracLoc); |
| } |
| |
| ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T, |
| ExprValueKind VK, |
| SourceLocation LBracLoc, |
| TypeSourceInfo *Receiver, |
| Selector Sel, |
| ArrayRef<SourceLocation> SelLocs, |
| ObjCMethodDecl *Method, |
| ArrayRef<Expr *> Args, |
| SourceLocation RBracLoc) { |
| SelectorLocationsKind SelLocsK; |
| ObjCMessageExpr *Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK); |
| return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel, |
| SelLocs, SelLocsK, Method, Args, RBracLoc); |
| } |
| |
| ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T, |
| ExprValueKind VK, |
| SourceLocation LBracLoc, |
| Expr *Receiver, |
| Selector Sel, |
| ArrayRef<SourceLocation> SelLocs, |
| ObjCMethodDecl *Method, |
| ArrayRef<Expr *> Args, |
| SourceLocation RBracLoc) { |
| SelectorLocationsKind SelLocsK; |
| ObjCMessageExpr *Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK); |
| return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel, |
| SelLocs, SelLocsK, Method, Args, RBracLoc); |
| } |
| |
| ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(ASTContext &Context, |
| unsigned NumArgs, |
| unsigned NumStoredSelLocs) { |
| ObjCMessageExpr *Mem = alloc(Context, NumArgs, NumStoredSelLocs); |
| return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs); |
| } |
| |
| ObjCMessageExpr *ObjCMessageExpr::alloc(ASTContext &C, |
| ArrayRef<Expr *> Args, |
| SourceLocation RBraceLoc, |
| ArrayRef<SourceLocation> SelLocs, |
| Selector Sel, |
| SelectorLocationsKind &SelLocsK) { |
| SelLocsK = hasStandardSelectorLocs(Sel, SelLocs, Args, RBraceLoc); |
| unsigned NumStoredSelLocs = (SelLocsK == SelLoc_NonStandard) ? SelLocs.size() |
| : 0; |
| return alloc(C, Args.size(), NumStoredSelLocs); |
| } |
| |
| ObjCMessageExpr *ObjCMessageExpr::alloc(ASTContext &C, |
| unsigned NumArgs, |
| unsigned NumStoredSelLocs) { |
| unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) + |
| NumArgs * sizeof(Expr *) + NumStoredSelLocs * sizeof(SourceLocation); |
| return (ObjCMessageExpr *)C.Allocate(Size, |
| llvm::AlignOf<ObjCMessageExpr>::Alignment); |
| } |
| |
| void ObjCMessageExpr::getSelectorLocs( |
| SmallVectorImpl<SourceLocation> &SelLocs) const { |
| for (unsigned i = 0, e = getNumSelectorLocs(); i != e; ++i) |
| SelLocs.push_back(getSelectorLoc(i)); |
| } |
| |
| SourceRange ObjCMessageExpr::getReceiverRange() const { |
| switch (getReceiverKind()) { |
| case Instance: |
| return getInstanceReceiver()->getSourceRange(); |
| |
| case Class: |
| return getClassReceiverTypeInfo()->getTypeLoc().getSourceRange(); |
| |
| case SuperInstance: |
| case SuperClass: |
| return getSuperLoc(); |
| } |
| |
| return SourceLocation(); |
| } |
| |
| Selector ObjCMessageExpr::getSelector() const { |
| if (HasMethod) |
| return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod) |
| ->getSelector(); |
| return Selector(SelectorOrMethod); |
| } |
| |
| ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const { |
| switch (getReceiverKind()) { |
| case Instance: |
| if (const ObjCObjectPointerType *Ptr |
| = getInstanceReceiver()->getType()->getAs<ObjCObjectPointerType>()) |
| return Ptr->getInterfaceDecl(); |
| break; |
| |
| case Class: |
| if (const ObjCObjectType *Ty |
| = getClassReceiver()->getAs<ObjCObjectType>()) |
| return Ty->getInterface(); |
| break; |
| |
| case SuperInstance: |
| if (const ObjCObjectPointerType *Ptr |
| = getSuperType()->getAs<ObjCObjectPointerType>()) |
| return Ptr->getInterfaceDecl(); |
| break; |
| |
| case SuperClass: |
