| //===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | //  This file implements the ASTContext interface. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "clang/AST/ASTContext.h" | 
 | #include "CXXABI.h" | 
 | #include "clang/AST/ASTMutationListener.h" | 
 | #include "clang/AST/Attr.h" | 
 | #include "clang/AST/CharUnits.h" | 
 | #include "clang/AST/Comment.h" | 
 | #include "clang/AST/CommentCommandTraits.h" | 
 | #include "clang/AST/DeclCXX.h" | 
 | #include "clang/AST/DeclObjC.h" | 
 | #include "clang/AST/DeclTemplate.h" | 
 | #include "clang/AST/Expr.h" | 
 | #include "clang/AST/ExprCXX.h" | 
 | #include "clang/AST/ExternalASTSource.h" | 
 | #include "clang/AST/Mangle.h" | 
 | #include "clang/AST/MangleNumberingContext.h" | 
 | #include "clang/AST/RecordLayout.h" | 
 | #include "clang/AST/RecursiveASTVisitor.h" | 
 | #include "clang/AST/TypeLoc.h" | 
 | #include "clang/AST/VTableBuilder.h" | 
 | #include "clang/Basic/Builtins.h" | 
 | #include "clang/Basic/SourceManager.h" | 
 | #include "clang/Basic/TargetInfo.h" | 
 | #include "llvm/ADT/SmallString.h" | 
 | #include "llvm/ADT/StringExtras.h" | 
 | #include "llvm/ADT/Triple.h" | 
 | #include "llvm/Support/Capacity.h" | 
 | #include "llvm/Support/MathExtras.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include <map> | 
 |  | 
 | using namespace clang; | 
 |  | 
 | unsigned ASTContext::NumImplicitDefaultConstructors; | 
 | unsigned ASTContext::NumImplicitDefaultConstructorsDeclared; | 
 | unsigned ASTContext::NumImplicitCopyConstructors; | 
 | unsigned ASTContext::NumImplicitCopyConstructorsDeclared; | 
 | unsigned ASTContext::NumImplicitMoveConstructors; | 
 | unsigned ASTContext::NumImplicitMoveConstructorsDeclared; | 
 | unsigned ASTContext::NumImplicitCopyAssignmentOperators; | 
 | unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared; | 
 | unsigned ASTContext::NumImplicitMoveAssignmentOperators; | 
 | unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared; | 
 | unsigned ASTContext::NumImplicitDestructors; | 
 | unsigned ASTContext::NumImplicitDestructorsDeclared; | 
 |  | 
 | enum FloatingRank { | 
 |   HalfRank, FloatRank, DoubleRank, LongDoubleRank | 
 | }; | 
 |  | 
 | RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const { | 
 |   if (!CommentsLoaded && ExternalSource) { | 
 |     ExternalSource->ReadComments(); | 
 |  | 
 | #ifndef NDEBUG | 
 |     ArrayRef<RawComment *> RawComments = Comments.getComments(); | 
 |     assert(std::is_sorted(RawComments.begin(), RawComments.end(), | 
 |                           BeforeThanCompare<RawComment>(SourceMgr))); | 
 | #endif | 
 |  | 
 |     CommentsLoaded = true; | 
 |   } | 
 |  | 
 |   assert(D); | 
 |  | 
 |   // User can not attach documentation to implicit declarations. | 
 |   if (D->isImplicit()) | 
 |     return nullptr; | 
 |  | 
 |   // User can not attach documentation to implicit instantiations. | 
 |   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { | 
 |     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) | 
 |       return nullptr; | 
 |   } | 
 |  | 
 |   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { | 
 |     if (VD->isStaticDataMember() && | 
 |         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) | 
 |       return nullptr; | 
 |   } | 
 |  | 
 |   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) { | 
 |     if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) | 
 |       return nullptr; | 
 |   } | 
 |  | 
 |   if (const ClassTemplateSpecializationDecl *CTSD = | 
 |           dyn_cast<ClassTemplateSpecializationDecl>(D)) { | 
 |     TemplateSpecializationKind TSK = CTSD->getSpecializationKind(); | 
 |     if (TSK == TSK_ImplicitInstantiation || | 
 |         TSK == TSK_Undeclared) | 
 |       return nullptr; | 
 |   } | 
 |  | 
 |   if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) { | 
 |     if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) | 
 |       return nullptr; | 
 |   } | 
 |   if (const TagDecl *TD = dyn_cast<TagDecl>(D)) { | 
 |     // When tag declaration (but not definition!) is part of the | 
 |     // decl-specifier-seq of some other declaration, it doesn't get comment | 
 |     if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition()) | 
 |       return nullptr; | 
 |   } | 
 |   // TODO: handle comments for function parameters properly. | 
 |   if (isa<ParmVarDecl>(D)) | 
 |     return nullptr; | 
 |  | 
 |   // TODO: we could look up template parameter documentation in the template | 
 |   // documentation. | 
 |   if (isa<TemplateTypeParmDecl>(D) || | 
 |       isa<NonTypeTemplateParmDecl>(D) || | 
 |       isa<TemplateTemplateParmDecl>(D)) | 
 |     return nullptr; | 
 |  | 
 |   ArrayRef<RawComment *> RawComments = Comments.getComments(); | 
 |  | 
 |   // If there are no comments anywhere, we won't find anything. | 
 |   if (RawComments.empty()) | 
 |     return nullptr; | 
 |  | 
 |   // Find declaration location. | 
 |   // For Objective-C declarations we generally don't expect to have multiple | 
 |   // declarators, thus use declaration starting location as the "declaration | 
 |   // location". | 
 |   // For all other declarations multiple declarators are used quite frequently, | 
 |   // so we use the location of the identifier as the "declaration location". | 
 |   SourceLocation DeclLoc; | 
 |   if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) || | 
 |       isa<ObjCPropertyDecl>(D) || | 
 |       isa<RedeclarableTemplateDecl>(D) || | 
 |       isa<ClassTemplateSpecializationDecl>(D)) | 
 |     DeclLoc = D->getLocStart(); | 
 |   else { | 
 |     DeclLoc = D->getLocation(); | 
 |     if (DeclLoc.isMacroID()) { | 
 |       if (isa<TypedefDecl>(D)) { | 
 |         // If location of the typedef name is in a macro, it is because being | 
 |         // declared via a macro. Try using declaration's starting location as | 
 |         // the "declaration location". | 
 |         DeclLoc = D->getLocStart(); | 
 |       } else if (const TagDecl *TD = dyn_cast<TagDecl>(D)) { | 
 |         // If location of the tag decl is inside a macro, but the spelling of | 
 |         // the tag name comes from a macro argument, it looks like a special | 
 |         // macro like NS_ENUM is being used to define the tag decl.  In that | 
 |         // case, adjust the source location to the expansion loc so that we can | 
 |         // attach the comment to the tag decl. | 
 |         if (SourceMgr.isMacroArgExpansion(DeclLoc) && | 
 |             TD->isCompleteDefinition()) | 
 |           DeclLoc = SourceMgr.getExpansionLoc(DeclLoc); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // If the declaration doesn't map directly to a location in a file, we | 
 |   // can't find the comment. | 
 |   if (DeclLoc.isInvalid() || !DeclLoc.isFileID()) | 
 |     return nullptr; | 
 |  | 
 |   // Find the comment that occurs just after this declaration. | 
 |   ArrayRef<RawComment *>::iterator Comment; | 
 |   { | 
 |     // When searching for comments during parsing, the comment we are looking | 
 |     // for is usually among the last two comments we parsed -- check them | 
 |     // first. | 
 |     RawComment CommentAtDeclLoc( | 
 |         SourceMgr, SourceRange(DeclLoc), false, | 
 |         LangOpts.CommentOpts.ParseAllComments); | 
 |     BeforeThanCompare<RawComment> Compare(SourceMgr); | 
 |     ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1; | 
