blob: f6f328ebee1016bef576d6e919e80f601a919f33 [file] [log] [blame]
//===--- CacheTokens.cpp - Caching of lexer tokens for PCH support --------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This provides a possible implementation of PCH support for Clang that is
// based on caching lexed tokens and identifiers.
//
//===----------------------------------------------------------------------===//
#include "clang.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Lex/Lexer.h"
#include "clang/Lex/Preprocessor.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/System/Path.h"
#include "llvm/Support/Compiler.h"
using namespace clang;
typedef uint32_t Offset;
typedef std::vector<std::pair<Offset, llvm::StringMapEntry<Offset>*> >
SpellMapTy;
namespace {
class VISIBILITY_HIDDEN PCHEntry {
Offset TokenData, PPCondData;
union { Offset SpellingOff; SpellMapTy* Spellings; };
public:
PCHEntry() {}
PCHEntry(Offset td, Offset ppcd, SpellMapTy* sp)
: TokenData(td), PPCondData(ppcd), Spellings(sp) {}
Offset getTokenOffset() const { return TokenData; }
Offset getPPCondTableOffset() const { return PPCondData; }
SpellMapTy& getSpellings() const { return *Spellings; }
void setSpellingTableOffset(Offset off) { SpellingOff = off; }
Offset getSpellingTableOffset() const { return SpellingOff; }
};
} // end anonymous namespace
typedef llvm::DenseMap<const FileEntry*, PCHEntry> PCHMap;
typedef llvm::DenseMap<const IdentifierInfo*,uint32_t> IDMap;
typedef llvm::StringMap<Offset, llvm::BumpPtrAllocator> CachedStrsTy;
namespace {
class VISIBILITY_HIDDEN PTHWriter {
IDMap IM;
llvm::raw_fd_ostream& Out;
Preprocessor& PP;
uint32_t idcount;
PCHMap PM;
CachedStrsTy CachedStrs;
SpellMapTy* CurSpellMap;
//// Get the persistent id for the given IdentifierInfo*.
uint32_t ResolveID(const IdentifierInfo* II);
/// Emit a token to the PTH file.
void EmitToken(const Token& T);
void Emit8(uint32_t V) {
Out << (unsigned char)(V);
}
void Emit16(uint32_t V) {
Out << (unsigned char)(V);
Out << (unsigned char)(V >> 8);
assert((V >> 16) == 0);
}
void Emit24(uint32_t V) {
Out << (unsigned char)(V);
Out << (unsigned char)(V >> 8);
Out << (unsigned char)(V >> 16);
assert((V >> 24) == 0);
}
void Emit32(uint32_t V) {
Out << (unsigned char)(V);
Out << (unsigned char)(V >> 8);
Out << (unsigned char)(V >> 16);
Out << (unsigned char)(V >> 24);
}
void EmitBuf(const char* I, const char* E) {
for ( ; I != E ; ++I) Out << *I;
}
std::pair<Offset,Offset> EmitIdentifierTable();
Offset EmitFileTable();
PCHEntry LexTokens(Lexer& L);
void EmitCachedSpellings();
public:
PTHWriter(llvm::raw_fd_ostream& out, Preprocessor& pp)
: Out(out), PP(pp), idcount(0) {}
void GeneratePTH();
};
} // end anonymous namespace
uint32_t PTHWriter::ResolveID(const IdentifierInfo* II) {
// Null IdentifierInfo's map to the persistent ID 0.
if (!II)
return 0;
IDMap::iterator I = IM.find(II);
if (I == IM.end()) {
IM[II] = ++idcount; // Pre-increment since '0' is reserved for NULL.
return idcount;
}
return I->second; // We've already added 1.
