blob: 465e3fb73a6ab3f5b3e6f9b1cbb017a8465b6625 [file] [log] [blame]
//===--- Sema.h - Semantic Analysis & AST Building --------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the Sema class, which performs semantic analysis and
// builds ASTs.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_SEMA_H
#define LLVM_CLANG_AST_SEMA_H
#include "clang/Parse/Action.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include <vector>
#include <string>
namespace llvm {
class APSInt;
}
namespace clang {
class ASTContext;
class Preprocessor;
class Decl;
class ScopedDecl;
class Expr;
class InitListExpr;
class VarDecl;
class ParmVarDecl;
class TypedefDecl;
class FunctionDecl;
class QualType;
struct LangOptions;
struct DeclaratorChunk;
class Token;
class IntegerLiteral;
class ArrayType;
class LabelStmt;
class SwitchStmt;
class OCUVectorType;
class TypedefDecl;
class ObjcInterfaceDecl;
class ObjcProtocolDecl;
/// Sema - This implements semantic analysis and AST building for C.
class Sema : public Action {
Preprocessor &PP;
ASTContext &Context;
/// CurFunctionDecl - If inside of a function body, this contains a pointer to
/// the function decl for the function being parsed.
FunctionDecl *CurFunctionDecl;
/// LastInGroupList - This vector is populated when there are multiple
/// declarators in a single decl group (e.g. "int A, B, C"). In this case,
/// all but the last decl will be entered into this. This is used by the
/// ASTStreamer.
std::vector<Decl*> &LastInGroupList;
/// LabelMap - This is a mapping from label identifiers to the LabelStmt for
/// it (which acts like the label decl in some ways). Forward referenced
/// labels have a LabelStmt created for them with a null location & SubStmt.
llvm::DenseMap<IdentifierInfo*, LabelStmt*> LabelMap;
llvm::SmallVector<SwitchStmt*, 8> SwitchStack;
/// OCUVectorDecls - This is a list all the OCU vector types. This allows
/// us to associate a raw vector type with one of the OCU type names.
/// This is only necessary for issuing pretty diagnostics.
llvm::SmallVector<TypedefDecl*, 24> OCUVectorDecls;
// Enum values used by KnownFunctionIDs (see below).
enum {
id_printf,
id_fprintf,
id_sprintf,
id_snprintf,
id_asprintf,
id_vsnprintf,
id_vasprintf,
id_vfprintf,
id_vsprintf,
id_vprintf,
id_num_known_functions
};
/// KnownFunctionIDs - This is a list of IdentifierInfo objects to a set
/// of known functions used by the semantic analysis to do various
/// kinds of checking (e.g. checking format string errors in printf calls).
/// This list is populated upon the creation of a Sema object.
IdentifierInfo* KnownFunctionIDs[ id_num_known_functions ];
public:
Sema(Preprocessor &pp, ASTContext &ctxt, std::vector<Decl*> &prevInGroup);
const LangOptions &getLangOptions() const;
/// The primitive diagnostic helpers - always returns true, which simplifies
/// error handling (i.e. less code).
bool Diag(SourceLocation Loc, unsigned DiagID);
bool Diag(SourceLocation Loc, unsigned DiagID, const std::string &Msg);
bool Diag(SourceLocation Loc, unsigned DiagID, const std::string &Msg1,
const std::string &Msg2);
/// More expressive diagnostic helpers for expressions (say that 6 times:-)
bool Diag(SourceLocation Loc, unsigned DiagID, SourceRange R1);
bool Diag(SourceLocation Loc, unsigned DiagID,
SourceRange R1, SourceRange R2);
bool Diag(SourceLocation Loc, unsigned DiagID, const std::string &Msg,
SourceRange R1);
bool Diag(SourceLocation Loc, unsigned DiagID, const std::string &Msg,
SourceRange R1, SourceRange R2);
bool Diag(SourceLocation Loc, unsigned DiagID, const std::string &Msg1,
const std::string &Msg2, SourceRange R1);
bool Diag(SourceLocation Loc, unsigned DiagID,
const std::string &Msg1, const std::string &Msg2,
SourceRange R1, SourceRange R2);
virtual void DeleteExpr(ExprTy *E);
virtual void DeleteStmt(StmtTy *S);
//===--------------------------------------------------------------------===//
// Type Analysis / Processing: SemaType.cpp.