 |     bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc); | 
 |     if (!Found && RawComments.size() >= 2) { | 
 |       MaybeBeforeDecl--; | 
 |       Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc); | 
 |     } | 
 |  | 
 |     if (Found) { | 
 |       Comment = MaybeBeforeDecl + 1; | 
 |       assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(), | 
 |                                          &CommentAtDeclLoc, Compare)); | 
 |     } else { | 
 |       // Slow path. | 
 |       Comment = std::lower_bound(RawComments.begin(), RawComments.end(), | 
 |                                  &CommentAtDeclLoc, Compare); | 
 |     } | 
 |   } | 
 |  | 
 |   // Decompose the location for the declaration and find the beginning of the | 
 |   // file buffer. | 
 |   std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc); | 
 |  | 
 |   // First check whether we have a trailing comment. | 
 |   if (Comment != RawComments.end() && | 
 |       (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() && | 
 |       (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) || | 
 |        isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) { | 
 |     std::pair<FileID, unsigned> CommentBeginDecomp | 
 |       = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin()); | 
 |     // Check that Doxygen trailing comment comes after the declaration, starts | 
 |     // on the same line and in the same file as the declaration. | 
 |     if (DeclLocDecomp.first == CommentBeginDecomp.first && | 
 |         SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second) | 
 |           == SourceMgr.getLineNumber(CommentBeginDecomp.first, | 
 |                                      CommentBeginDecomp.second)) { | 
 |       return *Comment; | 
 |     } | 
 |   } | 
 |  | 
 |   // The comment just after the declaration was not a trailing comment. | 
 |   // Let's look at the previous comment. | 
 |   if (Comment == RawComments.begin()) | 
 |     return nullptr; | 
 |   --Comment; | 
 |  | 
 |   // Check that we actually have a non-member Doxygen comment. | 
 |   if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment()) | 
 |     return nullptr; | 
 |  | 
 |   // Decompose the end of the comment. | 
 |   std::pair<FileID, unsigned> CommentEndDecomp | 
 |     = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd()); | 
 |  | 
 |   // If the comment and the declaration aren't in the same file, then they | 
 |   // aren't related. | 
 |   if (DeclLocDecomp.first != CommentEndDecomp.first) | 
 |     return nullptr; | 
 |  | 
 |   // Get the corresponding buffer. | 
 |   bool Invalid = false; | 
 |   const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first, | 
 |                                                &Invalid).data(); | 
 |   if (Invalid) | 
 |     return nullptr; | 
 |  | 
 |   // Extract text between the comment and declaration. | 
 |   StringRef Text(Buffer + CommentEndDecomp.second, | 
 |                  DeclLocDecomp.second - CommentEndDecomp.second); | 
 |  | 
 |   // There should be no other declarations or preprocessor directives between | 
 |   // comment and declaration. | 
 |   if (Text.find_first_of(";{}#@") != StringRef::npos) | 
 |     return nullptr; | 
 |  | 
 |   return *Comment; | 
 | } | 
 |  | 
 | namespace { | 
 | /// If we have a 'templated' declaration for a template, adjust 'D' to | 
 | /// refer to the actual template. | 
 | /// If we have an implicit instantiation, adjust 'D' to refer to template. | 
 | const Decl *adjustDeclToTemplate(const Decl *D) { | 
 |   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { | 
 |     // Is this function declaration part of a function template? | 
 |     if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate()) | 
 |       return FTD; | 
 |  | 
 |     // Nothing to do if function is not an implicit instantiation. | 
 |     if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) | 
 |       return D; | 
 |  | 
 |     // Function is an implicit instantiation of a function template? | 
 |     if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate()) | 
 |       return FTD; | 
 |  | 
 |     // Function is instantiated from a member definition of a class template? | 
 |     if (const FunctionDecl *MemberDecl = | 
 |             FD->getInstantiatedFromMemberFunction()) | 
 |       return MemberDecl; | 
 |  | 
 |     return D; | 
 |   } | 
 |   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { | 
 |     // Static data member is instantiated from a member definition of a class | 
 |     // template? | 
 |     if (VD->isStaticDataMember()) | 
 |       if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember()) | 
 |         return MemberDecl; | 
 |  | 
 |     return D; | 
 |   } | 
 |   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) { | 
 |     // Is this class declaration part of a class template? | 
 |     if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate()) | 
 |       return CTD; | 
 |  | 
 |     // Class is an implicit instantiation of a class template or partial | 
 |     // specialization? | 
 |     if (const ClassTemplateSpecializationDecl *CTSD = | 
 |             dyn_cast<ClassTemplateSpecializationDecl>(CRD)) { | 
 |       if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation) | 
 |         return D; | 
 |       llvm::PointerUnion<ClassTemplateDecl *, | 
 |                          ClassTemplatePartialSpecializationDecl *> | 
 |           PU = CTSD->getSpecializedTemplateOrPartial(); | 
 |       return PU.is<ClassTemplateDecl*>() ? | 
 |           static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) : | 
 |           static_cast<const Decl*>( | 
 |               PU.get<ClassTemplatePartialSpecializationDecl *>()); | 
 |     } | 
 |  | 
 |     // Class is instantiated from a member definition of a class template? | 
 |     if (const MemberSpecializationInfo *Info = | 
 |                    CRD->getMemberSpecializationInfo()) | 
 |       return Info->getInstantiatedFrom(); | 
 |  | 
 |     return D; | 
 |   } | 
 |   if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) { | 
 |     // Enum is instantiated from a member definition of a class template? | 
 |     if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum()) | 
 |       return MemberDecl; | 
 |  | 
 |     return D; | 
 |   } | 
 |   // FIXME: Adjust alias templates? | 
 |   return D; | 
 | } | 
 | } // unnamed namespace | 
 |  | 
 | const RawComment *ASTContext::getRawCommentForAnyRedecl( | 
 |                                                 const Decl *D, | 
 |                                                 const Decl **OriginalDecl) const { | 
 |   D = adjustDeclToTemplate(D); | 
 |  | 
 |   // Check whether we have cached a comment for this declaration already. | 
 |   { | 
 |     llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos = | 
 |         RedeclComments.find(D); | 
 |     if (Pos != RedeclComments.end()) { | 
 |       const RawCommentAndCacheFlags &Raw = Pos->second; | 
 |       if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) { | 
 |         if (OriginalDecl) | 
 |           *OriginalDecl = Raw.getOriginalDecl(); | 
 |         return Raw.getRaw(); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Search for comments attached to declarations in the redeclaration chain. | 
 |   const RawComment *RC = nullptr; | 
 |   const Decl *OriginalDeclForRC = nullptr; | 
 |   for (auto I : D->redecls()) { | 