}
void PTHWriter::EmitToken(const Token& T) {
uint32_t fpos = PP.getSourceManager().getFullFilePos(T.getLocation());
Emit8(T.getKind());
Emit8(T.getFlags());
Emit24(ResolveID(T.getIdentifierInfo()));
Emit32(fpos);
Emit16(T.getLength());
// For specific tokens we cache their spelling.
if (T.getIdentifierInfo())
return;
switch (T.getKind()) {
default:
break;
case tok::string_literal:
case tok::wide_string_literal:
case tok::angle_string_literal:
case tok::numeric_constant:
case tok::char_constant: {
// FIXME: This uses the slow getSpelling(). Perhaps we do better
// in the future? This only slows down PTH generation.
const std::string& spelling = PP.getSpelling(T);
const char* s = spelling.c_str();
// Get the string entry.
llvm::StringMapEntry<Offset> *E =
&CachedStrs.GetOrCreateValue(s, s+spelling.size());
// Store the address of the string entry in our spelling map.
(*CurSpellMap).push_back(std::make_pair(fpos, E));
break;
}
}
}
namespace {
struct VISIBILITY_HIDDEN IDData {
const IdentifierInfo* II;
uint32_t FileOffset;
const IdentifierTable::const_iterator::value_type* Str;
};
}
std::pair<Offset,Offset> PTHWriter::EmitIdentifierTable() {
const IdentifierTable& T = PP.getIdentifierTable();
// Build an inverse map from persistent IDs -> IdentifierInfo*.
typedef std::vector<IDData> InverseIDMap;
InverseIDMap IIDMap;
IIDMap.resize(idcount);
// Generate mapping from persistent IDs -> IdentifierInfo*.
for (IDMap::iterator I=IM.begin(), E=IM.end(); I!=E; ++I) {
// Decrement by 1 because we are using a vector for the lookup and
// 0 is reserved for NULL.
assert(I->second > 0);
assert(I->second-1 < IIDMap.size());
IIDMap[I->second-1].II = I->first;
}
// Get the string data associated with the IdentifierInfo.
for (IdentifierTable::const_iterator I=T.begin(), E=T.end(); I!=E; ++I) {
IDMap::iterator IDI = IM.find(&(I->getValue()));
if (IDI == IM.end()) continue;
IIDMap[IDI->second-1].Str = &(*I);
}
Offset DataOff = Out.tell();
for (InverseIDMap::iterator I=IIDMap.begin(), E=IIDMap.end(); I!=E; ++I) {
// Record the location for this data.
I->FileOffset = Out.tell();
// Write out the keyword.
unsigned len = I->Str->getKeyLength();
Emit32(len);
const char* buf = I->Str->getKeyData();
EmitBuf(buf, buf+len);
}
// Now emit the table mapping from persistent IDs to PTH file offsets.
Offset IDOff = Out.tell();
// Emit the number of identifiers.
Emit32(idcount);
for (InverseIDMap::iterator I=IIDMap.begin(), E=IIDMap.end(); I!=E; ++I)
Emit32(I->FileOffset);
return std::make_pair(DataOff, IDOff);
}
Offset PTHWriter::EmitFileTable() {
// Determine the offset where this table appears in the PTH file.
Offset off = (Offset) Out.tell();
// Output the size of the table.
Emit32(PM.size());
for (PCHMap::iterator I=PM.begin(), E=PM.end(); I!=E; ++I) {
const FileEntry* FE = I->first;
const char* Name = FE->getName();
unsigned size = strlen(Name);
Emit32(size);
EmitBuf(Name, Name+size);
Emit32(I->second.getTokenOffset());
Emit32(I->second.getPPCondTableOffset());
Emit32(I->second.getSpellingTableOffset());
}
return off;
}
PCHEntry PTHWriter::LexTokens(Lexer& L) {
// Record the location within the token file.
Offset off = (Offset) Out.tell();
// Keep track of matching '#if' ... '#endif'.
typedef std::vector<std::pair<Offset, unsigned> > PPCondTable;
PPCondTable PPCond;
std::vector<unsigned> PPStartCond;
bool ParsingPreprocessorDirective = false;
// Allocate a spelling map for this source file.
llvm::OwningPtr<SpellMapTy> Spellings(new SpellMapTy());
CurSpellMap = Spellings.get();
Token Tok;
do {
L.LexFromRawLexer(Tok);
if ((Tok.isAtStartOfLine() || Tok.is(tok::eof)) &&
ParsingPreprocessorDirective) {
// Insert an eom token into the token cache. It has the same
// position as the next token that is not on the same line as the
// preprocessor directive. Observe that we continue processing
// 'Tok' when we exit this branch.
