blob: ffc4c28f2cd3eff6ff3b07079a46915d46d7febd [file] [log] [blame]
//= ValueState*cpp - Path-Sens. "State" for tracking valuues -----*- C++ -*--=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines SymbolID, ExprBindKey, and ValueState*
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/PathSensitive/ValueState.h"
#include "llvm/ADT/SmallSet.h"
#include "clang/Analysis/PathSensitive/GRTransferFuncs.h"
using namespace clang;
bool ValueState::isNotEqual(SymbolID sym, const llvm::APSInt& V) const {
// Retrieve the NE-set associated with the given symbol.
const ConstNotEqTy::data_type* T = ConstNotEq.lookup(sym);
// See if V is present in the NE-set.
return T ? T->contains(&V) : false;
}
bool ValueState::isEqual(SymbolID sym, const llvm::APSInt& V) const {
// Retrieve the EQ-set associated with the given symbol.
const ConstEqTy::data_type* T = ConstEq.lookup(sym);
// See if V is present in the EQ-set.
return T ? **T == V : false;
}
const llvm::APSInt* ValueState::getSymVal(SymbolID sym) const {
ConstEqTy::data_type* T = ConstEq.lookup(sym);
return T ? *T : NULL;
}
const ValueState*
ValueStateManager::RemoveDeadBindings(const ValueState* St, Stmt* Loc,
const LiveVariables& Liveness,
DeadSymbolsTy& DSymbols) {
// This code essentially performs a "mark-and-sweep" of the VariableBindings.
// The roots are any Block-level exprs and Decls that our liveness algorithm
// tells us are live. We then see what Decls they may reference, and keep
// those around. This code more than likely can be made faster, and the
// frequency of which this method is called should be experimented with
// for optimum performance.
DRoots.clear();
StoreManager::LiveSymbolsTy LSymbols;
ValueState NewSt = *St;
// FIXME: Put this in environment.
// Clean up the environment.
// Drop bindings for subexpressions.
NewSt.Env = EnvMgr.RemoveSubExprBindings(NewSt.Env);
// Iterate over the block-expr bindings.
for (ValueState::beb_iterator I = St->beb_begin(), E = St->beb_end();
I!=E ; ++I) {
Expr* BlkExpr = I.getKey();
if (Liveness.isLive(Loc, BlkExpr)) {
RVal X = I.getData();
if (isa<lval::DeclVal>(X)) {
lval::DeclVal LV = cast<lval::DeclVal>(X);
DRoots.push_back(LV.getDecl());
}
for (RVal::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end();
SI != SE; ++SI) {
LSymbols.insert(*SI);
}
}
else {
RVal X = I.getData();
if (X.isUndef() && cast<UndefinedVal>(X).getData())
continue;
NewSt.Env = EnvMgr.RemoveBlkExpr(NewSt.Env, BlkExpr);
}
}
// Clean up the store.
DSymbols.clear();
NewSt.St = StMgr->RemoveDeadBindings(St->getStore(), Loc, Liveness, DRoots,
LSymbols, DSymbols);
// Remove the dead symbols from the symbol tracker.
for (ValueState::ce_iterator I = St->ce_begin(), E=St->ce_end(); I!=E; ++I) {
SymbolID sym = I.getKey();
if (!LSymbols.count(sym)) {
DSymbols.insert(sym);
NewSt.ConstEq = CEFactory.Remove(NewSt.ConstEq, sym);
}
}
for (ValueState::cne_iterator I = St->cne_begin(), E=St->cne_end(); I!=E;++I){
SymbolID sym = I.getKey();
if (!LSymbols.count(sym)) {
DSymbols.insert(sym);
NewSt.ConstNotEq = CNEFactory.Remove(NewSt.ConstNotEq, sym);
}
}
return getPersistentState(NewSt);
}
const ValueState* ValueStateManager::SetRVal(const ValueState* St, LVal LV,
RVal V) {
Store OldStore = St->getStore();
Store NewStore = StMgr->SetRVal(OldStore, LV, V);
if (NewStore == OldStore)
return St;
ValueState NewSt = *St;
NewSt.St = NewStore;
return getPersistentState(NewSt);
}
const ValueState* ValueStateManager::Unbind(const ValueState* St, LVal LV) {
Store OldStore = St->getStore();
Store NewStore = StMgr->Remove(OldStore, LV);
if (NewStore == OldStore)
return St;
ValueState NewSt = *St;
NewSt.St = NewStore;
return getPersistentState(NewSt);
}
const ValueState* ValueStateManager::AddNE(const ValueState* St, SymbolID sym,
const llvm::APSInt& V) {
// First, retrieve the NE-set associated with the given symbol.