//
QualType GetTypeForDeclarator(Declarator &D, Scope *S);
virtual TypeResult ActOnTypeName(Scope *S, Declarator &D);
virtual TypeResult ActOnParamDeclaratorType(Scope *S, Declarator &D);
private:
//===--------------------------------------------------------------------===//
// Symbol table / Decl tracking callbacks: SemaDecl.cpp.
//
virtual DeclTy *isTypeName(const IdentifierInfo &II, Scope *S) const;
virtual DeclTy *ActOnDeclarator(Scope *S, Declarator &D, DeclTy *LastInGroup);
void AddInitializerToDecl(DeclTy *dcl, ExprTy *init);
virtual DeclTy *FinalizeDeclaratorGroup(Scope *S, DeclTy *Group);
virtual DeclTy *ParseStartOfFunctionDef(Scope *S, Declarator &D);
virtual DeclTy *ParseFunctionDefBody(DeclTy *Decl, StmtTy *Body);
virtual void PopScope(SourceLocation Loc, Scope *S);
/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
/// no declarator (e.g. "struct foo;") is parsed.
virtual DeclTy *ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS);
virtual DeclTy *ActOnTag(Scope *S, unsigned TagType, TagKind TK,
SourceLocation KWLoc, IdentifierInfo *Name,
SourceLocation NameLoc, AttributeList *Attr);
virtual DeclTy *ActOnField(Scope *S, DeclTy *TagDecl,SourceLocation DeclStart,
Declarator &D, ExprTy *BitfieldWidth);
// This is used for both record definitions and ObjC interface declarations.
virtual void ActOnFields(Scope* S,
SourceLocation RecLoc, DeclTy *TagDecl,
DeclTy **Fields, unsigned NumFields,
tok::ObjCKeywordKind *visibility = 0);
virtual DeclTy *ActOnEnumConstant(Scope *S, DeclTy *EnumDecl,
DeclTy *LastEnumConstant,
SourceLocation IdLoc, IdentifierInfo *Id,
SourceLocation EqualLoc, ExprTy *Val);
virtual void ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDecl,
DeclTy **Elements, unsigned NumElements);
private:
/// Subroutines of ActOnDeclarator()...
TypedefDecl *ParseTypedefDecl(Scope *S, Declarator &D, ScopedDecl *LastDecl);
TypedefDecl *MergeTypeDefDecl(TypedefDecl *New, ScopedDecl *Old);
FunctionDecl *MergeFunctionDecl(FunctionDecl *New, ScopedDecl *Old);
VarDecl *MergeVarDecl(VarDecl *New, ScopedDecl *Old);
/// AddTopLevelDecl - called after the decl has been fully processed.
/// Allows for bookkeeping and post-processing of each declaration.
void AddTopLevelDecl(Decl *current, Decl *last);
/// More parsing and symbol table subroutines...
ParmVarDecl *ParseParamDeclarator(DeclaratorChunk &FI, unsigned ArgNo,
Scope *FnBodyScope);
ScopedDecl *LookupScopedDecl(IdentifierInfo *II, unsigned NSI,
SourceLocation IdLoc, Scope *S);
ObjcInterfaceDecl *getObjCInterfaceDecl(Scope *S,
IdentifierInfo *Id, SourceLocation IdLoc);
ObjcProtocolDecl *getObjCProtocolDecl(Scope *S,
IdentifierInfo *Id, SourceLocation IdLoc);
ScopedDecl *LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID, Scope *S);
ScopedDecl *ImplicitlyDefineFunction(SourceLocation Loc, IdentifierInfo &II,
Scope *S);
// Decl attributes - this routine is the top level dispatcher.
void HandleDeclAttributes(Decl *New, AttributeList *declspec_prefix,
AttributeList *declarator_postfix);
void HandleDeclAttribute(Decl *New, AttributeList *rawAttr);
// HandleVectorTypeAttribute - this attribute is only applicable to
// integral and float scalars, although arrays, pointers, and function
// return values are allowed in conjunction with this construct. Aggregates
// with this attribute are invalid, even if they are of the same size as a
// corresponding scalar.
// The raw attribute should contain precisely 1 argument, the vector size
// for the variable, measured in bytes. If curType and rawAttr are well
// formed, this routine will return a new vector type.
