| //===------- ItaniumCXXABI.cpp - Emit LLVM Code from ASTs for a Module ----===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This provides C++ code generation targeting the Itanium C++ ABI. The class |
| // in this file generates structures that follow the Itanium C++ ABI, which is |
| // documented at: |
| // http://www.codesourcery.com/public/cxx-abi/abi.html |
| // http://www.codesourcery.com/public/cxx-abi/abi-eh.html |
| // |
| // It also supports the closely-related ARM ABI, documented at: |
| // http://infocenter.arm.com/help/topic/com.arm.doc.ihi0041c/IHI0041C_cppabi.pdf |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CGCXXABI.h" |
| #include "CGRecordLayout.h" |
| #include "CGVTables.h" |
| #include "CodeGenFunction.h" |
| #include "CodeGenModule.h" |
| #include "clang/AST/Mangle.h" |
| #include "clang/AST/Type.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/Value.h" |
| |
| using namespace clang; |
| using namespace CodeGen; |
| |
| namespace { |
| class ItaniumCXXABI : public CodeGen::CGCXXABI { |
| protected: |
| bool UseARMMethodPtrABI; |
| bool UseARMGuardVarABI; |
| |
| public: |
| ItaniumCXXABI(CodeGen::CodeGenModule &CGM, |
| bool UseARMMethodPtrABI = false, |
| bool UseARMGuardVarABI = false) : |
| CGCXXABI(CGM), UseARMMethodPtrABI(UseARMMethodPtrABI), |
| UseARMGuardVarABI(UseARMGuardVarABI) { } |
| |
| bool isReturnTypeIndirect(const CXXRecordDecl *RD) const { |
| // Structures with either a non-trivial destructor or a non-trivial |
| // copy constructor are always indirect. |
| return !RD->hasTrivialDestructor() || RD->hasNonTrivialCopyConstructor(); |
| } |
| |
| RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const { |
| // Structures with either a non-trivial destructor or a non-trivial |
| // copy constructor are always indirect. |
| if (!RD->hasTrivialDestructor() || RD->hasNonTrivialCopyConstructor()) |
| return RAA_Indirect; |
| return RAA_Default; |
| } |
| |
| bool isZeroInitializable(const MemberPointerType *MPT); |
| |
| llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT); |
| |
| llvm::Value *EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, |
| llvm::Value *&This, |
| llvm::Value *MemFnPtr, |
| const MemberPointerType *MPT); |
| |
| llvm::Value *EmitMemberDataPointerAddress(CodeGenFunction &CGF, |
| llvm::Value *Base, |
| llvm::Value *MemPtr, |
| const MemberPointerType *MPT); |
| |
| llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF, |
| const CastExpr *E, |
| llvm::Value *Src); |
| llvm::Constant *EmitMemberPointerConversion(const CastExpr *E, |
| llvm::Constant *Src); |
| |
| llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT); |
| |
| llvm::Constant *EmitMemberPointer(const CXXMethodDecl *MD); |
| llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT, |
| CharUnits offset); |
| llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT); |
| llvm::Constant *BuildMemberPointer(const CXXMethodDecl *MD, |
| CharUnits ThisAdjustment); |
| |
| llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF, |
| llvm::Value *L, |
| llvm::Value *R, |
| const MemberPointerType *MPT, |
| bool Inequality); |
| |
| llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF, |
| llvm::Value *Addr, |
| const MemberPointerType *MPT); |
| |
| llvm::Value *adjustToCompleteObject(CodeGenFunction &CGF, |
| llvm::Value *ptr, |
| QualType type); |
| |
| llvm::Value *GetVirtualBaseClassOffset(CodeGenFunction &CGF, |
| llvm::Value *This, |
| const CXXRecordDecl *ClassDecl, |
| const CXXRecordDecl *BaseClassDecl); |
| |
| void BuildConstructorSignature(const CXXConstructorDecl *Ctor, |
| CXXCtorType T, |
| CanQualType &ResTy, |
| SmallVectorImpl<CanQualType> &ArgTys); |
| |
| void EmitCXXConstructors(const CXXConstructorDecl *D); |
| |
| void BuildDestructorSignature(const CXXDestructorDecl *Dtor, |
| CXXDtorType T, |
| CanQualType &ResTy, |
| SmallVectorImpl<CanQualType> &ArgTys); |
| |
| bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor, |
| CXXDtorType DT) const { |
| // Itanium does not emit any destructor variant as an inline thunk. |
| // Delegating may occur as an optimization, but all variants are either |
| // emitted with external linkage or as linkonce if they are inline and used. |
| return false; |
| } |
| |
| void EmitCXXDestructors(const CXXDestructorDecl *D); |
| |
| void BuildInstanceFunctionParams(CodeGenFunction &CGF, |
| QualType &ResTy, |
| FunctionArgList &Params); |
| |
| void EmitInstanceFunctionProlog(CodeGenFunction &CGF); |
| |
| void EmitConstructorCall(CodeGenFunction &CGF, |
| const CXXConstructorDecl *D, CXXCtorType Type, |
| bool ForVirtualBase, bool Delegating, |
| llvm::Value *This, |
| CallExpr::const_arg_iterator ArgBeg, |
| CallExpr::const_arg_iterator ArgEnd); |
| |
| llvm::Value *getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD, |
| llvm::Value *This, llvm::Type *Ty); |
| |
| void EmitVirtualDestructorCall(CodeGenFunction &CGF, |
| const CXXDestructorDecl *Dtor, |
| CXXDtorType DtorType, SourceLocation CallLoc, |
| llvm::Value *This); |
| |
| void EmitVirtualInheritanceTables(llvm::GlobalVariable::LinkageTypes Linkage, |
| const CXXRecordDecl *RD); |
| |
| StringRef GetPureVirtualCallName() { return "__cxa_pure_virtual"; } |
| StringRef GetDeletedVirtualCallName() { return "__cxa_deleted_virtual"; } |
| |
| CharUnits getArrayCookieSizeImpl(QualType elementType); |
| llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF, |
| llvm::Value *NewPtr, |
| llvm::Value *NumElements, |
| const CXXNewExpr *expr, |
| QualType ElementType); |
| llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF, |
| llvm::Value *allocPtr, |
| CharUnits cookieSize); |
| |
| void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D, |
| llvm::GlobalVariable *DeclPtr, bool PerformInit); |
| void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D, |
| llvm::Constant *dtor, llvm::Constant *addr); |
| |
| llvm::Function *getOrCreateThreadLocalWrapper(const VarDecl *VD, |
| llvm::GlobalVariable *Var); |
| void EmitThreadLocalInitFuncs( |
| llvm::ArrayRef<std::pair<const VarDecl *, llvm::GlobalVariable *> > Decls, |
| llvm::Function *InitFunc); |
| LValue EmitThreadLocalDeclRefExpr(CodeGenFunction &CGF, |
| const DeclRefExpr *DRE); |
| |
| bool NeedsVTTParameter(GlobalDecl GD); |
| }; |
| |
| class ARMCXXABI : public ItaniumCXXABI { |
| public: |
| ARMCXXABI(CodeGen::CodeGenModule &CGM) : |
| ItaniumCXXABI(CGM, /* UseARMMethodPtrABI = */ true, |
| /* UseARMGuardVarABI = */ true) {} |
| |
| bool HasThisReturn(GlobalDecl GD) const { |
| return (isa<CXXConstructorDecl>(GD.getDecl()) || ( |
| isa<CXXDestructorDecl>(GD.getDecl()) && |
| GD.getDtorType() != Dtor_Deleting)); |
| } |
| |
| void EmitReturnFromThunk(CodeGenFunction &CGF, RValue RV, QualType ResTy); |
| |
| CharUnits getArrayCookieSizeImpl(QualType elementType); |
| llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF, |
| llvm::Value *NewPtr, |
| llvm::Value *NumElements, |
| const CXXNewExpr *expr, |
| QualType ElementType); |
| llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF, llvm::Value *allocPtr, |
| CharUnits cookieSize); |
| }; |
| } |
| |
| CodeGen::CGCXXABI *CodeGen::CreateItaniumCXXABI(CodeGenModule &CGM) { |
| switch (CGM.getTarget().getCXXABI().getKind()) { |
| // For IR-generation purposes, there's no significant difference |
| // between the ARM and iOS ABIs. |
| case TargetCXXABI::GenericARM: |
| case TargetCXXABI::iOS: |
| return new ARMCXXABI(CGM); |
| |
| // Note that AArch64 uses the generic ItaniumCXXABI class since it doesn't |
| // include the other 32-bit ARM oddities: constructor/destructor return values |
| // and array cookies. |
| case TargetCXXABI::GenericAArch64: |
| return new ItaniumCXXABI(CGM, /* UseARMMethodPtrABI = */ true, |
| /* UseARMGuardVarABI = */ true); |
| |
| case TargetCXXABI::GenericItanium: |
| if (CGM.getContext().getTargetInfo().getTriple().getArch() |
| == llvm::Triple::le32) { |
| // For PNaCl, use ARM-style method pointers so that PNaCl code |
| // does not assume anything about the alignment of function |
| // pointers. |
| return new ItaniumCXXABI(CGM, /* UseARMMethodPtrABI = */ true, |
| /* UseARMGuardVarABI = */ false); |
| } |
| return new ItaniumCXXABI(CGM); |
| |
| case TargetCXXABI::Microsoft: |
| llvm_unreachable("Microsoft ABI is not Itanium-based"); |
| } |
| llvm_unreachable("bad ABI kind"); |
| } |
| |
| llvm::Type * |
| ItaniumCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) { |
| if (MPT->isMemberDataPointer()) |
| return CGM.PtrDiffTy; |
| return llvm::StructType::get(CGM.PtrDiffTy, CGM.PtrDiffTy, NULL); |
| } |
| |
| /// In the Itanium and ARM ABIs, method pointers have the form: |
| /// struct { ptrdiff_t ptr; ptrdiff_t adj; } memptr; |
| /// |
| /// In the Itanium ABI: |
| /// - method pointers are virtual if (memptr.ptr & 1) is nonzero |
| /// - the this-adjustment is (memptr.adj) |
| /// - the virtual offset is (memptr.ptr - 1) |
| /// |
| /// In the ARM ABI: |
| /// - method pointers are virtual if (memptr.adj & 1) is nonzero |
| /// - the this-adjustment is (memptr.adj >> 1) |
| /// - the virtual offset is (memptr.ptr) |
| /// ARM uses 'adj' for the virtual flag because Thumb functions |
| /// may be only single-byte aligned. |
| /// |
| /// If the member is virtual, the adjusted 'this' pointer points |
| /// to a vtable pointer from which the virtual offset is applied. |
| /// |
| /// If the member is non-virtual, memptr.ptr is the address of |
| /// the function to call. |
| llvm::Value * |
| ItaniumCXXABI::EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, |
| llvm::Value *&This, |
| llvm::Value *MemFnPtr, |
| const MemberPointerType *MPT) { |
| CGBuilderTy &Builder = CGF.Builder; |
| |
| const FunctionProtoType *FPT = |
| MPT->getPointeeType()->getAs<FunctionProtoType>(); |
| const CXXRecordDecl *RD = |
| cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); |
| |
| llvm::FunctionType *FTy = |
| CGM.getTypes().GetFunctionType( |
| CGM.getTypes().arrangeCXXMethodType(RD, FPT)); |
| |
| llvm::Constant *ptrdiff_1 = llvm::ConstantInt::get(CGM.PtrDiffTy, 1); |
| |
| llvm::BasicBlock *FnVirtual = CGF.createBasicBlock("memptr.virtual"); |
| llvm::BasicBlock *FnNonVirtual = CGF.createBasicBlock("memptr.nonvirtual"); |
| llvm::BasicBlock *FnEnd = CGF.createBasicBlock("memptr.end"); |
| |
| // Extract memptr.adj, which is in the second field. |
| llvm::Value *RawAdj = Builder.CreateExtractValue(MemFnPtr, 1, "memptr.adj"); |
| |
| // Compute the true adjustment. |
| llvm::Value *Adj = RawAdj; |
| if (UseARMMethodPtrABI) |
| Adj = Builder.CreateAShr(Adj, ptrdiff_1, "memptr.adj.shifted"); |
| |
| // Apply the adjustment and cast back to the original struct type |
| // for consistency. |
| llvm::Value *Ptr = Builder.CreateBitCast(This, Builder.getInt8PtrTy()); |
| Ptr = Builder.CreateInBoundsGEP(Ptr, Adj); |
| This = Builder.CreateBitCast(Ptr, This->getType(), "this.adjusted"); |
| |
| // Load the function pointer. |
| llvm::Value *FnAsInt = Builder.CreateExtractValue(MemFnPtr, 0, "memptr.ptr"); |
| |
| // If the LSB in the function pointer is 1, the function pointer points to |
| // a virtual function. |
| llvm::Value *IsVirtual; |
| if (UseARMMethodPtrABI) |
| IsVirtual = Builder.CreateAnd(RawAdj, ptrdiff_1); |
| else |
| IsVirtual = Builder.CreateAnd(FnAsInt, ptrdiff_1); |
| IsVirtual = Builder.CreateIsNotNull(IsVirtual, "memptr.isvirtual"); |
| Builder.CreateCondBr(IsVirtual, FnVirtual, FnNonVirtual); |
| |
| // In the virtual path, the adjustment left 'This' pointing to the |
| // vtable of the correct base subobject. The "function pointer" is an |
| // offset within the vtable (+1 for the virtual flag on non-ARM). |
| CGF.EmitBlock(FnVirtual); |
| |
| // Cast the adjusted this to a pointer to vtable pointer and load. |
| llvm::Type *VTableTy = Builder.getInt8PtrTy(); |
| llvm::Value *VTable = Builder.CreateBitCast(This, VTableTy->getPointerTo()); |
| VTable = Builder.CreateLoad(VTable, "memptr.vtable"); |
| |
| // Apply the offset. |
| llvm::Value *VTableOffset = FnAsInt; |
| if (!UseARMMethodPtrABI) |
| VTableOffset = Builder.CreateSub(VTableOffset, ptrdiff_1); |
| VTable = Builder.CreateGEP(VTable, VTableOffset); |
| |
| // Load the virtual function to call. |
| VTable = Builder.CreateBitCast(VTable, FTy->getPointerTo()->getPointerTo()); |
| llvm::Value *VirtualFn = Builder.CreateLoad(VTable, "memptr.virtualfn"); |
| CGF.EmitBranch(FnEnd); |
| |
| // In the non-virtual path, the function pointer is actually a |
| // function pointer. |
| CGF.EmitBlock(FnNonVirtual); |
| llvm::Value *NonVirtualFn = |
| Builder.CreateIntToPtr(FnAsInt, FTy->getPointerTo(), "memptr.nonvirtualfn"); |
| |
| // We're done. |
| CGF.EmitBlock(FnEnd); |
| llvm::PHINode *Callee = Builder.CreatePHI(FTy->getPointerTo(), 2); |
| Callee->addIncoming(VirtualFn, FnVirtual); |
| Callee->addIncoming(NonVirtualFn, FnNonVirtual); |
| return Callee; |
| } |
| |
| /// Compute an l-value by applying the given pointer-to-member to a |
| /// base object. |
| llvm::Value *ItaniumCXXABI::EmitMemberDataPointerAddress(CodeGenFunction &CGF, |
| llvm::Value *Base, |
| llvm::Value *MemPtr, |
| const MemberPointerType *MPT) { |
| assert(MemPtr->getType() == CGM.PtrDiffTy); |
| |
| CGBuilderTy &Builder = CGF.Builder; |
| |
| unsigned AS = Base->getType()->getPointerAddressSpace(); |
| |
| // Cast to char*. |
| Base = Builder.CreateBitCast(Base, Builder.getInt8Ty()->getPointerTo(AS)); |
| |
| // Apply the offset, which we assume is non-null. |
| llvm::Value *Addr = Builder.CreateInBoundsGEP(Base, MemPtr, "memptr.offset"); |
| |
| // Cast the address to the appropriate pointer type, adopting the |
| // address space of the base pointer. |
| llvm::Type *PType |
| = CGF.ConvertTypeForMem(MPT->getPointeeType())->getPointerTo(AS); |
| return Builder.CreateBitCast(Addr, PType); |
| } |
| |
| /// Perform a bitcast, derived-to-base, or base-to-derived member pointer |
| /// conversion. |
| /// |
| /// Bitcast conversions are always a no-op under Itanium. |
| /// |
| /// Obligatory offset/adjustment diagram: |