| if (const ObjCObjectType *Iface |
| = getSuperType()->getAs<ObjCObjectType>()) |
| return Iface->getInterface(); |
| break; |
| } |
| |
| return 0; |
| } |
| |
| StringRef ObjCBridgedCastExpr::getBridgeKindName() const { |
| switch (getBridgeKind()) { |
| case OBC_Bridge: |
| return "__bridge"; |
| case OBC_BridgeTransfer: |
| return "__bridge_transfer"; |
| case OBC_BridgeRetained: |
| return "__bridge_retained"; |
| } |
| |
| return "__bridge"; |
| } |
| |
| bool ChooseExpr::isConditionTrue(const ASTContext &C) const { |
| return getCond()->EvaluateKnownConstInt(C) != 0; |
| } |
| |
| ShuffleVectorExpr::ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr, |
| QualType Type, SourceLocation BLoc, |
| SourceLocation RP) |
| : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary, |
| Type->isDependentType(), Type->isDependentType(), |
| Type->isInstantiationDependentType(), |
| Type->containsUnexpandedParameterPack()), |
| BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(nexpr) |
| { |
| SubExprs = new (C) Stmt*[nexpr]; |
| for (unsigned i = 0; i < nexpr; i++) { |
| if (args[i]->isTypeDependent()) |
| ExprBits.TypeDependent = true; |
| if (args[i]->isValueDependent()) |
| ExprBits.ValueDependent = true; |
| if (args[i]->isInstantiationDependent()) |
| ExprBits.InstantiationDependent = true; |
| if (args[i]->containsUnexpandedParameterPack()) |
| ExprBits.ContainsUnexpandedParameterPack = true; |
| |
| SubExprs[i] = args[i]; |
| } |
| } |
| |
| void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs, |
| unsigned NumExprs) { |
| if (SubExprs) C.Deallocate(SubExprs); |
| |
| SubExprs = new (C) Stmt* [NumExprs]; |
| this->NumExprs = NumExprs; |
| memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs); |
| } |
| |
| GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context, |
| SourceLocation GenericLoc, Expr *ControllingExpr, |
| TypeSourceInfo **AssocTypes, Expr **AssocExprs, |
| unsigned NumAssocs, SourceLocation DefaultLoc, |
| SourceLocation RParenLoc, |
| bool ContainsUnexpandedParameterPack, |
| unsigned ResultIndex) |
| : Expr(GenericSelectionExprClass, |
| AssocExprs[ResultIndex]->getType(), |
| AssocExprs[ResultIndex]->getValueKind(), |
| AssocExprs[ResultIndex]->getObjectKind(), |
| AssocExprs[ResultIndex]->isTypeDependent(), |
| AssocExprs[ResultIndex]->isValueDependent(), |
| AssocExprs[ResultIndex]->isInstantiationDependent(), |
| ContainsUnexpandedParameterPack), |
| AssocTypes(new (Context) TypeSourceInfo*[NumAssocs]), |
| SubExprs(new (Context) Stmt*[END_EXPR+NumAssocs]), NumAssocs(NumAssocs), |
| ResultIndex(ResultIndex), GenericLoc(GenericLoc), DefaultLoc(DefaultLoc), |
| RParenLoc(RParenLoc) { |
| SubExprs[CONTROLLING] = ControllingExpr; |
| std::copy(AssocTypes, AssocTypes+NumAssocs, this->AssocTypes); |
| std::copy(AssocExprs, AssocExprs+NumAssocs, SubExprs+END_EXPR); |
| } |
| |
| GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context, |
| SourceLocation GenericLoc, Expr *ControllingExpr, |
| TypeSourceInfo **AssocTypes, Expr **AssocExprs, |
| unsigned NumAssocs, SourceLocation DefaultLoc, |
| SourceLocation RParenLoc, |
| bool ContainsUnexpandedParameterPack) |
| : Expr(GenericSelectionExprClass, |
| Context.DependentTy, |
| VK_RValue, |
| OK_Ordinary, |
| /*isTypeDependent=*/true, |
| /*isValueDependent=*/true, |
| /*isInstantiationDependent=*/true, |
| ContainsUnexpandedParameterPack), |
| AssocTypes(new (Context) TypeSourceInfo*[NumAssocs]), |
| SubExprs(new (Context) Stmt*[END_EXPR+NumAssocs]), NumAssocs(NumAssocs), |