 |     llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos = | 
 |         RedeclComments.find(I); | 
 |     if (Pos != RedeclComments.end()) { | 
 |       const RawCommentAndCacheFlags &Raw = Pos->second; | 
 |       if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) { | 
 |         RC = Raw.getRaw(); | 
 |         OriginalDeclForRC = Raw.getOriginalDecl(); | 
 |         break; | 
 |       } | 
 |     } else { | 
 |       RC = getRawCommentForDeclNoCache(I); | 
 |       OriginalDeclForRC = I; | 
 |       RawCommentAndCacheFlags Raw; | 
 |       if (RC) { | 
 |         Raw.setRaw(RC); | 
 |         Raw.setKind(RawCommentAndCacheFlags::FromDecl); | 
 |       } else | 
 |         Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl); | 
 |       Raw.setOriginalDecl(I); | 
 |       RedeclComments[I] = Raw; | 
 |       if (RC) | 
 |         break; | 
 |     } | 
 |   } | 
 |  | 
 |   // If we found a comment, it should be a documentation comment. | 
 |   assert(!RC || RC->isDocumentation()); | 
 |  | 
 |   if (OriginalDecl) | 
 |     *OriginalDecl = OriginalDeclForRC; | 
 |  | 
 |   // Update cache for every declaration in the redeclaration chain. | 
 |   RawCommentAndCacheFlags Raw; | 
 |   Raw.setRaw(RC); | 
 |   Raw.setKind(RawCommentAndCacheFlags::FromRedecl); | 
 |   Raw.setOriginalDecl(OriginalDeclForRC); | 
 |  | 
 |   for (auto I : D->redecls()) { | 
 |     RawCommentAndCacheFlags &R = RedeclComments[I]; | 
 |     if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl) | 
 |       R = Raw; | 
 |   } | 
 |  | 
 |   return RC; | 
 | } | 
 |  | 
 | static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod, | 
 |                    SmallVectorImpl<const NamedDecl *> &Redeclared) { | 
 |   const DeclContext *DC = ObjCMethod->getDeclContext(); | 
 |   if (const ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(DC)) { | 
 |     const ObjCInterfaceDecl *ID = IMD->getClassInterface(); | 
 |     if (!ID) | 
 |       return; | 
 |     // Add redeclared method here. | 
 |     for (const auto *Ext : ID->known_extensions()) { | 
 |       if (ObjCMethodDecl *RedeclaredMethod = | 
 |             Ext->getMethod(ObjCMethod->getSelector(), | 
 |                                   ObjCMethod->isInstanceMethod())) | 
 |         Redeclared.push_back(RedeclaredMethod); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC, | 
 |                                                     const Decl *D) const { | 
 |   comments::DeclInfo *ThisDeclInfo = new (*this) comments::DeclInfo; | 
 |   ThisDeclInfo->CommentDecl = D; | 
 |   ThisDeclInfo->IsFilled = false; | 
 |   ThisDeclInfo->fill(); | 
 |   ThisDeclInfo->CommentDecl = FC->getDecl(); | 
 |   if (!ThisDeclInfo->TemplateParameters) | 
 |     ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters; | 
 |   comments::FullComment *CFC = | 
 |     new (*this) comments::FullComment(FC->getBlocks(), | 
 |                                       ThisDeclInfo); | 
 |   return CFC; | 
 |    | 
 | } | 
 |  | 
 | comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const { | 
 |   const RawComment *RC = getRawCommentForDeclNoCache(D); | 
 |   return RC ? RC->parse(*this, nullptr, D) : nullptr; | 
 | } | 
 |  | 
 | comments::FullComment *ASTContext::getCommentForDecl( | 
 |                                               const Decl *D, | 
 |                                               const Preprocessor *PP) const { | 
 |   if (D->isInvalidDecl()) | 
 |     return nullptr; | 
 |   D = adjustDeclToTemplate(D); | 
 |    | 
 |   const Decl *Canonical = D->getCanonicalDecl(); | 
 |   llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos = | 
 |       ParsedComments.find(Canonical); | 
 |    | 
 |   if (Pos != ParsedComments.end()) { | 
 |     if (Canonical != D) { | 
 |       comments::FullComment *FC = Pos->second; | 
 |       comments::FullComment *CFC = cloneFullComment(FC, D); | 
 |       return CFC; | 
 |     } | 
 |     return Pos->second; | 
 |   } | 
 |    | 
 |   const Decl *OriginalDecl; | 
 |    | 
 |   const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl); | 
 |   if (!RC) { | 
 |     if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) { | 
 |       SmallVector<const NamedDecl*, 8> Overridden; | 
 |       const ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(D); | 
 |       if (OMD && OMD->isPropertyAccessor()) | 
 |         if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl()) | 
 |           if (comments::FullComment *FC = getCommentForDecl(PDecl, PP)) | 
 |             return cloneFullComment(FC, D); | 
 |       if (OMD) | 
 |         addRedeclaredMethods(OMD, Overridden); | 
 |       getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden); | 
 |       for (unsigned i = 0, e = Overridden.size(); i < e; i++) | 
 |         if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP)) | 
 |           return cloneFullComment(FC, D); | 
 |     } | 
 |     else if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) { | 
 |       // Attach any tag type's documentation to its typedef if latter | 
 |       // does not have one of its own. | 
 |       QualType QT = TD->getUnderlyingType(); | 
 |       if (const TagType *TT = QT->getAs<TagType>()) | 
 |         if (const Decl *TD = TT->getDecl()) | 
 |           if (comments::FullComment *FC = getCommentForDecl(TD, PP)) | 
 |             return cloneFullComment(FC, D); | 
 |     } | 
 |     else if (const ObjCInterfaceDecl *IC = dyn_cast<ObjCInterfaceDecl>(D)) { | 
 |       while (IC->getSuperClass()) { | 
 |         IC = IC->getSuperClass(); | 
 |         if (comments::FullComment *FC = getCommentForDecl(IC, PP)) | 
 |           return cloneFullComment(FC, D); | 
 |       } | 
 |     } | 
 |     else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(D)) { | 
 |       if (const ObjCInterfaceDecl *IC = CD->getClassInterface()) | 
 |         if (comments::FullComment *FC = getCommentForDecl(IC, PP)) | 
 |           return cloneFullComment(FC, D); | 
 |     } | 
 |     else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) { | 
 |       if (!(RD = RD->getDefinition())) | 
 |         return nullptr; | 
 |       // Check non-virtual bases. | 
 |       for (const auto &I : RD->bases()) { | 
 |         if (I.isVirtual() || (I.getAccessSpecifier() != AS_public)) | 
 |           continue; | 
 |         QualType Ty = I.getType(); | 
 |         if (Ty.isNull()) | 
 |           continue; | 
 |         if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) { | 
 |           if (!(NonVirtualBase= NonVirtualBase->getDefinition())) | 
 |             continue; | 
 |          | 
 |           if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP)) | 
 |             return cloneFullComment(FC, D); | 
 |         } | 
 |       } | 
 |       // Check virtual bases. | 
 |       for (const auto &I : RD->vbases()) { | 
 |         if (I.getAccessSpecifier() != AS_public) | 
 |           continue; | 
 |         QualType Ty = I.getType(); | 
 |         if (Ty.isNull()) | 
 |           continue; | 
 |         if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) { | 
 |           if (!(VirtualBase= VirtualBase->getDefinition())) | 
 |             continue; | 
 |           if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP)) | 
 |             return cloneFullComment(FC, D); | 
 |         } | 
 |       } | 
 |     } | 
 |     return nullptr; | 
 |   } | 
 |    | 
 |   // If the RawComment was attached to other redeclaration of this Decl, we | 