QualType HandleVectorTypeAttribute(QualType curType, AttributeList *rawAttr);
void HandleOCUVectorTypeAttribute(TypedefDecl *d, AttributeList *rawAttr);
//===--------------------------------------------------------------------===//
// Statement Parsing Callbacks: SemaStmt.cpp.
public:
virtual StmtResult ActOnExprStmt(ExprTy *Expr);
virtual StmtResult ActOnNullStmt(SourceLocation SemiLoc);
virtual StmtResult ActOnCompoundStmt(SourceLocation L, SourceLocation R,
StmtTy **Elts, unsigned NumElts,
bool isStmtExpr);
virtual StmtResult ActOnDeclStmt(DeclTy *Decl);
virtual StmtResult ActOnCaseStmt(SourceLocation CaseLoc, ExprTy *LHSVal,
SourceLocation DotDotDotLoc, ExprTy *RHSVal,
SourceLocation ColonLoc, StmtTy *SubStmt);
virtual StmtResult ActOnDefaultStmt(SourceLocation DefaultLoc,
SourceLocation ColonLoc, StmtTy *SubStmt,
Scope *CurScope);
virtual StmtResult ActOnLabelStmt(SourceLocation IdentLoc, IdentifierInfo *II,
SourceLocation ColonLoc, StmtTy *SubStmt);
virtual StmtResult ActOnIfStmt(SourceLocation IfLoc, ExprTy *CondVal,
StmtTy *ThenVal, SourceLocation ElseLoc,
StmtTy *ElseVal);
virtual StmtResult ActOnStartOfSwitchStmt(ExprTy *Cond);
virtual StmtResult ActOnFinishSwitchStmt(SourceLocation SwitchLoc, StmtTy *Switch,
ExprTy *Body);
virtual StmtResult ActOnWhileStmt(SourceLocation WhileLoc, ExprTy *Cond,
StmtTy *Body);
virtual StmtResult ActOnDoStmt(SourceLocation DoLoc, StmtTy *Body,
SourceLocation WhileLoc, ExprTy *Cond);
virtual StmtResult ActOnForStmt(SourceLocation ForLoc,
SourceLocation LParenLoc,
StmtTy *First, ExprTy *Second, ExprTy *Third,
SourceLocation RParenLoc, StmtTy *Body);
virtual StmtResult ActOnGotoStmt(SourceLocation GotoLoc,
SourceLocation LabelLoc,
IdentifierInfo *LabelII);
virtual StmtResult ActOnIndirectGotoStmt(SourceLocation GotoLoc,
SourceLocation StarLoc,
ExprTy *DestExp);
virtual StmtResult ActOnContinueStmt(SourceLocation ContinueLoc,
Scope *CurScope);
virtual StmtResult ActOnBreakStmt(SourceLocation GotoLoc, Scope *CurScope);
virtual StmtResult ActOnReturnStmt(SourceLocation ReturnLoc,
ExprTy *RetValExp);
//===--------------------------------------------------------------------===//
// Expression Parsing Callbacks: SemaExpr.cpp.
// Primary Expressions.
virtual ExprResult ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
IdentifierInfo &II,
bool HasTrailingLParen);
virtual ExprResult ActOnPreDefinedExpr(SourceLocation Loc,
tok::TokenKind Kind);
virtual ExprResult ActOnNumericConstant(const Token &);
virtual ExprResult ActOnCharacterConstant(const Token &);
virtual ExprResult ActOnParenExpr(SourceLocation L, SourceLocation R,
ExprTy *Val);
/// ActOnStringLiteral - The specified tokens were lexed as pasted string
/// fragments (e.g. "foo" "bar" L"baz").
virtual ExprResult ActOnStringLiteral(const Token *Toks, unsigned NumToks);
// Binary/Unary Operators. 'Tok' is the token for the operator.
virtual ExprResult ActOnUnaryOp(SourceLocation OpLoc, tok::TokenKind Op,
ExprTy *Input);
virtual ExprResult
ActOnSizeOfAlignOfTypeExpr(SourceLocation OpLoc, bool isSizeof,
SourceLocation LParenLoc, TypeTy *Ty,
SourceLocation RParenLoc);
virtual ExprResult ActOnPostfixUnaryOp(SourceLocation OpLoc,
tok::TokenKind Kind, ExprTy *Input);
virtual ExprResult ActOnArraySubscriptExpr(ExprTy *Base, SourceLocation LLoc,
ExprTy *Idx, SourceLocation RLoc);
virtual ExprResult ActOnMemberReferenceExpr(ExprTy *Base,SourceLocation OpLoc,
tok::TokenKind OpKind,
SourceLocation MemberLoc,
IdentifierInfo &Member);
/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
/// This provides the location of the left/right parens and a list of comma
/// locations.