Token Tmp = Tok;
Tmp.setKind(tok::eom);
Tmp.clearFlag(Token::StartOfLine);
Tmp.setIdentifierInfo(0);
EmitToken(Tmp);
ParsingPreprocessorDirective = false;
}
if (Tok.is(tok::identifier)) {
Tok.setIdentifierInfo(PP.LookUpIdentifierInfo(Tok));
continue;
}
if (Tok.is(tok::hash) && Tok.isAtStartOfLine()) {
// Special processing for #include. Store the '#' token and lex
// the next token.
assert(!ParsingPreprocessorDirective);
Offset HashOff = (Offset) Out.tell();
EmitToken(Tok);
// Get the next token.
L.LexFromRawLexer(Tok);
assert(!Tok.isAtStartOfLine());
// Did we see 'include'/'import'/'include_next'?
if (!Tok.is(tok::identifier))
continue;
IdentifierInfo* II = PP.LookUpIdentifierInfo(Tok);
Tok.setIdentifierInfo(II);
tok::PPKeywordKind K = II->getPPKeywordID();
assert(K != tok::pp_not_keyword);
ParsingPreprocessorDirective = true;
switch (K) {
default:
break;
case tok::pp_include:
case tok::pp_import:
case tok::pp_include_next: {
// Save the 'include' token.
EmitToken(Tok);
// Lex the next token as an include string.
L.setParsingPreprocessorDirective(true);
L.LexIncludeFilename(Tok);
L.setParsingPreprocessorDirective(false);
assert(!Tok.isAtStartOfLine());
if (Tok.is(tok::identifier))
Tok.setIdentifierInfo(PP.LookUpIdentifierInfo(Tok));
break;
}
case tok::pp_if:
case tok::pp_ifdef:
case tok::pp_ifndef: {
// Ad an entry for '#if' and friends. We initially set the target index
// to 0. This will get backpatched when we hit #endif.
PPStartCond.push_back(PPCond.size());
PPCond.push_back(std::make_pair(HashOff, 0U));
break;
}
case tok::pp_endif: {
// Add an entry for '#endif'. We set the target table index to itself.
// This will later be set to zero when emitting to the PTH file. We
// use 0 for uninitialized indices because that is easier to debug.
unsigned index = PPCond.size();
// Backpatch the opening '#if' entry.
assert(!PPStartCond.empty());
assert(PPCond.size() > PPStartCond.back());
assert(PPCond[PPStartCond.back()].second == 0);
PPCond[PPStartCond.back()].second = index;
PPStartCond.pop_back();
// Add the new entry to PPCond.
PPCond.push_back(std::make_pair(HashOff, index));
break;
}
case tok::pp_elif:
case tok::pp_else: {
// Add an entry for #elif or #else.
// This serves as both a closing and opening of a conditional block.
// This means that its entry will get backpatched later.
unsigned index = PPCond.size();
// Backpatch the previous '#if' entry.
assert(!PPStartCond.empty());
assert(PPCond.size() > PPStartCond.back());
assert(PPCond[PPStartCond.back()].second == 0);
PPCond[PPStartCond.back()].second = index;
PPStartCond.pop_back();
// Now add '#elif' as a new block opening.
PPCond.push_back(std::make_pair(HashOff, 0U));
PPStartCond.push_back(index);
break;
}
}
}
}
while (EmitToken(Tok), Tok.isNot(tok::eof));
assert(PPStartCond.empty() && "Error: imblanced preprocessor conditionals.");
// Next write out PPCond.
Offset PPCondOff = (Offset) Out.tell();
// Write out the size of PPCond so that clients can identifer empty tables.