| /// <-- offset --> <-- adjustment --> |
| /// |--------------------------|----------------------|--------------------| |
| /// ^Derived address point ^Base address point ^Member address point |
| /// |
| /// So when converting a base member pointer to a derived member pointer, |
| /// we add the offset to the adjustment because the address point has |
| /// decreased; and conversely, when converting a derived MP to a base MP |
| /// we subtract the offset from the adjustment because the address point |
| /// has increased. |
| /// |
| /// The standard forbids (at compile time) conversion to and from |
| /// virtual bases, which is why we don't have to consider them here. |
| /// |
| /// The standard forbids (at run time) casting a derived MP to a base |
| /// MP when the derived MP does not point to a member of the base. |
| /// This is why -1 is a reasonable choice for null data member |
| /// pointers. |
| llvm::Value * |
| ItaniumCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF, |
| const CastExpr *E, |
| llvm::Value *src) { |
| assert(E->getCastKind() == CK_DerivedToBaseMemberPointer || |
| E->getCastKind() == CK_BaseToDerivedMemberPointer || |
| E->getCastKind() == CK_ReinterpretMemberPointer); |
| |
| // Under Itanium, reinterprets don't require any additional processing. |
| if (E->getCastKind() == CK_ReinterpretMemberPointer) return src; |
| |
| // Use constant emission if we can. |
| if (isa<llvm::Constant>(src)) |
| return EmitMemberPointerConversion(E, cast<llvm::Constant>(src)); |
| |
| llvm::Constant *adj = getMemberPointerAdjustment(E); |
| if (!adj) return src; |
| |
| CGBuilderTy &Builder = CGF.Builder; |
| bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer); |
| |
| const MemberPointerType *destTy = |
| E->getType()->castAs<MemberPointerType>(); |
| |
| // For member data pointers, this is just a matter of adding the |
| // offset if the source is non-null. |
| if (destTy->isMemberDataPointer()) { |
| llvm::Value *dst; |
| if (isDerivedToBase) |
| dst = Builder.CreateNSWSub(src, adj, "adj"); |
| else |
| dst = Builder.CreateNSWAdd(src, adj, "adj"); |
| |
| // Null check. |
| llvm::Value *null = llvm::Constant::getAllOnesValue(src->getType()); |
| llvm::Value *isNull = Builder.CreateICmpEQ(src, null, "memptr.isnull"); |
| return Builder.CreateSelect(isNull, src, dst); |
| } |
| |
| // The this-adjustment is left-shifted by 1 on ARM. |
| if (UseARMMethodPtrABI) { |
| uint64_t offset = cast<llvm::ConstantInt>(adj)->getZExtValue(); |
| offset <<= 1; |
| adj = llvm::ConstantInt::get(adj->getType(), offset); |
| } |
| |
| llvm::Value *srcAdj = Builder.CreateExtractValue(src, 1, "src.adj"); |
| llvm::Value *dstAdj; |
| if (isDerivedToBase) |
| dstAdj = Builder.CreateNSWSub(srcAdj, adj, "adj"); |
| else |
| dstAdj = Builder.CreateNSWAdd(srcAdj, adj, "adj"); |
| |
| return Builder.CreateInsertValue(src, dstAdj, 1); |
| } |
| |
| llvm::Constant * |
| ItaniumCXXABI::EmitMemberPointerConversion(const CastExpr *E, |
| llvm::Constant *src) { |
| assert(E->getCastKind() == CK_DerivedToBaseMemberPointer || |
| E->getCastKind() == CK_BaseToDerivedMemberPointer || |
| E->getCastKind() == CK_ReinterpretMemberPointer); |
| |
| // Under Itanium, reinterprets don't require any additional processing. |
| if (E->getCastKind() == CK_ReinterpretMemberPointer) return src; |
| |
| // If the adjustment is trivial, we don't need to do anything. |
| llvm::Constant *adj = getMemberPointerAdjustment(E); |
| if (!adj) return src; |
| |
| bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer); |
| |
| const MemberPointerType *destTy = |
| E->getType()->castAs<MemberPointerType>(); |
| |
| // For member data pointers, this is just a matter of adding the |
| // offset if the source is non-null. |
| if (destTy->isMemberDataPointer()) { |
| // null maps to null. |
| if (src->isAllOnesValue()) return src; |
| |
| if (isDerivedToBase) |
| return llvm::ConstantExpr::getNSWSub(src, adj); |
| else |
| return llvm::ConstantExpr::getNSWAdd(src, adj); |
| } |
| |
| // The this-adjustment is left-shifted by 1 on ARM. |
| if (UseARMMethodPtrABI) { |
| uint64_t offset = cast<llvm::ConstantInt>(adj)->getZExtValue(); |
| offset <<= 1; |
| adj = llvm::ConstantInt::get(adj->getType(), offset); |
| } |
| |
| llvm::Constant *srcAdj = llvm::ConstantExpr::getExtractValue(src, 1); |
| llvm::Constant *dstAdj; |
| if (isDerivedToBase) |
| dstAdj = llvm::ConstantExpr::getNSWSub(srcAdj, adj); |
| else |
| dstAdj = llvm::ConstantExpr::getNSWAdd(srcAdj, adj); |
| |
| return llvm::ConstantExpr::getInsertValue(src, dstAdj, 1); |
| } |
| |
| llvm::Constant * |
| ItaniumCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) { |
| // Itanium C++ ABI 2.3: |
| // A NULL pointer is represented as -1. |
| if (MPT->isMemberDataPointer()) |
| return llvm::ConstantInt::get(CGM.PtrDiffTy, -1ULL, /*isSigned=*/true); |
| |
| llvm::Constant *Zero = llvm::ConstantInt::get(CGM.PtrDiffTy, 0); |
| llvm::Constant *Values[2] = { Zero, Zero }; |
| return llvm::ConstantStruct::getAnon(Values); |
| } |
| |
| llvm::Constant * |
| ItaniumCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT, |
| CharUnits offset) { |
| // Itanium C++ ABI 2.3: |
| // A pointer to data member is an offset from the base address of |
| // the class object containing it, represented as a ptrdiff_t |
| return llvm::ConstantInt::get(CGM.PtrDiffTy, offset.getQuantity()); |
| } |
| |
| llvm::Constant *ItaniumCXXABI::EmitMemberPointer(const CXXMethodDecl *MD) { |
| return BuildMemberPointer(MD, CharUnits::Zero()); |
| } |
| |
| llvm::Constant *ItaniumCXXABI::BuildMemberPointer(const CXXMethodDecl *MD, |
| CharUnits ThisAdjustment) { |
| assert(MD->isInstance() && "Member function must not be static!"); |
| MD = MD->getCanonicalDecl(); |
| |
| CodeGenTypes &Types = CGM.getTypes(); |
| |
| // Get the function pointer (or index if this is a virtual function). |
| llvm::Constant *MemPtr[2]; |
| if (MD->isVirtual()) { |
| uint64_t Index = CGM.getVTableContext().getMethodVTableIndex(MD); |
| |
| const ASTContext &Context = getContext(); |
| CharUnits PointerWidth = |
| Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0)); |
| uint64_t VTableOffset = (Index * PointerWidth.getQuantity()); |
| |
| if (UseARMMethodPtrABI) { |
| // ARM C++ ABI 3.2.1: |
| // This ABI specifies that adj contains twice the this |
| // adjustment, plus 1 if the member function is virtual. The |
| // least significant bit of adj then makes exactly the same |
| // discrimination as the least significant bit of ptr does for |
| // Itanium. |
| MemPtr[0] = llvm::ConstantInt::get(CGM.PtrDiffTy, VTableOffset); |
| MemPtr[1] = llvm::ConstantInt::get(CGM.PtrDiffTy, |
| 2 * ThisAdjustment.getQuantity() + 1); |
| } else { |
| // Itanium C++ ABI 2.3: |
| // For a virtual function, [the pointer field] is 1 plus the |
| // virtual table offset (in bytes) of the function, |
| // represented as a ptrdiff_t. |
| MemPtr[0] = llvm::ConstantInt::get(CGM.PtrDiffTy, VTableOffset + 1); |
| MemPtr[1] = llvm::ConstantInt::get(CGM.PtrDiffTy, |