virtual ExprResult ActOnCallExpr(ExprTy *Fn, SourceLocation LParenLoc,
ExprTy **Args, unsigned NumArgs,
SourceLocation *CommaLocs,
SourceLocation RParenLoc);
virtual ExprResult ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
SourceLocation RParenLoc, ExprTy *Op);
virtual ExprResult ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
SourceLocation RParenLoc, ExprTy *Op);
virtual ExprResult ActOnInitList(SourceLocation LParenLoc,
ExprTy **InitList, unsigned NumInit,
SourceLocation RParenLoc);
virtual ExprResult ActOnBinOp(SourceLocation TokLoc, tok::TokenKind Kind,
ExprTy *LHS,ExprTy *RHS);
/// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
/// in the case of a the GNU conditional expr extension.
virtual ExprResult ActOnConditionalOp(SourceLocation QuestionLoc,
SourceLocation ColonLoc,
ExprTy *Cond, ExprTy *LHS, ExprTy *RHS);
/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
virtual ExprResult ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
IdentifierInfo *LabelII);
virtual ExprResult ActOnStmtExpr(SourceLocation LPLoc, StmtTy *SubStmt,
SourceLocation RPLoc); // "({..})"
/// __builtin_offsetof(type, a.b[123][456].c)
virtual ExprResult ActOnBuiltinOffsetOf(SourceLocation BuiltinLoc,
SourceLocation TypeLoc, TypeTy *Arg1,
OffsetOfComponent *CompPtr,
unsigned NumComponents,
SourceLocation RParenLoc);
// __builtin_types_compatible_p(type1, type2)
virtual ExprResult ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
TypeTy *arg1, TypeTy *arg2,
SourceLocation RPLoc);
// __builtin_choose_expr(constExpr, expr1, expr2)
virtual ExprResult ActOnChooseExpr(SourceLocation BuiltinLoc,
ExprTy *cond, ExprTy *expr1, ExprTy *expr2,
SourceLocation RPLoc);
/// ActOnCXXCasts - Parse {dynamic,static,reinterpret,const}_cast's.
virtual ExprResult ActOnCXXCasts(SourceLocation OpLoc, tok::TokenKind Kind,
SourceLocation LAngleBracketLoc, TypeTy *Ty,
SourceLocation RAngleBracketLoc,
SourceLocation LParenLoc, ExprTy *E,
SourceLocation RParenLoc);
/// ActOnCXXBoolLiteral - Parse {true,false} literals.
virtual ExprResult ActOnCXXBoolLiteral(SourceLocation OpLoc,
tok::TokenKind Kind);
// ParseObjCStringLiteral - Parse Objective-C string literals.
virtual ExprResult ParseObjCStringLiteral(ExprTy *string);
virtual ExprResult ParseObjCEncodeExpression(SourceLocation AtLoc,
SourceLocation LParenLoc,
TypeTy *Ty,
SourceLocation RParenLoc);
// Objective-C declarations.
virtual DeclTy *ObjcStartClassInterface(Scope* S,
SourceLocation AtInterafceLoc,
IdentifierInfo *ClassName, SourceLocation ClassLoc,
IdentifierInfo *SuperName, SourceLocation SuperLoc,
IdentifierInfo **ProtocolNames, unsigned NumProtocols,
AttributeList *AttrList);
virtual DeclTy *ObjcStartProtoInterface(Scope* S,
SourceLocation AtProtoInterfaceLoc,
IdentifierInfo *ProtocolName, SourceLocation ProtocolLoc,
IdentifierInfo **ProtoRefNames, unsigned NumProtoRefs);
virtual DeclTy *ObjcStartCatInterface(Scope* S,
SourceLocation AtInterfaceLoc,
IdentifierInfo *ClassName, SourceLocation ClassLoc,
IdentifierInfo *CategoryName, SourceLocation CategoryLoc,
IdentifierInfo **ProtoRefNames, unsigned NumProtoRefs);
virtual DeclTy *ObjcStartClassImplementation(Scope* S,
SourceLocation AtClassImplLoc,
IdentifierInfo *ClassName, SourceLocation ClassLoc,
IdentifierInfo *SuperClassname,
SourceLocation SuperClassLoc);
virtual DeclTy *ObjcClassDeclaration(Scope *S, SourceLocation AtClassLoc,
IdentifierInfo **IdentList,
unsigned NumElts);
virtual DeclTy *ObjcForwardProtocolDeclaration(Scope *S,
SourceLocation AtProtocolLoc,
IdentifierInfo **IdentList,
unsigned NumElts);
virtual void ObjcAddMethodsToClass(Scope* S, DeclTy *ClassDecl,
DeclTy **allMethods, unsigned allNum);
virtual void ActOnImpleIvarVsClassIvars(DeclTy *ClassDecl,
DeclTy **Fields, unsigned NumFields);
virtual DeclTy *ObjcBuildMethodDeclaration(SourceLocation MethodLoc,
tok::TokenKind MethodType, TypeTy *ReturnType, Selector Sel,
// optional arguments. The number of types/arguments is obtained
// from the Sel.getNumArgs().