 |   // should parse the comment in context of that other Decl.  This is important | 
 |   // because comments can contain references to parameter names which can be | 
 |   // different across redeclarations. | 
 |   if (D != OriginalDecl) | 
 |     return getCommentForDecl(OriginalDecl, PP); | 
 |  | 
 |   comments::FullComment *FC = RC->parse(*this, PP, D); | 
 |   ParsedComments[Canonical] = FC; | 
 |   return FC; | 
 | } | 
 |  | 
 | void  | 
 | ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,  | 
 |                                                TemplateTemplateParmDecl *Parm) { | 
 |   ID.AddInteger(Parm->getDepth()); | 
 |   ID.AddInteger(Parm->getPosition()); | 
 |   ID.AddBoolean(Parm->isParameterPack()); | 
 |  | 
 |   TemplateParameterList *Params = Parm->getTemplateParameters(); | 
 |   ID.AddInteger(Params->size()); | 
 |   for (TemplateParameterList::const_iterator P = Params->begin(),  | 
 |                                           PEnd = Params->end(); | 
 |        P != PEnd; ++P) { | 
 |     if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) { | 
 |       ID.AddInteger(0); | 
 |       ID.AddBoolean(TTP->isParameterPack()); | 
 |       continue; | 
 |     } | 
 |      | 
 |     if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) { | 
 |       ID.AddInteger(1); | 
 |       ID.AddBoolean(NTTP->isParameterPack()); | 
 |       ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr()); | 
 |       if (NTTP->isExpandedParameterPack()) { | 
 |         ID.AddBoolean(true); | 
 |         ID.AddInteger(NTTP->getNumExpansionTypes()); | 
 |         for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) { | 
 |           QualType T = NTTP->getExpansionType(I); | 
 |           ID.AddPointer(T.getCanonicalType().getAsOpaquePtr()); | 
 |         } | 
 |       } else  | 
 |         ID.AddBoolean(false); | 
 |       continue; | 
 |     } | 
 |      | 
 |     TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P); | 
 |     ID.AddInteger(2); | 
 |     Profile(ID, TTP); | 
 |   } | 
 | } | 
 |  | 
 | TemplateTemplateParmDecl * | 
 | ASTContext::getCanonicalTemplateTemplateParmDecl( | 
 |                                           TemplateTemplateParmDecl *TTP) const { | 
 |   // Check if we already have a canonical template template parameter. | 
 |   llvm::FoldingSetNodeID ID; | 
 |   CanonicalTemplateTemplateParm::Profile(ID, TTP); | 
 |   void *InsertPos = nullptr; | 
 |   CanonicalTemplateTemplateParm *Canonical | 
 |     = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos); | 
 |   if (Canonical) | 
 |     return Canonical->getParam(); | 
 |    | 
 |   // Build a canonical template parameter list. | 
 |   TemplateParameterList *Params = TTP->getTemplateParameters(); | 
 |   SmallVector<NamedDecl *, 4> CanonParams; | 
 |   CanonParams.reserve(Params->size()); | 
 |   for (TemplateParameterList::const_iterator P = Params->begin(),  | 
 |                                           PEnd = Params->end(); | 
 |        P != PEnd; ++P) { | 
 |     if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) | 
 |       CanonParams.push_back( | 
 |                   TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),  | 
 |                                                SourceLocation(), | 
 |                                                SourceLocation(), | 
 |                                                TTP->getDepth(), | 
 |                                                TTP->getIndex(), nullptr, false, | 
 |                                                TTP->isParameterPack())); | 
 |     else if (NonTypeTemplateParmDecl *NTTP | 
 |              = dyn_cast<NonTypeTemplateParmDecl>(*P)) { | 
 |       QualType T = getCanonicalType(NTTP->getType()); | 
 |       TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T); | 
 |       NonTypeTemplateParmDecl *Param; | 
 |       if (NTTP->isExpandedParameterPack()) { | 
 |         SmallVector<QualType, 2> ExpandedTypes; | 
 |         SmallVector<TypeSourceInfo *, 2> ExpandedTInfos; | 
 |         for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) { | 
 |           ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I))); | 
 |           ExpandedTInfos.push_back( | 
 |                                 getTrivialTypeSourceInfo(ExpandedTypes.back())); | 
 |         } | 
 |          | 
 |         Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(), | 
 |                                                 SourceLocation(), | 
 |                                                 SourceLocation(), | 
 |                                                 NTTP->getDepth(), | 
 |                                                 NTTP->getPosition(), nullptr, | 
 |                                                 T, | 
 |                                                 TInfo, | 
 |                                                 ExpandedTypes.data(), | 
 |                                                 ExpandedTypes.size(), | 
 |                                                 ExpandedTInfos.data()); | 
 |       } else { | 
 |         Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(), | 
 |                                                 SourceLocation(), | 
 |                                                 SourceLocation(), | 
 |                                                 NTTP->getDepth(), | 
 |                                                 NTTP->getPosition(), nullptr, | 
 |                                                 T, | 
 |                                                 NTTP->isParameterPack(), | 
 |                                                 TInfo); | 
 |       } | 
 |       CanonParams.push_back(Param); | 
 |  | 
 |     } else | 
 |       CanonParams.push_back(getCanonicalTemplateTemplateParmDecl( | 
 |                                            cast<TemplateTemplateParmDecl>(*P))); | 
 |   } | 
 |  | 
 |   TemplateTemplateParmDecl *CanonTTP | 
 |     = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),  | 
 |                                        SourceLocation(), TTP->getDepth(), | 
 |                                        TTP->getPosition(),  | 
 |                                        TTP->isParameterPack(), | 
 |                                        nullptr, | 
 |                          TemplateParameterList::Create(*this, SourceLocation(), | 
 |                                                        SourceLocation(), | 
 |                                                        CanonParams.data(), | 
 |                                                        CanonParams.size(), | 
 |                                                        SourceLocation())); | 
 |  | 
 |   // Get the new insert position for the node we care about. | 
 |   Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos); | 
 |   assert(!Canonical && "Shouldn't be in the map!"); | 
 |   (void)Canonical; | 
 |  | 
 |   // Create the canonical template template parameter entry. | 
 |   Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP); | 
 |   CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos); | 
 |   return CanonTTP; | 
 | } | 
 |  | 
 | CXXABI *ASTContext::createCXXABI(const TargetInfo &T) { | 
 |   if (!LangOpts.CPlusPlus) return nullptr; | 
 |  | 
 |   switch (T.getCXXABI().getKind()) { | 
 |   case TargetCXXABI::GenericARM: // Same as Itanium at this level | 
 |   case TargetCXXABI::iOS: | 
 |   case TargetCXXABI::iOS64: | 