| ThisAdjustment.getQuantity()); |
| } |
| } else { |
| const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); |
| llvm::Type *Ty; |
| // Check whether the function has a computable LLVM signature. |
| if (Types.isFuncTypeConvertible(FPT)) { |
| // The function has a computable LLVM signature; use the correct type. |
| Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD)); |
| } else { |
| // Use an arbitrary non-function type to tell GetAddrOfFunction that the |
| // function type is incomplete. |
| Ty = CGM.PtrDiffTy; |
| } |
| llvm::Constant *addr = CGM.GetAddrOfFunction(MD, Ty); |
| |
| MemPtr[0] = llvm::ConstantExpr::getPtrToInt(addr, CGM.PtrDiffTy); |
| MemPtr[1] = llvm::ConstantInt::get(CGM.PtrDiffTy, |
| (UseARMMethodPtrABI ? 2 : 1) * |
| ThisAdjustment.getQuantity()); |
| } |
| |
| return llvm::ConstantStruct::getAnon(MemPtr); |
| } |
| |
| llvm::Constant *ItaniumCXXABI::EmitMemberPointer(const APValue &MP, |
| QualType MPType) { |
| const MemberPointerType *MPT = MPType->castAs<MemberPointerType>(); |
| const ValueDecl *MPD = MP.getMemberPointerDecl(); |
| if (!MPD) |
| return EmitNullMemberPointer(MPT); |
| |
| CharUnits ThisAdjustment = getMemberPointerPathAdjustment(MP); |
| |
| if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD)) |
| return BuildMemberPointer(MD, ThisAdjustment); |
| |
| CharUnits FieldOffset = |
| getContext().toCharUnitsFromBits(getContext().getFieldOffset(MPD)); |
| return EmitMemberDataPointer(MPT, ThisAdjustment + FieldOffset); |
| } |
| |
| /// The comparison algorithm is pretty easy: the member pointers are |
| /// the same if they're either bitwise identical *or* both null. |
| /// |
| /// ARM is different here only because null-ness is more complicated. |
| llvm::Value * |
| ItaniumCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF, |
| llvm::Value *L, |
| llvm::Value *R, |
| const MemberPointerType *MPT, |
| bool Inequality) { |
| CGBuilderTy &Builder = CGF.Builder; |
| |
| llvm::ICmpInst::Predicate Eq; |
| llvm::Instruction::BinaryOps And, Or; |
| if (Inequality) { |
| Eq = llvm::ICmpInst::ICMP_NE; |
| And = llvm::Instruction::Or; |
| Or = llvm::Instruction::And; |
| } else { |
| Eq = llvm::ICmpInst::ICMP_EQ; |
| And = llvm::Instruction::And; |
| Or = llvm::Instruction::Or; |
| } |
| |
| // Member data pointers are easy because there's a unique null |
| // value, so it just comes down to bitwise equality. |
| if (MPT->isMemberDataPointer()) |
| return Builder.CreateICmp(Eq, L, R); |
| |
| // For member function pointers, the tautologies are more complex. |
| // The Itanium tautology is: |
| // (L == R) <==> (L.ptr == R.ptr && (L.ptr == 0 || L.adj == R.adj)) |
| // The ARM tautology is: |
| // (L == R) <==> (L.ptr == R.ptr && |
| // (L.adj == R.adj || |
| // (L.ptr == 0 && ((L.adj|R.adj) & 1) == 0))) |
| // The inequality tautologies have exactly the same structure, except |
| // applying De Morgan's laws. |
| |
| llvm::Value *LPtr = Builder.CreateExtractValue(L, 0, "lhs.memptr.ptr"); |
| llvm::Value *RPtr = Builder.CreateExtractValue(R, 0, "rhs.memptr.ptr"); |
| |
| // This condition tests whether L.ptr == R.ptr. This must always be |
| // true for equality to hold. |
| llvm::Value *PtrEq = Builder.CreateICmp(Eq, LPtr, RPtr, "cmp.ptr"); |
| |
| // This condition, together with the assumption that L.ptr == R.ptr, |
| // tests whether the pointers are both null. ARM imposes an extra |
| // condition. |
| llvm::Value *Zero = llvm::Constant::getNullValue(LPtr->getType()); |
| llvm::Value *EqZero = Builder.CreateICmp(Eq, LPtr, Zero, "cmp.ptr.null"); |
| |
| // This condition tests whether L.adj == R.adj. If this isn't |
| // true, the pointers are unequal unless they're both null. |
| llvm::Value *LAdj = Builder.CreateExtractValue(L, 1, "lhs.memptr.adj"); |
| llvm::Value *RAdj = Builder.CreateExtractValue(R, 1, "rhs.memptr.adj"); |
| llvm::Value *AdjEq = Builder.CreateICmp(Eq, LAdj, RAdj, "cmp.adj"); |
| |
| // Null member function pointers on ARM clear the low bit of Adj, |
| // so the zero condition has to check that neither low bit is set. |
| if (UseARMMethodPtrABI) { |
| llvm::Value *One = llvm::ConstantInt::get(LPtr->getType(), 1); |
| |
| // Compute (l.adj | r.adj) & 1 and test it against zero. |
| llvm::Value *OrAdj = Builder.CreateOr(LAdj, RAdj, "or.adj"); |
| llvm::Value *OrAdjAnd1 = Builder.CreateAnd(OrAdj, One); |
| llvm::Value *OrAdjAnd1EqZero = Builder.CreateICmp(Eq, OrAdjAnd1, Zero, |
| "cmp.or.adj"); |
| EqZero = Builder.CreateBinOp(And, EqZero, OrAdjAnd1EqZero); |
| } |
| |
| // Tie together all our conditions. |
| llvm::Value *Result = Builder.CreateBinOp(Or, EqZero, AdjEq); |
| Result = Builder.CreateBinOp(And, PtrEq, Result, |
| Inequality ? "memptr.ne" : "memptr.eq"); |
| return Result; |
| } |
| |
| llvm::Value * |
| ItaniumCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF, |
| llvm::Value *MemPtr, |
| const MemberPointerType *MPT) { |
| CGBuilderTy &Builder = CGF.Builder; |
| |
| /// For member data pointers, this is just a check against -1. |
| if (MPT->isMemberDataPointer()) { |
| assert(MemPtr->getType() == CGM.PtrDiffTy); |
| llvm::Value *NegativeOne = |
| llvm::Constant::getAllOnesValue(MemPtr->getType()); |
| return Builder.CreateICmpNE(MemPtr, NegativeOne, "memptr.tobool"); |
| } |
| |
| // In Itanium, a member function pointer is not null if 'ptr' is not null. |
| llvm::Value *Ptr = Builder.CreateExtractValue(MemPtr, 0, "memptr.ptr"); |
| |
| llvm::Constant *Zero = llvm::ConstantInt::get(Ptr->getType(), 0); |
| llvm::Value *Result = Builder.CreateICmpNE(Ptr, Zero, "memptr.tobool"); |
| |
| // On ARM, a member function pointer is also non-null if the low bit of 'adj' |
| // (the virtual bit) is set. |
| if (UseARMMethodPtrABI) { |
| llvm::Constant *One = llvm::ConstantInt::get(Ptr->getType(), 1); |
| llvm::Value *Adj = Builder.CreateExtractValue(MemPtr, 1, "memptr.adj"); |
| llvm::Value *VirtualBit = Builder.CreateAnd(Adj, One, "memptr.virtualbit"); |
| llvm::Value *IsVirtual = Builder.CreateICmpNE(VirtualBit, Zero, |
| "memptr.isvirtual"); |
| Result = Builder.CreateOr(Result, IsVirtual); |
| } |
| |
| return Result; |
| } |
| |
| /// The Itanium ABI requires non-zero initialization only for data |
| /// member pointers, for which '0' is a valid offset. |
| bool ItaniumCXXABI::isZeroInitializable(const MemberPointerType *MPT) { |
| return MPT->getPointeeType()->isFunctionType(); |
| } |
| |
| /// The Itanium ABI always places an offset to the complete object |
| /// at entry -2 in the vtable. |
| llvm::Value *ItaniumCXXABI::adjustToCompleteObject(CodeGenFunction &CGF, |
| llvm::Value *ptr, |
| QualType type) { |
| // Grab the vtable pointer as an intptr_t*. |
| llvm::Value *vtable = CGF.GetVTablePtr(ptr, CGF.IntPtrTy->getPointerTo()); |
| |
| // Track back to entry -2 and pull out the offset there. |
| llvm::Value *offsetPtr = |
| CGF.Builder.CreateConstInBoundsGEP1_64(vtable, -2, "complete-offset.ptr"); |
| llvm::LoadInst *offset = CGF.Builder.CreateLoad(offsetPtr); |