| ResultIndex(-1U), GenericLoc(GenericLoc), DefaultLoc(DefaultLoc), |
| RParenLoc(RParenLoc) { |
| SubExprs[CONTROLLING] = ControllingExpr; |
| std::copy(AssocTypes, AssocTypes+NumAssocs, this->AssocTypes); |
| std::copy(AssocExprs, AssocExprs+NumAssocs, SubExprs+END_EXPR); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // DesignatedInitExpr |
| //===----------------------------------------------------------------------===// |
| |
| IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const { |
| assert(Kind == FieldDesignator && "Only valid on a field designator"); |
| if (Field.NameOrField & 0x01) |
| return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01); |
| else |
| return getField()->getIdentifier(); |
| } |
| |
| DesignatedInitExpr::DesignatedInitExpr(ASTContext &C, QualType Ty, |
| unsigned NumDesignators, |
| const Designator *Designators, |
| SourceLocation EqualOrColonLoc, |
| bool GNUSyntax, |
| Expr **IndexExprs, |
| unsigned NumIndexExprs, |
| Expr *Init) |
| : Expr(DesignatedInitExprClass, Ty, |
| Init->getValueKind(), Init->getObjectKind(), |
| Init->isTypeDependent(), Init->isValueDependent(), |
| Init->isInstantiationDependent(), |
| Init->containsUnexpandedParameterPack()), |
| EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax), |
| NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) { |
| this->Designators = new (C) Designator[NumDesignators]; |
| |
| // Record the initializer itself. |
| child_range Child = children(); |
| *Child++ = Init; |
| |
| // Copy the designators and their subexpressions, computing |
| // value-dependence along the way. |
| unsigned IndexIdx = 0; |
| for (unsigned I = 0; I != NumDesignators; ++I) { |
| this->Designators[I] = Designators[I]; |
| |
| if (this->Designators[I].isArrayDesignator()) { |
| // Compute type- and value-dependence. |
| Expr *Index = IndexExprs[IndexIdx]; |
| if (Index->isTypeDependent() || Index->isValueDependent()) |
| ExprBits.ValueDependent = true; |
| if (Index->isInstantiationDependent()) |
| ExprBits.InstantiationDependent = true; |
| // Propagate unexpanded parameter packs. |
| if (Index->containsUnexpandedParameterPack()) |
| ExprBits.ContainsUnexpandedParameterPack = true; |
| |
| // Copy the index expressions into permanent storage. |
| *Child++ = IndexExprs[IndexIdx++]; |
| } else if (this->Designators[I].isArrayRangeDesignator()) { |
| // Compute type- and value-dependence. |
| Expr *Start = IndexExprs[IndexIdx]; |
| Expr *End = IndexExprs[IndexIdx + 1]; |
| if (Start->isTypeDependent() || Start->isValueDependent() || |
| End->isTypeDependent() || End->isValueDependent()) { |
| ExprBits.ValueDependent = true; |
| ExprBits.InstantiationDependent = true; |
| } else if (Start->isInstantiationDependent() || |
| End->isInstantiationDependent()) { |
| ExprBits.InstantiationDependent = true; |
| } |
| |
| // Propagate unexpanded parameter packs. |
| if (Start->containsUnexpandedParameterPack() || |
| End->containsUnexpandedParameterPack()) |
| ExprBits.ContainsUnexpandedParameterPack = true; |
| |
| // Copy the start/end expressions into permanent storage. |
| *Child++ = IndexExprs[IndexIdx++]; |
| *Child++ = IndexExprs[IndexIdx++]; |
| } |
| } |
| |
| assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions"); |
| } |
| |
| DesignatedInitExpr * |
| DesignatedInitExpr::Create(ASTContext &C, Designator *Designators, |
| unsigned NumDesignators, |
| Expr **IndexExprs, unsigned NumIndexExprs, |
| SourceLocation ColonOrEqualLoc, |
| bool UsesColonSyntax, Expr *Init) { |
| void *Mem = C.Allocate(sizeof(DesignatedInitExpr) + |