ValueState::ConstNotEqTy::data_type* T = St->ConstNotEq.lookup(sym);
ValueState::IntSetTy S = T ? *T : ISetFactory.GetEmptySet();
// Now add V to the NE set.
S = ISetFactory.Add(S, &V);
// Create a new state with the old binding replaced.
ValueState NewSt = *St;
NewSt.ConstNotEq = CNEFactory.Add(NewSt.ConstNotEq, sym, S);
// Get the persistent copy.
return getPersistentState(NewSt);
}
const ValueState* ValueStateManager::AddEQ(const ValueState* St, SymbolID sym,
const llvm::APSInt& V) {
// Create a new state with the old binding replaced.
ValueState NewSt = *St;
NewSt.ConstEq = CEFactory.Add(NewSt.ConstEq, sym, &V);
// Get the persistent copy.
return getPersistentState(NewSt);
}
const ValueState* ValueStateManager::getInitialState() {
ValueState StateImpl(EnvMgr.getInitialEnvironment(),
StMgr->getInitialStore(),
CNEFactory.GetEmptyMap(),
CEFactory.GetEmptyMap());
return getPersistentState(StateImpl);
}
const ValueState* ValueStateManager::getPersistentState(ValueState& State) {
llvm::FoldingSetNodeID ID;
State.Profile(ID);
void* InsertPos;
if (ValueState* I = StateSet.FindNodeOrInsertPos(ID, InsertPos))
return I;
ValueState* I = (ValueState*) Alloc.Allocate<ValueState>();
new (I) ValueState(State);
StateSet.InsertNode(I, InsertPos);
return I;
}
void ValueState::printDOT(std::ostream& Out, CheckerStatePrinter* P) const {
print(Out, P, "\\l", "\\|");
}
void ValueState::printStdErr(CheckerStatePrinter* P) const {
print(*llvm::cerr, P);
}
void ValueState::print(std::ostream& Out, CheckerStatePrinter* P,
const char* nl, const char* sep) const {
// Print Variable Bindings
Out << "Variables:" << nl;
bool isFirst = true;
for (vb_iterator I = vb_begin(), E = vb_end(); I != E; ++I) {
if (isFirst) isFirst = false;
else Out << nl;
Out << ' ' << I.getKey()->getName() << " : ";
I.getData().print(Out);
}
// Print Subexpression bindings.
isFirst = true;
for (seb_iterator I = seb_begin(), E = seb_end(); I != E; ++I) {
if (isFirst) {
Out << nl << nl << "Sub-Expressions:" << nl;
isFirst = false;
}
else { Out << nl; }
Out << " (" << (void*) I.getKey() << ") ";
I.getKey()->printPretty(Out);
Out << " : ";
I.getData().print(Out);
}
// Print block-expression bindings.
isFirst = true;
for (beb_iterator I = beb_begin(), E = beb_end(); I != E; ++I) {
if (isFirst) {
Out << nl << nl << "Block-level Expressions:" << nl;
isFirst = false;
}
else { Out << nl; }
Out << " (" << (void*) I.getKey() << ") ";
I.getKey()->printPretty(Out);
Out << " : ";
I.getData().print(Out);
}
// Print equality constraints.
if (!ConstEq.isEmpty()) {
Out << nl << sep << "'==' constraints:";
for (ConstEqTy::iterator I = ConstEq.begin(),
E = ConstEq.end(); I!=E; ++I) {
Out << nl << " $" << I.getKey()
<< " : " << I.getData()->toString();
}
}
// Print != constraints.
if (!ConstNotEq.isEmpty()) {
Out << nl << sep << "'!=' constraints:";
for (ConstNotEqTy::iterator I = ConstNotEq.begin(),
EI = ConstNotEq.end(); I != EI; ++I) {
Out << nl << " $" << I.getKey() << " : ";
isFirst = true;
IntSetTy::iterator J = I.getData().begin(), EJ = I.getData().end();
for ( ; J != EJ; ++J) {
if (isFirst) isFirst = false;
else Out << ", ";
Out << (*J)->toString();
}
}
}
// Print checker-specific data.
if (P && CheckerState)
P->PrintCheckerState(Out, CheckerState, nl, sep);
}
//===----------------------------------------------------------------------===//
// Queries.