| offset->setAlignment(CGF.PointerAlignInBytes); |
| |
| // Apply the offset. |
| ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy); |
| return CGF.Builder.CreateInBoundsGEP(ptr, offset); |
| } |
| |
| llvm::Value * |
| ItaniumCXXABI::GetVirtualBaseClassOffset(CodeGenFunction &CGF, |
| llvm::Value *This, |
| const CXXRecordDecl *ClassDecl, |
| const CXXRecordDecl *BaseClassDecl) { |
| llvm::Value *VTablePtr = CGF.GetVTablePtr(This, CGM.Int8PtrTy); |
| CharUnits VBaseOffsetOffset = |
| CGM.getVTableContext().getVirtualBaseOffsetOffset(ClassDecl, BaseClassDecl); |
| |
| llvm::Value *VBaseOffsetPtr = |
| CGF.Builder.CreateConstGEP1_64(VTablePtr, VBaseOffsetOffset.getQuantity(), |
| "vbase.offset.ptr"); |
| VBaseOffsetPtr = CGF.Builder.CreateBitCast(VBaseOffsetPtr, |
| CGM.PtrDiffTy->getPointerTo()); |
| |
| llvm::Value *VBaseOffset = |
| CGF.Builder.CreateLoad(VBaseOffsetPtr, "vbase.offset"); |
| |
| return VBaseOffset; |
| } |
| |
| /// The generic ABI passes 'this', plus a VTT if it's initializing a |
| /// base subobject. |
| void ItaniumCXXABI::BuildConstructorSignature(const CXXConstructorDecl *Ctor, |
| CXXCtorType Type, |
| CanQualType &ResTy, |
| SmallVectorImpl<CanQualType> &ArgTys) { |
| ASTContext &Context = getContext(); |
| |
| // 'this' parameter is already there, as well as 'this' return if |
| // HasThisReturn(GlobalDecl(Ctor, Type)) is true |
| |
| // Check if we need to add a VTT parameter (which has type void **). |
| if (Type == Ctor_Base && Ctor->getParent()->getNumVBases() != 0) |
| ArgTys.push_back(Context.getPointerType(Context.VoidPtrTy)); |
| } |
| |
| void ItaniumCXXABI::EmitCXXConstructors(const CXXConstructorDecl *D) { |
| // Just make sure we're in sync with TargetCXXABI. |
| assert(CGM.getTarget().getCXXABI().hasConstructorVariants()); |
| |
| // The constructor used for constructing this as a complete class; |
| // constucts the virtual bases, then calls the base constructor. |
| if (!D->getParent()->isAbstract()) { |
| // We don't need to emit the complete ctor if the class is abstract. |
| CGM.EmitGlobal(GlobalDecl(D, Ctor_Complete)); |
| } |
| |
| // The constructor used for constructing this as a base class; |
| // ignores virtual bases. |
| CGM.EmitGlobal(GlobalDecl(D, Ctor_Base)); |
| } |
| |
| /// The generic ABI passes 'this', plus a VTT if it's destroying a |
| /// base subobject. |
| void ItaniumCXXABI::BuildDestructorSignature(const CXXDestructorDecl *Dtor, |
| CXXDtorType Type, |
| CanQualType &ResTy, |
| SmallVectorImpl<CanQualType> &ArgTys) { |
| ASTContext &Context = getContext(); |
| |
| // 'this' parameter is already there, as well as 'this' return if |
| // HasThisReturn(GlobalDecl(Dtor, Type)) is true |
| |
| // Check if we need to add a VTT parameter (which has type void **). |
| if (Type == Dtor_Base && Dtor->getParent()->getNumVBases() != 0) |
| ArgTys.push_back(Context.getPointerType(Context.VoidPtrTy)); |
| } |
| |
| void ItaniumCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) { |
| // The destructor in a virtual table is always a 'deleting' |
| // destructor, which calls the complete destructor and then uses the |
| // appropriate operator delete. |
| if (D->isVirtual()) |
| CGM.EmitGlobal(GlobalDecl(D, Dtor_Deleting)); |
| |
| // The destructor used for destructing this as a most-derived class; |
| // call the base destructor and then destructs any virtual bases. |
| CGM.EmitGlobal(GlobalDecl(D, Dtor_Complete)); |
| |
| // The destructor used for destructing this as a base class; ignores |
| // virtual bases. |
| CGM.EmitGlobal(GlobalDecl(D, Dtor_Base)); |
| } |
| |
| void ItaniumCXXABI::BuildInstanceFunctionParams(CodeGenFunction &CGF, |
| QualType &ResTy, |
| FunctionArgList &Params) { |
| /// Create the 'this' variable. |
| BuildThisParam(CGF, Params); |
| |
| const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl()); |
| assert(MD->isInstance()); |
| |
| // Check if we need a VTT parameter as well. |
| if (NeedsVTTParameter(CGF.CurGD)) { |
| ASTContext &Context = getContext(); |
| |
| // FIXME: avoid the fake decl |
| QualType T = Context.getPointerType(Context.VoidPtrTy); |
| ImplicitParamDecl *VTTDecl |
| = ImplicitParamDecl::Create(Context, 0, MD->getLocation(), |
| &Context.Idents.get("vtt"), T); |
| Params.push_back(VTTDecl); |
| getVTTDecl(CGF) = VTTDecl; |
| } |
| } |
| |
| void ItaniumCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) { |
| /// Initialize the 'this' slot. |
| EmitThisParam(CGF); |
| |
| /// Initialize the 'vtt' slot if needed. |
| if (getVTTDecl(CGF)) { |
| getVTTValue(CGF) |
| = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(getVTTDecl(CGF)), |
| "vtt"); |
| } |
| |
| /// If this is a function that the ABI specifies returns 'this', initialize |
| /// the return slot to 'this' at the start of the function. |
| /// |
| /// Unlike the setting of return types, this is done within the ABI |
| /// implementation instead of by clients of CGCXXABI because: |
| /// 1) getThisValue is currently protected |
| /// 2) in theory, an ABI could implement 'this' returns some other way; |
| /// HasThisReturn only specifies a contract, not the implementation |
| if (HasThisReturn(CGF.CurGD)) |
| CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue); |
| } |
| |
| void ItaniumCXXABI::EmitConstructorCall(CodeGenFunction &CGF, |
| const CXXConstructorDecl *D, |
| CXXCtorType Type, |
| bool ForVirtualBase, bool Delegating, |
| llvm::Value *This, |
| CallExpr::const_arg_iterator ArgBeg, |
| CallExpr::const_arg_iterator ArgEnd) { |
| llvm::Value *VTT = CGF.GetVTTParameter(GlobalDecl(D, Type), ForVirtualBase, |
| Delegating); |
| QualType VTTTy = getContext().getPointerType(getContext().VoidPtrTy); |
| llvm::Value *Callee = CGM.GetAddrOfCXXConstructor(D, Type); |
| |
| // FIXME: Provide a source location here. |
| CGF.EmitCXXMemberCall(D, SourceLocation(), Callee, ReturnValueSlot(), |
| This, VTT, VTTTy, ArgBeg, ArgEnd); |
| } |
| |
| llvm::Value *ItaniumCXXABI::getVirtualFunctionPointer(CodeGenFunction &CGF, |
| GlobalDecl GD, |
| llvm::Value *This, |
| llvm::Type *Ty) { |
| GD = GD.getCanonicalDecl(); |
| Ty = Ty->getPointerTo()->getPointerTo(); |
| llvm::Value *VTable = CGF.GetVTablePtr(This, Ty); |
| |
| uint64_t VTableIndex = CGM.getVTableContext().getMethodVTableIndex(GD); |
| llvm::Value *VFuncPtr = |
| CGF.Builder.CreateConstInBoundsGEP1_64(VTable, VTableIndex, "vfn"); |
| return CGF.Builder.CreateLoad(VFuncPtr); |
| } |
| |
| void ItaniumCXXABI::EmitVirtualDestructorCall(CodeGenFunction &CGF, |
| const CXXDestructorDecl *Dtor, |
| CXXDtorType DtorType, |
| SourceLocation CallLoc, |
| llvm::Value *This) { |
| assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete); |
| |
| const CGFunctionInfo *FInfo |
| = &CGM.getTypes().arrangeCXXDestructor(Dtor, DtorType); |
| llvm::Type *Ty = CGF.CGM.getTypes().GetFunctionType(*FInfo); |
| llvm::Value *Callee = |
| getVirtualFunctionPointer(CGF, GlobalDecl(Dtor, DtorType), This, Ty); |
| |
| CGF.EmitCXXMemberCall(Dtor, CallLoc, Callee, ReturnValueSlot(), This, |