| sizeof(Stmt *) * (NumIndexExprs + 1), 8); |
| return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators, |
| ColonOrEqualLoc, UsesColonSyntax, |
| IndexExprs, NumIndexExprs, Init); |
| } |
| |
| DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C, |
| unsigned NumIndexExprs) { |
| void *Mem = C.Allocate(sizeof(DesignatedInitExpr) + |
| sizeof(Stmt *) * (NumIndexExprs + 1), 8); |
| return new (Mem) DesignatedInitExpr(NumIndexExprs + 1); |
| } |
| |
| void DesignatedInitExpr::setDesignators(ASTContext &C, |
| const Designator *Desigs, |
| unsigned NumDesigs) { |
| Designators = new (C) Designator[NumDesigs]; |
| NumDesignators = NumDesigs; |
| for (unsigned I = 0; I != NumDesigs; ++I) |
| Designators[I] = Desigs[I]; |
| } |
| |
| SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const { |
| DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this); |
| if (size() == 1) |
| return DIE->getDesignator(0)->getSourceRange(); |
| return SourceRange(DIE->getDesignator(0)->getStartLocation(), |
| DIE->getDesignator(size()-1)->getEndLocation()); |
| } |
| |
| SourceRange DesignatedInitExpr::getSourceRange() const { |
| SourceLocation StartLoc; |
| Designator &First = |
| *const_cast<DesignatedInitExpr*>(this)->designators_begin(); |
| if (First.isFieldDesignator()) { |
| if (GNUSyntax) |
| StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc); |
| else |
| StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc); |
| } else |
| StartLoc = |
| SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc); |
| return SourceRange(StartLoc, getInit()->getSourceRange().getEnd()); |
| } |
| |
| Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) { |
| assert(D.Kind == Designator::ArrayDesignator && "Requires array designator"); |
| char* Ptr = static_cast<char*>(static_cast<void *>(this)); |
| Ptr += sizeof(DesignatedInitExpr); |
| Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr)); |
| return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1)); |
| } |
| |
| Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) { |
| assert(D.Kind == Designator::ArrayRangeDesignator && |
| "Requires array range designator"); |
| char* Ptr = static_cast<char*>(static_cast<void *>(this)); |
| Ptr += sizeof(DesignatedInitExpr); |
| Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr)); |
| return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1)); |
| } |
| |
| Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) { |
| assert(D.Kind == Designator::ArrayRangeDesignator && |
| "Requires array range designator"); |
| char* Ptr = static_cast<char*>(static_cast<void *>(this)); |
| Ptr += sizeof(DesignatedInitExpr); |
| Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr)); |
| return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2)); |
| } |
| |
| /// \brief Replaces the designator at index @p Idx with the series |
| /// of designators in [First, Last). |
| void DesignatedInitExpr::ExpandDesignator(ASTContext &C, unsigned Idx, |
| const Designator *First, |
| const Designator *Last) { |
| unsigned NumNewDesignators = Last - First; |
| if (NumNewDesignators == 0) { |
| std::copy_backward(Designators + Idx + 1, |
| Designators + NumDesignators, |
| Designators + Idx); |
| --NumNewDesignators; |
| return; |
| } else if (NumNewDesignators == 1) { |
| Designators[Idx] = *First; |
| return; |
| } |
| |
| Designator *NewDesignators |
| = new (C) Designator[NumDesignators - 1 + NumNewDesignators]; |
| std::copy(Designators, Designators + Idx, NewDesignators); |