TypeTy **ArgTypes, IdentifierInfo **ArgNames,
AttributeList *AttrList, tok::ObjCKeywordKind MethodImplKind);
// ActOnClassMessage - used for both unary and keyword messages.
// ArgExprs is optional - if it is present, the number of expressions
// is obtained from Sel.getNumArgs().
virtual ExprResult ActOnClassMessage(
IdentifierInfo *receivingClassName, Selector Sel,
SourceLocation lbrac, SourceLocation rbrac, ExprTy **ArgExprs);
// ActOnInstanceMessage - used for both unary and keyword messages.
// ArgExprs is optional - if it is present, the number of expressions
// is obtained from Sel.getNumArgs().
virtual ExprResult ActOnInstanceMessage(
ExprTy *receiver, Selector Sel,
SourceLocation lbrac, SourceLocation rbrac, ExprTy **ArgExprs);
private:
// UsualUnaryConversions - promotes integers (C99 6.3.1.1p2) and converts
// functions and arrays to their respective pointers (C99 6.3.2.1).
void UsualUnaryConversions(Expr *&expr);
// DefaultFunctionArrayConversion - converts functions and arrays
// to their respective pointers (C99 6.3.2.1).
void DefaultFunctionArrayConversion(Expr *&expr);
// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
// do not have a prototype. Integer promotions are performed on each
// argument, and arguments that have type float are promoted to double.
void DefaultArgumentPromotion(Expr *&expr);
// UsualArithmeticConversions - performs the UsualUnaryConversions on it's
// operands and then handles various conversions that are common to binary
// operators (C99 6.3.1.8). If both operands aren't arithmetic, this
// routine returns the first non-arithmetic type found. The client is
// responsible for emitting appropriate error diagnostics.
QualType UsualArithmeticConversions(Expr *&lExpr, Expr *&rExpr,
bool isCompAssign = false);
enum AssignmentCheckResult {
Compatible,
Incompatible,
PointerFromInt,
IntFromPointer,
IncompatiblePointer,
CompatiblePointerDiscardsQualifiers
};
// CheckAssignmentConstraints - Perform type checking for assignment,
// argument passing, variable initialization, and function return values.
// This routine is only used by the following two methods. C99 6.5.16.
AssignmentCheckResult CheckAssignmentConstraints(QualType lhs, QualType rhs);
// CheckSingleAssignmentConstraints - Currently used by ActOnCallExpr,
// CheckAssignmentOperands, and ActOnReturnStmt. Prior to type checking,
// this routine performs the default function/array converions.
AssignmentCheckResult CheckSingleAssignmentConstraints(QualType lhs,
Expr *&rExpr);
// CheckCompoundAssignmentConstraints - Type check without performing any
// conversions. For compound assignments, the "Check...Operands" methods
// perform the necessary conversions.
AssignmentCheckResult CheckCompoundAssignmentConstraints(QualType lhs,
QualType rhs);
// Helper function for CheckAssignmentConstraints (C99 6.5.16.1p1)
AssignmentCheckResult CheckPointerTypesForAssignment(QualType lhsType,
QualType rhsType);
/// the following "Check" methods will return a valid/converted QualType
/// or a null QualType (indicating an error diagnostic was issued).