Emit32(PPCond.size());
for (unsigned i = 0, e = PPCond.size(); i!=e; ++i) {
Emit32(PPCond[i].first - off);
uint32_t x = PPCond[i].second;
assert(x != 0 && "PPCond entry not backpatched.");
// Emit zero for #endifs. This allows us to do checking when
// we read the PTH file back in.
Emit32(x == i ? 0 : x);
}
return PCHEntry(off, PPCondOff, Spellings.take());
}
void PTHWriter::EmitCachedSpellings() {
// Write each cached string to the PTH file and update the
// the string map entry to contain the relevant offset.
//
// FIXME: We can write the strings out in order of their frequency. This
// may result in better locality.
//
for (CachedStrsTy::iterator I = CachedStrs.begin(), E = CachedStrs.end();
I!=E; ++I) {
Offset off = Out.tell();
// Write out the length of the string before the string itself.
unsigned len = I->getKeyLength();
Emit16(len);
// Write out the string data.
const char* data = I->getKeyData();
EmitBuf(data, data+len);
// Write out a single blank character.
Emit8(' ');
// Now patch the offset of the string in the PTH file into the string map.
I->setValue(off);
}
// Now emit the spelling tables.
for (PCHMap::iterator I=PM.begin(), E=PM.end(); I!=E; ++I) {
SpellMapTy& spellings = I->second.getSpellings();
I->second.setSpellingTableOffset(Out.tell());
// Write out the number of spellings.
unsigned n = spellings.size();
Emit32(n);
for (unsigned i = 0; i < n; ++i) {
// Write out the offset of the token within the source file.
Emit32(spellings[i].first);
// Write out the offset of the spelling data within the PTH file.
Emit32(spellings[i].second->getValue());
}
// Delete the spelling map for this source file.
delete &spellings;
}
}
void PTHWriter::GeneratePTH() {
// Iterate over all the files in SourceManager. Create a lexer
// for each file and cache the tokens.
SourceManager& SM = PP.getSourceManager();
const LangOptions& LOpts = PP.getLangOptions();
for (SourceManager::fileid_iterator I=SM.fileid_begin(), E=SM.fileid_end();
I!=E; ++I) {
const SrcMgr::ContentCache* C = I.getFileIDInfo().getContentCache();
if (!C) continue;
const FileEntry* FE = C->Entry; // Does this entry correspond to a file?
if (!FE) continue;
// FIXME: Handle files with non-absolute paths.
llvm::sys::Path P(FE->getName());
if (!P.isAbsolute())
continue;
PCHMap::iterator PI = PM.find(FE); // Have we already processed this file?
if (PI != PM.end()) continue;
const llvm::MemoryBuffer* B = C->getBuffer();
if (!B) continue;
Lexer L(SourceLocation::getFileLoc(I.getFileID(), 0), LOpts,
B->getBufferStart(), B->getBufferEnd(), B);
PM[FE] = LexTokens(L);
}
// Write out the identifier table.
std::pair<Offset,Offset> IdTableOff = EmitIdentifierTable();
// Write out the cached strings table.
EmitCachedSpellings();
// Write out the file table.
Offset FileTableOff = EmitFileTable();
// Finally, write out the offset table at the end.
Emit32(IdTableOff.first);
Emit32(IdTableOff.second);
Emit32(FileTableOff);
}
void clang::CacheTokens(Preprocessor& PP, const std::string& OutFile) {
// Lex through the entire file. This will populate SourceManager with
// all of the header information.
Token Tok;
PP.EnterMainSourceFile();
do { PP.Lex(Tok); } while (Tok.isNot(tok::eof));
// Open up the PTH file.
std::string ErrMsg;
llvm::raw_fd_ostream Out(OutFile.c_str(), true, ErrMsg);
if (!ErrMsg.empty()) {
llvm::errs() << "PTH error: " << ErrMsg << "\n";
return;
}
// Create the PTHWriter and generate the PTH file.
PTHWriter PW(Out, PP);
PW.GeneratePTH();
}