 |   case TargetCXXABI::GenericAArch64: | 
 |   case TargetCXXABI::GenericItanium: | 
 |     return CreateItaniumCXXABI(*this); | 
 |   case TargetCXXABI::Microsoft: | 
 |     return CreateMicrosoftCXXABI(*this); | 
 |   } | 
 |   llvm_unreachable("Invalid CXXABI type!"); | 
 | } | 
 |  | 
 | static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T, | 
 |                                              const LangOptions &LOpts) { | 
 |   if (LOpts.FakeAddressSpaceMap) { | 
 |     // The fake address space map must have a distinct entry for each | 
 |     // language-specific address space. | 
 |     static const unsigned FakeAddrSpaceMap[] = { | 
 |       1, // opencl_global | 
 |       2, // opencl_local | 
 |       3, // opencl_constant | 
 |       4, // cuda_device | 
 |       5, // cuda_constant | 
 |       6  // cuda_shared | 
 |     }; | 
 |     return &FakeAddrSpaceMap; | 
 |   } else { | 
 |     return &T.getAddressSpaceMap(); | 
 |   } | 
 | } | 
 |  | 
 | static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI, | 
 |                                           const LangOptions &LangOpts) { | 
 |   switch (LangOpts.getAddressSpaceMapMangling()) { | 
 |   case LangOptions::ASMM_Target: | 
 |     return TI.useAddressSpaceMapMangling(); | 
 |   case LangOptions::ASMM_On: | 
 |     return true; | 
 |   case LangOptions::ASMM_Off: | 
 |     return false; | 
 |   } | 
 |   llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything."); | 
 | } | 
 |  | 
 | ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM, | 
 |                        IdentifierTable &idents, SelectorTable &sels, | 
 |                        Builtin::Context &builtins) | 
 |   : FunctionProtoTypes(this_()), | 
 |     TemplateSpecializationTypes(this_()), | 
 |     DependentTemplateSpecializationTypes(this_()), | 
 |     SubstTemplateTemplateParmPacks(this_()), | 
 |     GlobalNestedNameSpecifier(nullptr), | 
 |     Int128Decl(nullptr), UInt128Decl(nullptr), Float128StubDecl(nullptr), | 
 |     BuiltinVaListDecl(nullptr), | 
 |     ObjCIdDecl(nullptr), ObjCSelDecl(nullptr), ObjCClassDecl(nullptr), | 
 |     ObjCProtocolClassDecl(nullptr), BOOLDecl(nullptr), | 
 |     CFConstantStringTypeDecl(nullptr), ObjCInstanceTypeDecl(nullptr), | 
 |     FILEDecl(nullptr), | 
 |     jmp_bufDecl(nullptr), sigjmp_bufDecl(nullptr), ucontext_tDecl(nullptr), | 
 |     BlockDescriptorType(nullptr), BlockDescriptorExtendedType(nullptr), | 
 |     cudaConfigureCallDecl(nullptr), | 
 |     NullTypeSourceInfo(QualType()),  | 
 |     FirstLocalImport(), LastLocalImport(), | 
 |     SourceMgr(SM), LangOpts(LOpts),  | 
 |     AddrSpaceMap(nullptr), Target(nullptr), PrintingPolicy(LOpts), | 
 |     Idents(idents), Selectors(sels), | 
 |     BuiltinInfo(builtins), | 
 |     DeclarationNames(*this), | 
 |     ExternalSource(nullptr), Listener(nullptr), | 
 |     Comments(SM), CommentsLoaded(false), | 
 |     CommentCommandTraits(BumpAlloc, LOpts.CommentOpts), | 
 |     LastSDM(nullptr, 0) | 
 | { | 
 |   TUDecl = TranslationUnitDecl::Create(*this); | 
 | } | 
 |  | 
 | ASTContext::~ASTContext() { | 
 |   ReleaseParentMapEntries(); | 
 |  | 
 |   // Release the DenseMaps associated with DeclContext objects. | 
 |   // FIXME: Is this the ideal solution? | 
 |   ReleaseDeclContextMaps(); | 
 |  | 
 |   // Call all of the deallocation functions on all of their targets. | 
 |   for (DeallocationMap::const_iterator I = Deallocations.begin(), | 
 |            E = Deallocations.end(); I != E; ++I) | 
 |     for (unsigned J = 0, N = I->second.size(); J != N; ++J) | 
 |       (I->first)((I->second)[J]); | 
 |  | 
 |   // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed | 
 |   // because they can contain DenseMaps. | 
 |   for (llvm::DenseMap<const ObjCContainerDecl*, | 
 |        const ASTRecordLayout*>::iterator | 
 |        I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; ) | 
 |     // Increment in loop to prevent using deallocated memory. | 
 |     if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second)) | 
 |       R->Destroy(*this); | 
 |  | 
 |   for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator | 
 |        I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) { | 
 |     // Increment in loop to prevent using deallocated memory. | 
 |     if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second)) | 
 |       R->Destroy(*this); | 
 |   } | 
 |    | 
 |   for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(), | 
 |                                                     AEnd = DeclAttrs.end(); | 
 |        A != AEnd; ++A) | 
 |     A->second->~AttrVec(); | 
 |  | 
 |   llvm::DeleteContainerSeconds(MangleNumberingContexts); | 
 | } | 
 |  | 
 | void ASTContext::ReleaseParentMapEntries() { | 
 |   if (!AllParents) return; | 
 |   for (const auto &Entry : *AllParents) { | 
 |     if (Entry.second.is<ast_type_traits::DynTypedNode *>()) { | 
 |       delete Entry.second.get<ast_type_traits::DynTypedNode *>(); | 
 |     } else { | 
 |       assert(Entry.second.is<ParentVector *>()); | 
 |       delete Entry.second.get<ParentVector *>(); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) { | 
 |   Deallocations[Callback].push_back(Data); | 
 | } | 
 |  | 
 | void | 
 | ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) { | 
 |   ExternalSource = Source; | 
 | } | 
 |  | 
 | void ASTContext::PrintStats() const { | 
 |   llvm::errs() << "\n*** AST Context Stats:\n"; | 
 |   llvm::errs() << "  " << Types.size() << " types total.\n"; | 
 |  | 
 |   unsigned counts[] = { | 
 | #define TYPE(Name, Parent) 0, | 
 | #define ABSTRACT_TYPE(Name, Parent) | 
 | #include "clang/AST/TypeNodes.def" | 
 |     0 // Extra | 
 |   }; | 
 |  | 
 |   for (unsigned i = 0, e = Types.size(); i != e; ++i) { | 
 |     Type *T = Types[i]; | 
 |     counts[(unsigned)T->getTypeClass()]++; | 
 |   } | 
 |  | 
 |   unsigned Idx = 0; | 
 |   unsigned TotalBytes = 0; | 
 | #define TYPE(Name, Parent)                                              \ | 
 |   if (counts[Idx])                                                      \ | 
 |     llvm::errs() << "    " << counts[Idx] << " " << #Name               \ | 
 |                  << " types\n";                                         \ | 
 |   TotalBytes += counts[Idx] * sizeof(Name##Type);                       \ | 
 |   ++Idx; | 
 | #define ABSTRACT_TYPE(Name, Parent) | 
 | #include "clang/AST/TypeNodes.def" | 
 |  | 
 |   llvm::errs() << "Total bytes = " << TotalBytes << "\n"; | 
 |  | 
 |   // Implicit special member functions. | 
 |   llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/" | 
 |                << NumImplicitDefaultConstructors | 
 |                << " implicit default constructors created\n"; | 
 |   llvm::errs() << NumImplicitCopyConstructorsDeclared << "/" | 
 |                << NumImplicitCopyConstructors | 
 |                << " implicit copy constructors created\n"; | 
 |   if (getLangOpts().CPlusPlus) | 
 |     llvm::errs() << NumImplicitMoveConstructorsDeclared << "/" | 
 |                  << NumImplicitMoveConstructors | 
 |                  << " implicit move constructors created\n"; | 
 |   llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/" | 
 |                << NumImplicitCopyAssignmentOperators | 
 |                << " implicit copy assignment operators created\n"; | 
 |   if (getLangOpts().CPlusPlus) | 
 |     llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/" | 