| /*ImplicitParam=*/0, QualType(), 0, 0); |
| } |
| |
| void ItaniumCXXABI::EmitVirtualInheritanceTables( |
| llvm::GlobalVariable::LinkageTypes Linkage, const CXXRecordDecl *RD) { |
| CodeGenVTables &VTables = CGM.getVTables(); |
| llvm::GlobalVariable *VTT = VTables.GetAddrOfVTT(RD); |
| VTables.EmitVTTDefinition(VTT, Linkage, RD); |
| } |
| |
| void ARMCXXABI::EmitReturnFromThunk(CodeGenFunction &CGF, |
| RValue RV, QualType ResultType) { |
| if (!isa<CXXDestructorDecl>(CGF.CurGD.getDecl())) |
| return ItaniumCXXABI::EmitReturnFromThunk(CGF, RV, ResultType); |
| |
| // Destructor thunks in the ARM ABI have indeterminate results. |
| llvm::Type *T = |
| cast<llvm::PointerType>(CGF.ReturnValue->getType())->getElementType(); |
| RValue Undef = RValue::get(llvm::UndefValue::get(T)); |
| return ItaniumCXXABI::EmitReturnFromThunk(CGF, Undef, ResultType); |
| } |
| |
| /************************** Array allocation cookies **************************/ |
| |
| CharUnits ItaniumCXXABI::getArrayCookieSizeImpl(QualType elementType) { |
| // The array cookie is a size_t; pad that up to the element alignment. |
| // The cookie is actually right-justified in that space. |
| return std::max(CharUnits::fromQuantity(CGM.SizeSizeInBytes), |
| CGM.getContext().getTypeAlignInChars(elementType)); |
| } |
| |
| llvm::Value *ItaniumCXXABI::InitializeArrayCookie(CodeGenFunction &CGF, |
| llvm::Value *NewPtr, |
| llvm::Value *NumElements, |
| const CXXNewExpr *expr, |
| QualType ElementType) { |
| assert(requiresArrayCookie(expr)); |
| |
| unsigned AS = NewPtr->getType()->getPointerAddressSpace(); |
| |
| ASTContext &Ctx = getContext(); |
| QualType SizeTy = Ctx.getSizeType(); |
| CharUnits SizeSize = Ctx.getTypeSizeInChars(SizeTy); |
| |
| // The size of the cookie. |
| CharUnits CookieSize = |
| std::max(SizeSize, Ctx.getTypeAlignInChars(ElementType)); |
| assert(CookieSize == getArrayCookieSizeImpl(ElementType)); |
| |
| // Compute an offset to the cookie. |
| llvm::Value *CookiePtr = NewPtr; |
| CharUnits CookieOffset = CookieSize - SizeSize; |
| if (!CookieOffset.isZero()) |
| CookiePtr = CGF.Builder.CreateConstInBoundsGEP1_64(CookiePtr, |
| CookieOffset.getQuantity()); |
| |
| // Write the number of elements into the appropriate slot. |
| llvm::Value *NumElementsPtr |
| = CGF.Builder.CreateBitCast(CookiePtr, |
| CGF.ConvertType(SizeTy)->getPointerTo(AS)); |
| CGF.Builder.CreateStore(NumElements, NumElementsPtr); |
| |
| // Finally, compute a pointer to the actual data buffer by skipping |
| // over the cookie completely. |
| return CGF.Builder.CreateConstInBoundsGEP1_64(NewPtr, |
| CookieSize.getQuantity()); |
| } |
| |
| llvm::Value *ItaniumCXXABI::readArrayCookieImpl(CodeGenFunction &CGF, |
| llvm::Value *allocPtr, |
| CharUnits cookieSize) { |
| // The element size is right-justified in the cookie. |
| llvm::Value *numElementsPtr = allocPtr; |
| CharUnits numElementsOffset = |
| cookieSize - CharUnits::fromQuantity(CGF.SizeSizeInBytes); |
| if (!numElementsOffset.isZero()) |
| numElementsPtr = |
| CGF.Builder.CreateConstInBoundsGEP1_64(numElementsPtr, |
| numElementsOffset.getQuantity()); |
| |
| unsigned AS = allocPtr->getType()->getPointerAddressSpace(); |
| numElementsPtr = |
| CGF.Builder.CreateBitCast(numElementsPtr, CGF.SizeTy->getPointerTo(AS)); |
| return CGF.Builder.CreateLoad(numElementsPtr); |
| } |
| |
| CharUnits ARMCXXABI::getArrayCookieSizeImpl(QualType elementType) { |
| // ARM says that the cookie is always: |
| // struct array_cookie { |
| // std::size_t element_size; // element_size != 0 |
| // std::size_t element_count; |
| // }; |
| // But the base ABI doesn't give anything an alignment greater than |
| // 8, so we can dismiss this as typical ABI-author blindness to |
| // actual language complexity and round up to the element alignment. |
| return std::max(CharUnits::fromQuantity(2 * CGM.SizeSizeInBytes), |
| CGM.getContext().getTypeAlignInChars(elementType)); |
| } |
| |
| llvm::Value *ARMCXXABI::InitializeArrayCookie(CodeGenFunction &CGF, |
| llvm::Value *newPtr, |
| llvm::Value *numElements, |
| const CXXNewExpr *expr, |
| QualType elementType) { |
| assert(requiresArrayCookie(expr)); |
| |
| // NewPtr is a char*, but we generalize to arbitrary addrspaces. |
| unsigned AS = newPtr->getType()->getPointerAddressSpace(); |
| |
| // The cookie is always at the start of the buffer. |
| llvm::Value *cookie = newPtr; |
| |
| // The first element is the element size. |
| cookie = CGF.Builder.CreateBitCast(cookie, CGF.SizeTy->getPointerTo(AS)); |
| llvm::Value *elementSize = llvm::ConstantInt::get(CGF.SizeTy, |
| getContext().getTypeSizeInChars(elementType).getQuantity()); |
| CGF.Builder.CreateStore(elementSize, cookie); |
| |
| // The second element is the element count. |
| cookie = CGF.Builder.CreateConstInBoundsGEP1_32(cookie, 1); |
| CGF.Builder.CreateStore(numElements, cookie); |
| |
| // Finally, compute a pointer to the actual data buffer by skipping |
| // over the cookie completely. |
| CharUnits cookieSize = ARMCXXABI::getArrayCookieSizeImpl(elementType); |
| return CGF.Builder.CreateConstInBoundsGEP1_64(newPtr, |
| cookieSize.getQuantity()); |
| } |
| |
| llvm::Value *ARMCXXABI::readArrayCookieImpl(CodeGenFunction &CGF, |
| llvm::Value *allocPtr, |
| CharUnits cookieSize) { |
| // The number of elements is at offset sizeof(size_t) relative to |
| // the allocated pointer. |
| llvm::Value *numElementsPtr |
| = CGF.Builder.CreateConstInBoundsGEP1_64(allocPtr, CGF.SizeSizeInBytes); |
| |
| unsigned AS = allocPtr->getType()->getPointerAddressSpace(); |
| numElementsPtr = |
| CGF.Builder.CreateBitCast(numElementsPtr, CGF.SizeTy->getPointerTo(AS)); |
| return CGF.Builder.CreateLoad(numElementsPtr); |
| } |
| |
| /*********************** Static local initialization **************************/ |
| |
| static llvm::Constant *getGuardAcquireFn(CodeGenModule &CGM, |
| llvm::PointerType *GuardPtrTy) { |
| // int __cxa_guard_acquire(__guard *guard_object); |
| llvm::FunctionType *FTy = |
| llvm::FunctionType::get(CGM.getTypes().ConvertType(CGM.getContext().IntTy), |
| GuardPtrTy, /*isVarArg=*/false); |
| return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_acquire", |
| llvm::AttributeSet::get(CGM.getLLVMContext(), |
| llvm::AttributeSet::FunctionIndex, |
| llvm::Attribute::NoUnwind)); |
| } |
| |
| static llvm::Constant *getGuardReleaseFn(CodeGenModule &CGM, |
| llvm::PointerType *GuardPtrTy) { |
| // void __cxa_guard_release(__guard *guard_object); |
| llvm::FunctionType *FTy = |
| llvm::FunctionType::get(CGM.VoidTy, GuardPtrTy, /*isVarArg=*/false); |
| return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_release", |
| llvm::AttributeSet::get(CGM.getLLVMContext(), |
| llvm::AttributeSet::FunctionIndex, |
| llvm::Attribute::NoUnwind)); |
| } |
| |
| static llvm::Constant *getGuardAbortFn(CodeGenModule &CGM, |
| llvm::PointerType *GuardPtrTy) { |
| // void __cxa_guard_abort(__guard *guard_object); |
| llvm::FunctionType *FTy = |
| llvm::FunctionType::get(CGM.VoidTy, GuardPtrTy, /*isVarArg=*/false); |