//===----------------------------------------------------------------------===//
bool ValueStateManager::isEqual(const ValueState* state, Expr* Ex,
const llvm::APSInt& Y) {
RVal V = GetRVal(state, Ex);
if (lval::ConcreteInt* X = dyn_cast<lval::ConcreteInt>(&V))
return X->getValue() == Y;
if (nonlval::ConcreteInt* X = dyn_cast<nonlval::ConcreteInt>(&V))
return X->getValue() == Y;
if (nonlval::SymbolVal* X = dyn_cast<nonlval::SymbolVal>(&V))
return state->isEqual(X->getSymbol(), Y);
if (lval::SymbolVal* X = dyn_cast<lval::SymbolVal>(&V))
return state->isEqual(X->getSymbol(), Y);
return false;
}
bool ValueStateManager::isEqual(const ValueState* state, Expr* Ex,
uint64_t x) {
return isEqual(state, Ex, BasicVals.getValue(x, Ex->getType()));
}
//===----------------------------------------------------------------------===//
// "Assume" logic.
//===----------------------------------------------------------------------===//
const ValueState* ValueStateManager::Assume(const ValueState* St, LVal Cond,
bool Assumption, bool& isFeasible) {
St = AssumeAux(St, Cond, Assumption, isFeasible);
return isFeasible ? TF->EvalAssume(*this, St, Cond, Assumption, isFeasible)
: St;
}
const ValueState* ValueStateManager::AssumeAux(const ValueState* St, LVal Cond,
bool Assumption, bool& isFeasible) {
switch (Cond.getSubKind()) {
default:
assert (false && "'Assume' not implemented for this LVal.");
return St;
case lval::SymbolValKind:
if (Assumption)
return AssumeSymNE(St, cast<lval::SymbolVal>(Cond).getSymbol(),
BasicVals.getZeroWithPtrWidth(), isFeasible);
else
return AssumeSymEQ(St, cast<lval::SymbolVal>(Cond).getSymbol(),
BasicVals.getZeroWithPtrWidth(), isFeasible);
case lval::DeclValKind:
case lval::FuncValKind:
case lval::GotoLabelKind:
case lval::StringLiteralValKind:
isFeasible = Assumption;
return St;
case lval::FieldOffsetKind:
return AssumeAux(St, cast<lval::FieldOffset>(Cond).getBase(),
Assumption, isFeasible);
case lval::ArrayOffsetKind:
return AssumeAux(St, cast<lval::ArrayOffset>(Cond).getBase(),
Assumption, isFeasible);
case lval::ConcreteIntKind: {
bool b = cast<lval::ConcreteInt>(Cond).getValue() != 0;
isFeasible = b ? Assumption : !Assumption;
return St;
}
}
}
const ValueState* ValueStateManager::Assume(const ValueState* St, NonLVal Cond,
bool Assumption, bool& isFeasible) {
St = AssumeAux(St, Cond, Assumption, isFeasible);
return isFeasible ? TF->EvalAssume(*this, St, Cond, Assumption, isFeasible)
: St;
}
const ValueState* ValueStateManager::AssumeAux(const ValueState* St, NonLVal Cond,
bool Assumption, bool& isFeasible) {
switch (Cond.getSubKind()) {
default:
assert (false && "'Assume' not implemented for this NonLVal.");
return St;
case nonlval::SymbolValKind: {
nonlval::SymbolVal& SV = cast<nonlval::SymbolVal>(Cond);
SymbolID sym = SV.getSymbol();
if (Assumption)
return AssumeSymNE(St, sym, BasicVals.getValue(0, SymMgr.getType(sym)),
isFeasible);
else
return AssumeSymEQ(St, sym, BasicVals.getValue(0, SymMgr.getType(sym)),
isFeasible);
}
case nonlval::SymIntConstraintValKind:
return
AssumeSymInt(St, Assumption,
cast<nonlval::SymIntConstraintVal>(Cond).getConstraint(),
isFeasible);
case nonlval::ConcreteIntKind: {
bool b = cast<nonlval::ConcreteInt>(Cond).getValue() != 0;
isFeasible = b ? Assumption : !Assumption;
return St;
}
case nonlval::LValAsIntegerKind: {
return AssumeAux(St, cast<nonlval::LValAsInteger>(Cond).getLVal(),
Assumption, isFeasible);
}
}
}
const ValueState* ValueStateManager::AssumeSymInt(const ValueState* St,
bool Assumption,
const SymIntConstraint& C,
bool& isFeasible) {
switch (C.getOpcode()) {
default:
// No logic yet for other operators.