 |                  << NumImplicitMoveAssignmentOperators | 
 |                  << " implicit move assignment operators created\n"; | 
 |   llvm::errs() << NumImplicitDestructorsDeclared << "/" | 
 |                << NumImplicitDestructors | 
 |                << " implicit destructors created\n"; | 
 |  | 
 |   if (ExternalSource) { | 
 |     llvm::errs() << "\n"; | 
 |     ExternalSource->PrintStats(); | 
 |   } | 
 |  | 
 |   BumpAlloc.PrintStats(); | 
 | } | 
 |  | 
 | RecordDecl *ASTContext::buildImplicitRecord(StringRef Name, | 
 |                                             RecordDecl::TagKind TK) const { | 
 |   SourceLocation Loc; | 
 |   RecordDecl *NewDecl; | 
 |   if (getLangOpts().CPlusPlus) | 
 |     NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, | 
 |                                     Loc, &Idents.get(Name)); | 
 |   else | 
 |     NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc, | 
 |                                  &Idents.get(Name)); | 
 |   NewDecl->setImplicit(); | 
 |   return NewDecl; | 
 | } | 
 |  | 
 | TypedefDecl *ASTContext::buildImplicitTypedef(QualType T, | 
 |                                               StringRef Name) const { | 
 |   TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T); | 
 |   TypedefDecl *NewDecl = TypedefDecl::Create( | 
 |       const_cast<ASTContext &>(*this), getTranslationUnitDecl(), | 
 |       SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo); | 
 |   NewDecl->setImplicit(); | 
 |   return NewDecl; | 
 | } | 
 |  | 
 | TypedefDecl *ASTContext::getInt128Decl() const { | 
 |   if (!Int128Decl) | 
 |     Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t"); | 
 |   return Int128Decl; | 
 | } | 
 |  | 
 | TypedefDecl *ASTContext::getUInt128Decl() const { | 
 |   if (!UInt128Decl) | 
 |     UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t"); | 
 |   return UInt128Decl; | 
 | } | 
 |  | 
 | TypeDecl *ASTContext::getFloat128StubType() const { | 
 |   assert(LangOpts.CPlusPlus && "should only be called for c++"); | 
 |   if (!Float128StubDecl) | 
 |     Float128StubDecl = buildImplicitRecord("__float128"); | 
 |  | 
 |   return Float128StubDecl; | 
 | } | 
 |  | 
 | void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) { | 
 |   BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K); | 
 |   R = CanQualType::CreateUnsafe(QualType(Ty, 0)); | 
 |   Types.push_back(Ty); | 
 | } | 
 |  | 
 | void ASTContext::InitBuiltinTypes(const TargetInfo &Target) { | 
 |   assert((!this->Target || this->Target == &Target) && | 
 |          "Incorrect target reinitialization"); | 
 |   assert(VoidTy.isNull() && "Context reinitialized?"); | 
 |  | 
 |   this->Target = &Target; | 
 |    | 
 |   ABI.reset(createCXXABI(Target)); | 
 |   AddrSpaceMap = getAddressSpaceMap(Target, LangOpts); | 
 |   AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts); | 
 |    | 
 |   // C99 6.2.5p19. | 
 |   InitBuiltinType(VoidTy,              BuiltinType::Void); | 
 |  | 
 |   // C99 6.2.5p2. | 
 |   InitBuiltinType(BoolTy,              BuiltinType::Bool); | 
 |   // C99 6.2.5p3. | 
 |   if (LangOpts.CharIsSigned) | 
 |     InitBuiltinType(CharTy,            BuiltinType::Char_S); | 
 |   else | 
 |     InitBuiltinType(CharTy,            BuiltinType::Char_U); | 
 |   // C99 6.2.5p4. | 
 |   InitBuiltinType(SignedCharTy,        BuiltinType::SChar); | 
 |   InitBuiltinType(ShortTy,             BuiltinType::Short); | 
 |   InitBuiltinType(IntTy,               BuiltinType::Int); | 
 |   InitBuiltinType(LongTy,              BuiltinType::Long); | 
 |   InitBuiltinType(LongLongTy,          BuiltinType::LongLong); | 
 |  | 
 |   // C99 6.2.5p6. | 
 |   InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar); | 
 |   InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort); | 
 |   InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt); | 
 |   InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong); | 
 |   InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong); | 
 |  | 
 |   // C99 6.2.5p10. | 
 |   InitBuiltinType(FloatTy,             BuiltinType::Float); | 
 |   InitBuiltinType(DoubleTy,            BuiltinType::Double); | 
 |   InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble); | 
 |  | 
 |   // GNU extension, 128-bit integers. | 
 |   InitBuiltinType(Int128Ty,            BuiltinType::Int128); | 
 |   InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128); | 
 |  | 
 |   // C++ 3.9.1p5 | 
 |   if (TargetInfo::isTypeSigned(Target.getWCharType())) | 
 |     InitBuiltinType(WCharTy,           BuiltinType::WChar_S); | 
 |   else  // -fshort-wchar makes wchar_t be unsigned. | 
 |     InitBuiltinType(WCharTy,           BuiltinType::WChar_U); | 
 |   if (LangOpts.CPlusPlus && LangOpts.WChar) | 
 |     WideCharTy = WCharTy; | 
 |   else { | 
 |     // C99 (or C++ using -fno-wchar). | 
 |     WideCharTy = getFromTargetType(Target.getWCharType()); | 
 |   } | 
 |  | 
 |   WIntTy = getFromTargetType(Target.getWIntType()); | 
 |  | 
 |   if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++ | 
 |     InitBuiltinType(Char16Ty,           BuiltinType::Char16); | 
 |   else // C99 | 
 |     Char16Ty = getFromTargetType(Target.getChar16Type()); | 
 |  | 
 |   if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++ | 
 |     InitBuiltinType(Char32Ty,           BuiltinType::Char32); | 
 |   else // C99 | 
 |     Char32Ty = getFromTargetType(Target.getChar32Type()); | 
 |  | 
 |   // Placeholder type for type-dependent expressions whose type is | 
 |   // completely unknown. No code should ever check a type against | 
 |   // DependentTy and users should never see it; however, it is here to | 
 |   // help diagnose failures to properly check for type-dependent | 
 |   // expressions. | 
 |   InitBuiltinType(DependentTy,         BuiltinType::Dependent); | 
 |  | 
 |   // Placeholder type for functions. | 
 |   InitBuiltinType(OverloadTy,          BuiltinType::Overload); | 
 |  | 
 |   // Placeholder type for bound members. | 
 |   InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember); | 
 |  | 
 |   // Placeholder type for pseudo-objects. | 
 |   InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject); | 
 |  | 
 |   // "any" type; useful for debugger-like clients. | 
 |   InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny); | 
 |  | 
 |   // Placeholder type for unbridged ARC casts. | 
 |   InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast); | 
 |  | 
 |   // Placeholder type for builtin functions. | 
 |   InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn); | 
 |  | 
 |   // C99 6.2.5p11. | 
 |   FloatComplexTy      = getComplexType(FloatTy); | 
 |   DoubleComplexTy     = getComplexType(DoubleTy); | 
 |   LongDoubleComplexTy = getComplexType(LongDoubleTy); | 
 |  | 
 |   // Builtin types for 'id', 'Class', and 'SEL'. | 
 |   InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId); | 
 |   InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass); | 
 |   InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel); | 
 |  | 
 |   if (LangOpts.OpenCL) {  | 
 |     InitBuiltinType(OCLImage1dTy, BuiltinType::OCLImage1d); | 
 |     InitBuiltinType(OCLImage1dArrayTy, BuiltinType::OCLImage1dArray); | 
 |     InitBuiltinType(OCLImage1dBufferTy, BuiltinType::OCLImage1dBuffer); | 
 |     InitBuiltinType(OCLImage2dTy, BuiltinType::OCLImage2d); | 
 |     InitBuiltinType(OCLImage2dArrayTy, BuiltinType::OCLImage2dArray); | 