| std::copy(First, Last, NewDesignators + Idx); |
| std::copy(Designators + Idx + 1, Designators + NumDesignators, |
| NewDesignators + Idx + NumNewDesignators); |
| Designators = NewDesignators; |
| NumDesignators = NumDesignators - 1 + NumNewDesignators; |
| } |
| |
| ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc, |
| Expr **exprs, unsigned nexprs, |
| SourceLocation rparenloc, QualType T) |
| : Expr(ParenListExprClass, T, VK_RValue, OK_Ordinary, |
| false, false, false, false), |
| NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) { |
| assert(!T.isNull() && "ParenListExpr must have a valid type"); |
| Exprs = new (C) Stmt*[nexprs]; |
| for (unsigned i = 0; i != nexprs; ++i) { |
| if (exprs[i]->isTypeDependent()) |
| ExprBits.TypeDependent = true; |
| if (exprs[i]->isValueDependent()) |
| ExprBits.ValueDependent = true; |
| if (exprs[i]->isInstantiationDependent()) |
| ExprBits.InstantiationDependent = true; |
| if (exprs[i]->containsUnexpandedParameterPack()) |
| ExprBits.ContainsUnexpandedParameterPack = true; |
| |
| Exprs[i] = exprs[i]; |
| } |
| } |
| |
| const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) { |
| if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e)) |
| e = ewc->getSubExpr(); |
| if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e)) |
| e = m->GetTemporaryExpr(); |
| e = cast<CXXConstructExpr>(e)->getArg(0); |
| while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e)) |
| e = ice->getSubExpr(); |
| return cast<OpaqueValueExpr>(e); |
| } |
| |
| PseudoObjectExpr *PseudoObjectExpr::Create(ASTContext &Context, EmptyShell sh, |
| unsigned numSemanticExprs) { |
| void *buffer = Context.Allocate(sizeof(PseudoObjectExpr) + |
| (1 + numSemanticExprs) * sizeof(Expr*), |
| llvm::alignOf<PseudoObjectExpr>()); |
| return new(buffer) PseudoObjectExpr(sh, numSemanticExprs); |
| } |
| |
| PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs) |
| : Expr(PseudoObjectExprClass, shell) { |
| PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1; |
| } |
| |
| PseudoObjectExpr *PseudoObjectExpr::Create(ASTContext &C, Expr *syntax, |
| ArrayRef<Expr*> semantics, |
| unsigned resultIndex) { |
| assert(syntax && "no syntactic expression!"); |
| assert(semantics.size() && "no semantic expressions!"); |
| |
| QualType type; |
| ExprValueKind VK; |
| if (resultIndex == NoResult) { |
| type = C.VoidTy; |
| VK = VK_RValue; |
| } else { |
| assert(resultIndex < semantics.size()); |
| type = semantics[resultIndex]->getType(); |
| VK = semantics[resultIndex]->getValueKind(); |
| assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary); |
| } |
| |
| void *buffer = C.Allocate(sizeof(PseudoObjectExpr) + |
| (1 + semantics.size()) * sizeof(Expr*), |
| llvm::alignOf<PseudoObjectExpr>()); |
| return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics, |
| resultIndex); |
| } |
| |
| PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK, |
| Expr *syntax, ArrayRef<Expr*> semantics, |
| unsigned resultIndex) |
| : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary, |
| /*filled in at end of ctor*/ false, false, false, false) { |
| PseudoObjectExprBits.NumSubExprs = semantics.size() + 1; |
| PseudoObjectExprBits.ResultIndex = resultIndex + 1; |
| |
| for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) { |
| Expr *E = (i == 0 ? syntax : semantics[i-1]); |
| getSubExprsBuffer()[i] = E; |
| |
| if (E->isTypeDependent()) |
| ExprBits.TypeDependent = true; |
| if (E->isValueDependent()) |
| ExprBits.ValueDependent = true; |
| if (E->isInstantiationDependent()) |