| return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_abort", |
| llvm::AttributeSet::get(CGM.getLLVMContext(), |
| llvm::AttributeSet::FunctionIndex, |
| llvm::Attribute::NoUnwind)); |
| } |
| |
| namespace { |
| struct CallGuardAbort : EHScopeStack::Cleanup { |
| llvm::GlobalVariable *Guard; |
| CallGuardAbort(llvm::GlobalVariable *Guard) : Guard(Guard) {} |
| |
| void Emit(CodeGenFunction &CGF, Flags flags) { |
| CGF.EmitNounwindRuntimeCall(getGuardAbortFn(CGF.CGM, Guard->getType()), |
| Guard); |
| } |
| }; |
| } |
| |
| /// The ARM code here follows the Itanium code closely enough that we |
| /// just special-case it at particular places. |
| void ItaniumCXXABI::EmitGuardedInit(CodeGenFunction &CGF, |
| const VarDecl &D, |
| llvm::GlobalVariable *var, |
| bool shouldPerformInit) { |
| CGBuilderTy &Builder = CGF.Builder; |
| |
| // We only need to use thread-safe statics for local non-TLS variables; |
| // global initialization is always single-threaded. |
| bool threadsafe = getContext().getLangOpts().ThreadsafeStatics && |
| D.isLocalVarDecl() && !D.getTLSKind(); |
| |
| // If we have a global variable with internal linkage and thread-safe statics |
| // are disabled, we can just let the guard variable be of type i8. |
| bool useInt8GuardVariable = !threadsafe && var->hasInternalLinkage(); |
| |
| llvm::IntegerType *guardTy; |
| if (useInt8GuardVariable) { |
| guardTy = CGF.Int8Ty; |
| } else { |
| // Guard variables are 64 bits in the generic ABI and size width on ARM |
| // (i.e. 32-bit on AArch32, 64-bit on AArch64). |
| guardTy = (UseARMGuardVarABI ? CGF.SizeTy : CGF.Int64Ty); |
| } |
| llvm::PointerType *guardPtrTy = guardTy->getPointerTo(); |
| |
| // Create the guard variable if we don't already have it (as we |
| // might if we're double-emitting this function body). |
| llvm::GlobalVariable *guard = CGM.getStaticLocalDeclGuardAddress(&D); |
| if (!guard) { |
| // Mangle the name for the guard. |
| SmallString<256> guardName; |
| { |
| llvm::raw_svector_ostream out(guardName); |
| getMangleContext().mangleStaticGuardVariable(&D, out); |
| out.flush(); |
| } |
| |
| // Create the guard variable with a zero-initializer. |
| // Just absorb linkage and visibility from the guarded variable. |
| guard = new llvm::GlobalVariable(CGM.getModule(), guardTy, |
| false, var->getLinkage(), |
| llvm::ConstantInt::get(guardTy, 0), |
| guardName.str()); |
| guard->setVisibility(var->getVisibility()); |
| // If the variable is thread-local, so is its guard variable. |
| guard->setThreadLocalMode(var->getThreadLocalMode()); |
| |
| CGM.setStaticLocalDeclGuardAddress(&D, guard); |
| } |
| |
| // Test whether the variable has completed initialization. |
| llvm::Value *isInitialized; |
| |
| // ARM C++ ABI 3.2.3.1: |
| // To support the potential use of initialization guard variables |
| // as semaphores that are the target of ARM SWP and LDREX/STREX |
| // synchronizing instructions we define a static initialization |
| // guard variable to be a 4-byte aligned, 4- byte word with the |
| // following inline access protocol. |
| // #define INITIALIZED 1 |
| // if ((obj_guard & INITIALIZED) != INITIALIZED) { |
| // if (__cxa_guard_acquire(&obj_guard)) |
| // ... |
| // } |
| if (UseARMGuardVarABI && !useInt8GuardVariable) { |
| llvm::Value *V = Builder.CreateLoad(guard); |
| llvm::Value *Test1 = llvm::ConstantInt::get(guardTy, 1); |
| V = Builder.CreateAnd(V, Test1); |
| isInitialized = Builder.CreateIsNull(V, "guard.uninitialized"); |
| |
| // Itanium C++ ABI 3.3.2: |
| // The following is pseudo-code showing how these functions can be used: |
| // if (obj_guard.first_byte == 0) { |
| // if ( __cxa_guard_acquire (&obj_guard) ) { |
| // try { |
| // ... initialize the object ...; |
| // } catch (...) { |
| // __cxa_guard_abort (&obj_guard); |
| // throw; |
| // } |
| // ... queue object destructor with __cxa_atexit() ...; |
| // __cxa_guard_release (&obj_guard); |
| // } |
| // } |
| } else { |
| // Load the first byte of the guard variable. |
| llvm::LoadInst *LI = |
| Builder.CreateLoad(Builder.CreateBitCast(guard, CGM.Int8PtrTy)); |
| LI->setAlignment(1); |
| |
| // Itanium ABI: |
| // An implementation supporting thread-safety on multiprocessor |
| // systems must also guarantee that references to the initialized |
| // object do not occur before the load of the initialization flag. |
| // |
| // In LLVM, we do this by marking the load Acquire. |
| if (threadsafe) |
| LI->setAtomic(llvm::Acquire); |
| |
| isInitialized = Builder.CreateIsNull(LI, "guard.uninitialized"); |
| } |
| |
| llvm::BasicBlock *InitCheckBlock = CGF.createBasicBlock("init.check"); |
| llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end"); |
| |
| // Check if the first byte of the guard variable is zero. |
| Builder.CreateCondBr(isInitialized, InitCheckBlock, EndBlock); |
| |
| CGF.EmitBlock(InitCheckBlock); |
| |
| // Variables used when coping with thread-safe statics and exceptions. |
| if (threadsafe) { |
| // Call __cxa_guard_acquire. |
| llvm::Value *V |
| = CGF.EmitNounwindRuntimeCall(getGuardAcquireFn(CGM, guardPtrTy), guard); |
| |
| llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init"); |
| |
| Builder.CreateCondBr(Builder.CreateIsNotNull(V, "tobool"), |
| InitBlock, EndBlock); |
| |
| // Call __cxa_guard_abort along the exceptional edge. |
| CGF.EHStack.pushCleanup<CallGuardAbort>(EHCleanup, guard); |
| |
| CGF.EmitBlock(InitBlock); |
| } |
| |
| // Emit the initializer and add a global destructor if appropriate. |
| CGF.EmitCXXGlobalVarDeclInit(D, var, shouldPerformInit); |
| |
| if (threadsafe) { |
| // Pop the guard-abort cleanup if we pushed one. |
| CGF.PopCleanupBlock(); |
| |
| // Call __cxa_guard_release. This cannot throw. |
| CGF.EmitNounwindRuntimeCall(getGuardReleaseFn(CGM, guardPtrTy), guard); |
| } else { |
| Builder.CreateStore(llvm::ConstantInt::get(guardTy, 1), guard); |
| } |
| |
| CGF.EmitBlock(EndBlock); |
| } |
| |
| /// Register a global destructor using __cxa_atexit. |
| static void emitGlobalDtorWithCXAAtExit(CodeGenFunction &CGF, |
| llvm::Constant *dtor, |
| llvm::Constant *addr, |
| bool TLS) { |
| const char *Name = "__cxa_atexit"; |
| if (TLS) { |
| const llvm::Triple &T = CGF.getTarget().getTriple(); |
| Name = T.isMacOSX() ? "_tlv_atexit" : "__cxa_thread_atexit"; |
| } |
| |
| // We're assuming that the destructor function is something we can |
| // reasonably call with the default CC. Go ahead and cast it to the |
| // right prototype. |
| llvm::Type *dtorTy = |
| llvm::FunctionType::get(CGF.VoidTy, CGF.Int8PtrTy, false)->getPointerTo(); |
| |
| // extern "C" int __cxa_atexit(void (*f)(void *), void *p, void *d); |
| llvm::Type *paramTys[] = { dtorTy, CGF.Int8PtrTy, CGF.Int8PtrTy }; |
| llvm::FunctionType *atexitTy = |
| llvm::FunctionType::get(CGF.IntTy, paramTys, false); |
| |
| // Fetch the actual function. |
| llvm::Constant *atexit = CGF.CGM.CreateRuntimeFunction(atexitTy, Name); |
| if (llvm::Function *fn = dyn_cast<llvm::Function>(atexit)) |