 |     InitBuiltinType(OCLImage3dTy, BuiltinType::OCLImage3d); | 
 |  | 
 |     InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler); | 
 |     InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent); | 
 |   } | 
 |    | 
 |   // Builtin type for __objc_yes and __objc_no | 
 |   ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ? | 
 |                        SignedCharTy : BoolTy); | 
 |    | 
 |   ObjCConstantStringType = QualType(); | 
 |    | 
 |   ObjCSuperType = QualType(); | 
 |  | 
 |   // void * type | 
 |   VoidPtrTy = getPointerType(VoidTy); | 
 |  | 
 |   // nullptr type (C++0x 2.14.7) | 
 |   InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr); | 
 |  | 
 |   // half type (OpenCL 6.1.1.1) / ARM NEON __fp16 | 
 |   InitBuiltinType(HalfTy, BuiltinType::Half); | 
 |  | 
 |   // Builtin type used to help define __builtin_va_list. | 
 |   VaListTagTy = QualType(); | 
 | } | 
 |  | 
 | DiagnosticsEngine &ASTContext::getDiagnostics() const { | 
 |   return SourceMgr.getDiagnostics(); | 
 | } | 
 |  | 
 | AttrVec& ASTContext::getDeclAttrs(const Decl *D) { | 
 |   AttrVec *&Result = DeclAttrs[D]; | 
 |   if (!Result) { | 
 |     void *Mem = Allocate(sizeof(AttrVec)); | 
 |     Result = new (Mem) AttrVec; | 
 |   } | 
 |      | 
 |   return *Result; | 
 | } | 
 |  | 
 | /// \brief Erase the attributes corresponding to the given declaration. | 
 | void ASTContext::eraseDeclAttrs(const Decl *D) {  | 
 |   llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D); | 
 |   if (Pos != DeclAttrs.end()) { | 
 |     Pos->second->~AttrVec(); | 
 |     DeclAttrs.erase(Pos); | 
 |   } | 
 | } | 
 |  | 
 | // FIXME: Remove ? | 
 | MemberSpecializationInfo * | 
 | ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) { | 
 |   assert(Var->isStaticDataMember() && "Not a static data member"); | 
 |   return getTemplateOrSpecializationInfo(Var) | 
 |       .dyn_cast<MemberSpecializationInfo *>(); | 
 | } | 
 |  | 
 | ASTContext::TemplateOrSpecializationInfo | 
 | ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) { | 
 |   llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos = | 
 |       TemplateOrInstantiation.find(Var); | 
 |   if (Pos == TemplateOrInstantiation.end()) | 
 |     return TemplateOrSpecializationInfo(); | 
 |  | 
 |   return Pos->second; | 
 | } | 
 |  | 
 | void | 
 | ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl, | 
 |                                                 TemplateSpecializationKind TSK, | 
 |                                           SourceLocation PointOfInstantiation) { | 
 |   assert(Inst->isStaticDataMember() && "Not a static data member"); | 
 |   assert(Tmpl->isStaticDataMember() && "Not a static data member"); | 
 |   setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo( | 
 |                                             Tmpl, TSK, PointOfInstantiation)); | 
 | } | 
 |  | 
 | void | 
 | ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst, | 
 |                                             TemplateOrSpecializationInfo TSI) { | 
 |   assert(!TemplateOrInstantiation[Inst] && | 
 |          "Already noted what the variable was instantiated from"); | 
 |   TemplateOrInstantiation[Inst] = TSI; | 
 | } | 
 |  | 
 | FunctionDecl *ASTContext::getClassScopeSpecializationPattern( | 
 |                                                      const FunctionDecl *FD){ | 
 |   assert(FD && "Specialization is 0"); | 
 |   llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos | 
 |     = ClassScopeSpecializationPattern.find(FD); | 
 |   if (Pos == ClassScopeSpecializationPattern.end()) | 
 |     return nullptr; | 
 |  | 
 |   return Pos->second; | 
 | } | 
 |  | 
 | void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD, | 
 |                                         FunctionDecl *Pattern) { | 
 |   assert(FD && "Specialization is 0"); | 
 |   assert(Pattern && "Class scope specialization pattern is 0"); | 
 |   ClassScopeSpecializationPattern[FD] = Pattern; | 
 | } | 
 |  | 
 | NamedDecl * | 
 | ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) { | 
 |   llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos | 
 |     = InstantiatedFromUsingDecl.find(UUD); | 
 |   if (Pos == InstantiatedFromUsingDecl.end()) | 
 |     return nullptr; | 
 |  | 
 |   return Pos->second; | 
 | } | 
 |  | 
 | void | 
 | ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) { | 
 |   assert((isa<UsingDecl>(Pattern) || | 
 |           isa<UnresolvedUsingValueDecl>(Pattern) || | 
 |           isa<UnresolvedUsingTypenameDecl>(Pattern)) &&  | 
 |          "pattern decl is not a using decl"); | 
 |   assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists"); | 
 |   InstantiatedFromUsingDecl[Inst] = Pattern; | 
 | } | 
 |  | 
 | UsingShadowDecl * | 
 | ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) { | 
 |   llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos | 
 |     = InstantiatedFromUsingShadowDecl.find(Inst); | 
 |   if (Pos == InstantiatedFromUsingShadowDecl.end()) | 
 |     return nullptr; | 
 |  | 
 |   return Pos->second; | 
 | } | 
 |  | 
 | void | 
 | ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst, | 
 |                                                UsingShadowDecl *Pattern) { | 
 |   assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists"); | 
 |   InstantiatedFromUsingShadowDecl[Inst] = Pattern; | 
 | } | 
 |  | 
 | FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) { | 
 |   llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos | 
 |     = InstantiatedFromUnnamedFieldDecl.find(Field); | 
 |   if (Pos == InstantiatedFromUnnamedFieldDecl.end()) | 
 |     return nullptr; | 
 |  | 
 |   return Pos->second; | 
 | } | 
 |  | 
 | void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, | 
 |                                                      FieldDecl *Tmpl) { | 
 |   assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed"); | 
 |   assert(!Tmpl->getDeclName() && "Template field decl is not unnamed"); | 
 |   assert(!InstantiatedFromUnnamedFieldDecl[Inst] && | 
 |          "Already noted what unnamed field was instantiated from"); | 
 |  | 
 |   InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl; | 
 | } | 
 |  | 
 | ASTContext::overridden_cxx_method_iterator | 
 | ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const { | 
 |   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos | 
 |     = OverriddenMethods.find(Method->getCanonicalDecl()); | 
 |   if (Pos == OverriddenMethods.end()) | 
 |     return nullptr; | 
 |  | 
 |   return Pos->second.begin(); | 
 | } | 
 |  | 
 | ASTContext::overridden_cxx_method_iterator | 
 | ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const { | 
 |   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos | 
 |     = OverriddenMethods.find(Method->getCanonicalDecl()); | 
 |   if (Pos == OverriddenMethods.end()) | 
 |     return nullptr; | 
 |  | 
 |   return Pos->second.end(); | 
 | } | 
 |  | 
 | unsigned | 
 | ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const { | 
 |   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos | 
 |     = OverriddenMethods.find(Method->getCanonicalDecl()); | 
 |   if (Pos == OverriddenMethods.end()) | 
 |     return 0; | 
 |  | 
 |   return Pos->second.size(); | 
 | } | 
 |  | 
 | void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,  | 
 |                                      const CXXMethodDecl *Overridden) { | 