| ExprBits.InstantiationDependent = true; |
| if (E->containsUnexpandedParameterPack()) |
| ExprBits.ContainsUnexpandedParameterPack = true; |
| |
| if (isa<OpaqueValueExpr>(E)) |
| assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != 0 && |
| "opaque-value semantic expressions for pseudo-object " |
| "operations must have sources"); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ExprIterator. |
| //===----------------------------------------------------------------------===// |
| |
| Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); } |
| Expr* ExprIterator::operator*() const { return cast<Expr>(*I); } |
| Expr* ExprIterator::operator->() const { return cast<Expr>(*I); } |
| const Expr* ConstExprIterator::operator[](size_t idx) const { |
| return cast<Expr>(I[idx]); |
| } |
| const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); } |
| const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); } |
| |
| //===----------------------------------------------------------------------===// |
| // Child Iterators for iterating over subexpressions/substatements |
| //===----------------------------------------------------------------------===// |
| |
| // UnaryExprOrTypeTraitExpr |
| Stmt::child_range UnaryExprOrTypeTraitExpr::children() { |
| // If this is of a type and the type is a VLA type (and not a typedef), the |
| // size expression of the VLA needs to be treated as an executable expression. |
| // Why isn't this weirdness documented better in StmtIterator? |
| if (isArgumentType()) { |
| if (const VariableArrayType* T = dyn_cast<VariableArrayType>( |
| getArgumentType().getTypePtr())) |
| return child_range(child_iterator(T), child_iterator()); |
| return child_range(); |
| } |
| return child_range(&Argument.Ex, &Argument.Ex + 1); |
| } |
| |
| // ObjCMessageExpr |
| Stmt::child_range ObjCMessageExpr::children() { |
| Stmt **begin; |
| if (getReceiverKind() == Instance) |
| begin = reinterpret_cast<Stmt **>(this + 1); |
| else |
| begin = reinterpret_cast<Stmt **>(getArgs()); |
| return child_range(begin, |
| reinterpret_cast<Stmt **>(getArgs() + getNumArgs())); |
| } |
| |
| // Blocks |
| BlockDeclRefExpr::BlockDeclRefExpr(VarDecl *d, QualType t, ExprValueKind VK, |
| SourceLocation l, bool ByRef, |
| bool constAdded) |
| : Expr(BlockDeclRefExprClass, t, VK, OK_Ordinary, false, false, false, |
| d->isParameterPack()), |
| D(d), Loc(l), IsByRef(ByRef), ConstQualAdded(constAdded) |
| { |
| bool TypeDependent = false; |
| bool ValueDependent = false; |
| bool InstantiationDependent = false; |
| computeDeclRefDependence(D, getType(), TypeDependent, ValueDependent, |
| InstantiationDependent); |
| ExprBits.TypeDependent = TypeDependent; |
| ExprBits.ValueDependent = ValueDependent; |
| ExprBits.InstantiationDependent = InstantiationDependent; |
| } |
| |
| |
| AtomicExpr::AtomicExpr(SourceLocation BLoc, Expr **args, unsigned nexpr, |
| QualType t, AtomicOp op, SourceLocation RP) |
| : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary, |
| false, false, false, false), |
| NumSubExprs(nexpr), BuiltinLoc(BLoc), RParenLoc(RP), Op(op) |
| { |
| for (unsigned i = 0; i < nexpr; i++) { |
| if (args[i]->isTypeDependent()) |
| ExprBits.TypeDependent = true; |
| if (args[i]->isValueDependent()) |
| ExprBits.ValueDependent = true; |
| if (args[i]->isInstantiationDependent()) |
| ExprBits.InstantiationDependent = true; |
| if (args[i]->containsUnexpandedParameterPack()) |
| ExprBits.ContainsUnexpandedParameterPack = true; |
| |
| SubExprs[i] = args[i]; |
| } |
| } |