| fn->setDoesNotThrow(); |
| |
| // Create a variable that binds the atexit to this shared object. |
| llvm::Constant *handle = |
| CGF.CGM.CreateRuntimeVariable(CGF.Int8Ty, "__dso_handle"); |
| |
| llvm::Value *args[] = { |
| llvm::ConstantExpr::getBitCast(dtor, dtorTy), |
| llvm::ConstantExpr::getBitCast(addr, CGF.Int8PtrTy), |
| handle |
| }; |
| CGF.EmitNounwindRuntimeCall(atexit, args); |
| } |
| |
| /// Register a global destructor as best as we know how. |
| void ItaniumCXXABI::registerGlobalDtor(CodeGenFunction &CGF, |
| const VarDecl &D, |
| llvm::Constant *dtor, |
| llvm::Constant *addr) { |
| // Use __cxa_atexit if available. |
| if (CGM.getCodeGenOpts().CXAAtExit) |
| return emitGlobalDtorWithCXAAtExit(CGF, dtor, addr, D.getTLSKind()); |
| |
| if (D.getTLSKind()) |
| CGM.ErrorUnsupported(&D, "non-trivial TLS destruction"); |
| |
| // In Apple kexts, we want to add a global destructor entry. |
| // FIXME: shouldn't this be guarded by some variable? |
| if (CGM.getLangOpts().AppleKext) { |
| // Generate a global destructor entry. |
| return CGM.AddCXXDtorEntry(dtor, addr); |
| } |
| |
| CGF.registerGlobalDtorWithAtExit(D, dtor, addr); |
| } |
| |
| /// Get the appropriate linkage for the wrapper function. This is essentially |
| /// the weak form of the variable's linkage; every translation unit which wneeds |
| /// the wrapper emits a copy, and we want the linker to merge them. |
| static llvm::GlobalValue::LinkageTypes getThreadLocalWrapperLinkage( |
| llvm::GlobalValue::LinkageTypes VarLinkage) { |
| if (llvm::GlobalValue::isLinkerPrivateLinkage(VarLinkage)) |
| return llvm::GlobalValue::LinkerPrivateWeakLinkage; |
| // For internal linkage variables, we don't need an external or weak wrapper. |
| if (llvm::GlobalValue::isLocalLinkage(VarLinkage)) |
| return VarLinkage; |
| return llvm::GlobalValue::WeakODRLinkage; |
| } |
| |
| llvm::Function * |
| ItaniumCXXABI::getOrCreateThreadLocalWrapper(const VarDecl *VD, |
| llvm::GlobalVariable *Var) { |
| // Mangle the name for the thread_local wrapper function. |
| SmallString<256> WrapperName; |
| { |
| llvm::raw_svector_ostream Out(WrapperName); |
| getMangleContext().mangleItaniumThreadLocalWrapper(VD, Out); |
| Out.flush(); |
| } |
| |
| if (llvm::Value *V = Var->getParent()->getNamedValue(WrapperName)) |
| return cast<llvm::Function>(V); |
| |
| llvm::Type *RetTy = Var->getType(); |
| if (VD->getType()->isReferenceType()) |
| RetTy = RetTy->getPointerElementType(); |
| |
| llvm::FunctionType *FnTy = llvm::FunctionType::get(RetTy, false); |
| llvm::Function *Wrapper = llvm::Function::Create( |
| FnTy, getThreadLocalWrapperLinkage(Var->getLinkage()), WrapperName.str(), |
| &CGM.getModule()); |
| // Always resolve references to the wrapper at link time. |
| Wrapper->setVisibility(llvm::GlobalValue::HiddenVisibility); |
| return Wrapper; |
| } |
| |
| void ItaniumCXXABI::EmitThreadLocalInitFuncs( |
| llvm::ArrayRef<std::pair<const VarDecl *, llvm::GlobalVariable *> > Decls, |
| llvm::Function *InitFunc) { |
| for (unsigned I = 0, N = Decls.size(); I != N; ++I) { |
| const VarDecl *VD = Decls[I].first; |
| llvm::GlobalVariable *Var = Decls[I].second; |
| |
| // Mangle the name for the thread_local initialization function. |
| SmallString<256> InitFnName; |
| { |
| llvm::raw_svector_ostream Out(InitFnName); |
| getMangleContext().mangleItaniumThreadLocalInit(VD, Out); |
| Out.flush(); |
| } |
| |
| // If we have a definition for the variable, emit the initialization |
| // function as an alias to the global Init function (if any). Otherwise, |
| // produce a declaration of the initialization function. |
| llvm::GlobalValue *Init = 0; |
| bool InitIsInitFunc = false; |
| if (VD->hasDefinition()) { |
| InitIsInitFunc = true; |
| if (InitFunc) |
| Init = |
| new llvm::GlobalAlias(InitFunc->getType(), Var->getLinkage(), |
| InitFnName.str(), InitFunc, &CGM.getModule()); |
| } else { |
| // Emit a weak global function referring to the initialization function. |
| // This function will not exist if the TU defining the thread_local |
| // variable in question does not need any dynamic initialization for |
| // its thread_local variables. |
| llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, false); |
| Init = llvm::Function::Create( |
| FnTy, llvm::GlobalVariable::ExternalWeakLinkage, InitFnName.str(), |
| &CGM.getModule()); |
| } |
| |
| if (Init) |
| Init->setVisibility(Var->getVisibility()); |
| |
| llvm::Function *Wrapper = getOrCreateThreadLocalWrapper(VD, Var); |
| llvm::LLVMContext &Context = CGM.getModule().getContext(); |
| llvm::BasicBlock *Entry = llvm::BasicBlock::Create(Context, "", Wrapper); |
| CGBuilderTy Builder(Entry); |
| if (InitIsInitFunc) { |
| if (Init) |
| Builder.CreateCall(Init); |
| } else { |
| // Don't know whether we have an init function. Call it if it exists. |
| llvm::Value *Have = Builder.CreateIsNotNull(Init); |
| llvm::BasicBlock *InitBB = llvm::BasicBlock::Create(Context, "", Wrapper); |
| llvm::BasicBlock *ExitBB = llvm::BasicBlock::Create(Context, "", Wrapper); |
| Builder.CreateCondBr(Have, InitBB, ExitBB); |
| |
| Builder.SetInsertPoint(InitBB); |
| Builder.CreateCall(Init); |
| Builder.CreateBr(ExitBB); |
| |
| Builder.SetInsertPoint(ExitBB); |
| } |
| |
| // For a reference, the result of the wrapper function is a pointer to |
| // the referenced object. |
| llvm::Value *Val = Var; |
| if (VD->getType()->isReferenceType()) { |
| llvm::LoadInst *LI = Builder.CreateLoad(Val); |
| LI->setAlignment(CGM.getContext().getDeclAlign(VD).getQuantity()); |
| Val = LI; |
| } |
| |
| Builder.CreateRet(Val); |
| } |
| } |
| |
| LValue ItaniumCXXABI::EmitThreadLocalDeclRefExpr(CodeGenFunction &CGF, |
| const DeclRefExpr *DRE) { |
| const VarDecl *VD = cast<VarDecl>(DRE->getDecl()); |
| QualType T = VD->getType(); |
| llvm::Type *Ty = CGF.getTypes().ConvertTypeForMem(T); |
| llvm::Value *Val = CGF.CGM.GetAddrOfGlobalVar(VD, Ty); |
| llvm::Function *Wrapper = |
| getOrCreateThreadLocalWrapper(VD, cast<llvm::GlobalVariable>(Val)); |
| |
| Val = CGF.Builder.CreateCall(Wrapper); |
| |
| LValue LV; |
| if (VD->getType()->isReferenceType()) |
| LV = CGF.MakeNaturalAlignAddrLValue(Val, T); |
| else |
| LV = CGF.MakeAddrLValue(Val, DRE->getType(), |
| CGF.getContext().getDeclAlign(VD)); |
| // FIXME: need setObjCGCLValueClass? |
| return LV; |
| } |
| |
| /// Return whether the given global decl needs a VTT parameter, which it does |
| /// if it's a base constructor or destructor with virtual bases. |
| bool ItaniumCXXABI::NeedsVTTParameter(GlobalDecl GD) { |
| const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); |
| |
| // We don't have any virtual bases, just return early. |
| if (!MD->getParent()->getNumVBases()) |
| return false; |
| |
| // Check if we have a base constructor. |
| if (isa<CXXConstructorDecl>(MD) && GD.getCtorType() == Ctor_Base) |
| return true; |
| |
| // Check if we have a base destructor. |
| if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base) |
| return true; |
| |
| return false; |
| } |