/// type checking binary operators (subroutines of ActOnBinOp).
inline void InvalidOperands(SourceLocation l, Expr *&lex, Expr *&rex);
inline QualType CheckVectorOperands(SourceLocation l, Expr *&lex, Expr *&rex);
inline QualType CheckMultiplyDivideOperands( // C99 6.5.5
Expr *&lex, Expr *&rex, SourceLocation OpLoc, bool isCompAssign = false);
inline QualType CheckRemainderOperands( // C99 6.5.5
Expr *&lex, Expr *&rex, SourceLocation OpLoc, bool isCompAssign = false);
inline QualType CheckAdditionOperands( // C99 6.5.6
Expr *&lex, Expr *&rex, SourceLocation OpLoc, bool isCompAssign = false);
inline QualType CheckSubtractionOperands( // C99 6.5.6
Expr *&lex, Expr *&rex, SourceLocation OpLoc, bool isCompAssign = false);
inline QualType CheckShiftOperands( // C99 6.5.7
Expr *&lex, Expr *&rex, SourceLocation OpLoc, bool isCompAssign = false);
inline QualType CheckCompareOperands( // C99 6.5.8/9
Expr *&lex, Expr *&rex, SourceLocation OpLoc, bool isRelational);
inline QualType CheckBitwiseOperands( // C99 6.5.[10...12]
Expr *&lex, Expr *&rex, SourceLocation OpLoc, bool isCompAssign = false);
inline QualType CheckLogicalOperands( // C99 6.5.[13,14]
Expr *&lex, Expr *&rex, SourceLocation OpLoc);
// CheckAssignmentOperands is used for both simple and compound assignment.
// For simple assignment, pass both expressions and a null converted type.
// For compound assignment, pass both expressions and the converted type.
inline QualType CheckAssignmentOperands( // C99 6.5.16.[1,2]
Expr *lex, Expr *&rex, SourceLocation OpLoc, QualType convertedType);
inline QualType CheckCommaOperands( // C99 6.5.17
Expr *&lex, Expr *&rex, SourceLocation OpLoc);
inline QualType CheckConditionalOperands( // C99 6.5.15
Expr *&cond, Expr *&lhs, Expr *&rhs, SourceLocation questionLoc);
/// type checking unary operators (subroutines of ActOnUnaryOp).
/// C99 6.5.3.1, 6.5.3.2, 6.5.3.4
QualType CheckIncrementDecrementOperand(Expr *op, SourceLocation OpLoc);
QualType CheckAddressOfOperand(Expr *op, SourceLocation OpLoc);
QualType CheckIndirectionOperand(Expr *op, SourceLocation OpLoc);
QualType CheckSizeOfAlignOfOperand(QualType type, SourceLocation loc,
bool isSizeof);
QualType CheckRealImagOperand(Expr *&Op, SourceLocation OpLoc);
/// type checking primary expressions.
QualType CheckOCUVectorComponent(QualType baseType, SourceLocation OpLoc,
IdentifierInfo &Comp, SourceLocation CmpLoc);
/// type checking declaration initializers (C99 6.7.8)
bool CheckInitializer(Expr *&simpleInit_or_initList, QualType &declType,
bool isStatic);
bool CheckSingleInitializer(Expr *&simpleInit, QualType declType);
bool CheckInitExpr(Expr *expr, InitListExpr *IList, unsigned slot,
bool isStatic, QualType ElementType);
void CheckVariableInitList(QualType DeclType, InitListExpr *IList,
QualType ElementType, bool isStatic,
int &nInitializers, bool &hadError);
void CheckConstantInitList(QualType DeclType, InitListExpr *IList,
QualType ElementType, bool isStatic,
int &nInitializers, bool &hadError);
/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
/// the specified width and sign. If an overflow occurs, detect it and emit
/// the specified diagnostic.
void ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &OldVal,
unsigned NewWidth, bool NewSign,
SourceLocation Loc, unsigned DiagID);
//===--------------------------------------------------------------------===//
// Extra semantic analysis beyond the C type system
private:
bool CheckFunctionCall(Expr *Fn,
SourceLocation LParenLoc, SourceLocation RParenLoc,
FunctionDecl *FDecl,
Expr** Args, unsigned NumArgsInCall);
void CheckPrintfArguments(Expr *Fn,
SourceLocation LParenLoc, SourceLocation RParenLoc,
bool HasVAListArg, FunctionDecl *FDecl,
unsigned format_idx, Expr** Args,
unsigned NumArgsInCall);
void CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
SourceLocation ReturnLoc);
bool CheckBuiltinCFStringArgument(Expr* Arg);
};
} // end namespace clang
#endif