isFeasible = true;
return St;
case BinaryOperator::EQ:
if (Assumption)
return AssumeSymEQ(St, C.getSymbol(), C.getInt(), isFeasible);
else
return AssumeSymNE(St, C.getSymbol(), C.getInt(), isFeasible);
case BinaryOperator::NE:
if (Assumption)
return AssumeSymNE(St, C.getSymbol(), C.getInt(), isFeasible);
else
return AssumeSymEQ(St, C.getSymbol(), C.getInt(), isFeasible);
case BinaryOperator::GE:
if (Assumption)
return AssumeSymGE(St, C.getSymbol(), C.getInt(), isFeasible);
else
return AssumeSymLT(St, C.getSymbol(), C.getInt(), isFeasible);
case BinaryOperator::LE:
if (Assumption)
return AssumeSymLE(St, C.getSymbol(), C.getInt(), isFeasible);
else
return AssumeSymGT(St, C.getSymbol(), C.getInt(), isFeasible);
}
}
//===----------------------------------------------------------------------===//
// FIXME: This should go into a plug-in constraint engine.
//===----------------------------------------------------------------------===//
const ValueState*
ValueStateManager::AssumeSymNE(const ValueState* St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible) {
// First, determine if sym == X, where X != V.
if (const llvm::APSInt* X = St->getSymVal(sym)) {
isFeasible = *X != V;
return St;
}
// Second, determine if sym != V.
if (St->isNotEqual(sym, V)) {
isFeasible = true;
return St;
}
// If we reach here, sym is not a constant and we don't know if it is != V.
// Make that assumption.
isFeasible = true;
return AddNE(St, sym, V);
}
const ValueState*
ValueStateManager::AssumeSymEQ(const ValueState* St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible) {
// First, determine if sym == X, where X != V.
if (const llvm::APSInt* X = St->getSymVal(sym)) {
isFeasible = *X == V;
return St;
}
// Second, determine if sym != V.
if (St->isNotEqual(sym, V)) {
isFeasible = false;
return St;
}
// If we reach here, sym is not a constant and we don't know if it is == V.
// Make that assumption.
isFeasible = true;
return AddEQ(St, sym, V);
}
const ValueState*
ValueStateManager::AssumeSymLT(const ValueState* St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible) {
// FIXME: For now have assuming x < y be the same as assuming sym != V;
return AssumeSymNE(St, sym, V, isFeasible);
}
const ValueState*
ValueStateManager::AssumeSymGT(const ValueState* St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible) {
// FIXME: For now have assuming x > y be the same as assuming sym != V;
return AssumeSymNE(St, sym, V, isFeasible);
}
const ValueState*
ValueStateManager::AssumeSymGE(const ValueState* St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible) {
// FIXME: Primitive logic for now. Only reject a path if the value of
// sym is a constant X and !(X >= V).
if (const llvm::APSInt* X = St->getSymVal(sym)) {
isFeasible = *X >= V;
return St;
}
isFeasible = true;
return St;
}
const ValueState*
ValueStateManager::AssumeSymLE(const ValueState* St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible) {
// FIXME: Primitive logic for now. Only reject a path if the value of
// sym is a constant X and !(X <= V).
if (const llvm::APSInt* X = St->getSymVal(sym)) {
isFeasible = *X <= V;
return St;
}
isFeasible = true;
return St;
}