 |   assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl()); | 
 |   OverriddenMethods[Method].push_back(Overridden); | 
 | } | 
 |  | 
 | void ASTContext::getOverriddenMethods( | 
 |                       const NamedDecl *D, | 
 |                       SmallVectorImpl<const NamedDecl *> &Overridden) const { | 
 |   assert(D); | 
 |  | 
 |   if (const CXXMethodDecl *CXXMethod = dyn_cast<CXXMethodDecl>(D)) { | 
 |     Overridden.append(overridden_methods_begin(CXXMethod), | 
 |                       overridden_methods_end(CXXMethod)); | 
 |     return; | 
 |   } | 
 |  | 
 |   const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(D); | 
 |   if (!Method) | 
 |     return; | 
 |  | 
 |   SmallVector<const ObjCMethodDecl *, 8> OverDecls; | 
 |   Method->getOverriddenMethods(OverDecls); | 
 |   Overridden.append(OverDecls.begin(), OverDecls.end()); | 
 | } | 
 |  | 
 | void ASTContext::addedLocalImportDecl(ImportDecl *Import) { | 
 |   assert(!Import->NextLocalImport && "Import declaration already in the chain"); | 
 |   assert(!Import->isFromASTFile() && "Non-local import declaration"); | 
 |   if (!FirstLocalImport) { | 
 |     FirstLocalImport = Import; | 
 |     LastLocalImport = Import; | 
 |     return; | 
 |   } | 
 |    | 
 |   LastLocalImport->NextLocalImport = Import; | 
 |   LastLocalImport = Import; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                         Type Sizing and Analysis | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified | 
 | /// scalar floating point type. | 
 | const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const { | 
 |   const BuiltinType *BT = T->getAs<BuiltinType>(); | 
 |   assert(BT && "Not a floating point type!"); | 
 |   switch (BT->getKind()) { | 
 |   default: llvm_unreachable("Not a floating point type!"); | 
 |   case BuiltinType::Half:       return Target->getHalfFormat(); | 
 |   case BuiltinType::Float:      return Target->getFloatFormat(); | 
 |   case BuiltinType::Double:     return Target->getDoubleFormat(); | 
 |   case BuiltinType::LongDouble: return Target->getLongDoubleFormat(); | 
 |   } | 
 | } | 
 |  | 
 | CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const { | 
 |   unsigned Align = Target->getCharWidth(); | 
 |  | 
 |   bool UseAlignAttrOnly = false; | 
 |   if (unsigned AlignFromAttr = D->getMaxAlignment()) { | 
 |     Align = AlignFromAttr; | 
 |  | 
 |     // __attribute__((aligned)) can increase or decrease alignment | 
 |     // *except* on a struct or struct member, where it only increases | 
 |     // alignment unless 'packed' is also specified. | 
 |     // | 
 |     // It is an error for alignas to decrease alignment, so we can | 
 |     // ignore that possibility;  Sema should diagnose it. | 
 |     if (isa<FieldDecl>(D)) { | 
 |       UseAlignAttrOnly = D->hasAttr<PackedAttr>() || | 
 |         cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>(); | 
 |     } else { | 
 |       UseAlignAttrOnly = true; | 
 |     } | 
 |   } | 
 |   else if (isa<FieldDecl>(D)) | 
 |       UseAlignAttrOnly =  | 
 |         D->hasAttr<PackedAttr>() || | 
 |         cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>(); | 
 |  | 
 |   // If we're using the align attribute only, just ignore everything | 
 |   // else about the declaration and its type. | 
 |   if (UseAlignAttrOnly) { | 
 |     // do nothing | 
 |  | 
 |   } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) { | 
 |     QualType T = VD->getType(); | 
 |     if (const ReferenceType *RT = T->getAs<ReferenceType>()) { | 
 |       if (ForAlignof) | 
 |         T = RT->getPointeeType(); | 
 |       else | 
 |         T = getPointerType(RT->getPointeeType()); | 
 |     } | 
 |     QualType BaseT = getBaseElementType(T); | 
 |     if (!BaseT->isIncompleteType() && !T->isFunctionType()) { | 
 |       // Adjust alignments of declarations with array type by the | 
 |       // large-array alignment on the target. | 
 |       if (const ArrayType *arrayType = getAsArrayType(T)) { | 
 |         unsigned MinWidth = Target->getLargeArrayMinWidth(); | 
 |         if (!ForAlignof && MinWidth) { | 
 |           if (isa<VariableArrayType>(arrayType)) | 
 |             Align = std::max(Align, Target->getLargeArrayAlign()); | 
 |           else if (isa<ConstantArrayType>(arrayType) && | 
 |                    MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType))) | 
 |             Align = std::max(Align, Target->getLargeArrayAlign()); | 
 |         } | 
 |       } | 
 |       Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr())); | 
 |       if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { | 
 |         if (VD->hasGlobalStorage()) | 
 |           Align = std::max(Align, getTargetInfo().getMinGlobalAlign()); | 
 |       } | 
 |     } | 
 |  | 
 |     // Fields can be subject to extra alignment constraints, like if | 
 |     // the field is packed, the struct is packed, or the struct has a | 
 |     // a max-field-alignment constraint (#pragma pack).  So calculate | 
 |     // the actual alignment of the field within the struct, and then | 
 |     // (as we're expected to) constrain that by the alignment of the type. | 
 |     if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) { | 
 |       const RecordDecl *Parent = Field->getParent(); | 
 |       // We can only produce a sensible answer if the record is valid. | 
 |       if (!Parent->isInvalidDecl()) { | 
 |         const ASTRecordLayout &Layout = getASTRecordLayout(Parent); | 
 |  | 
 |         // Start with the record's overall alignment. | 
 |         unsigned FieldAlign = toBits(Layout.getAlignment()); | 
 |  | 
 |         // Use the GCD of that and the offset within the record. | 
 |         uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex()); | 
 |         if (Offset > 0) { | 
 |           // Alignment is always a power of 2, so the GCD will be a power of 2, | 
 |           // which means we get to do this crazy thing instead of Euclid's. | 
 |           uint64_t LowBitOfOffset = Offset & (~Offset + 1); | 
 |           if (LowBitOfOffset < FieldAlign) | 
 |             FieldAlign = static_cast<unsigned>(LowBitOfOffset); | 
 |         } | 
 |  | 
 |         Align = std::min(Align, FieldAlign); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   return toCharUnitsFromBits(Align); | 
 | } | 
 |  | 
 | // getTypeInfoDataSizeInChars - Return the size of a type, in | 
 | // chars. If the type is a record, its data size is returned.  This is | 
 | // the size of the memcpy that's performed when assigning this type | 
 | // using a trivial copy/move assignment operator. | 
 | std::pair<CharUnits, CharUnits> | 
 | ASTContext::getTypeInfoDataSizeInChars(QualType T) const { | 
 |   std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T); | 
 |  | 
 |   // In C++, objects can sometimes be allocated into the tail padding | 
 |   // of a base-class subobject.  We decide whether that's possible | 
 |   // during class layout, so here we can just trust the layout results. | 
 |   if (getLangOpts().CPlusPlus) { | 
 |     if (const RecordType *RT = T->getAs<RecordType>()) { | 
 |       const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl()); | 
 |       sizeAndAlign.first = layout.getDataSize(); | 
 |     } | 
 |   } | 
 |  | 
 |   return sizeAndAlign; | 
 | } | 
 |  | 
 | /// getConstantArrayInfoInChars - Performing the computation in CharUnits | 
 | /// instead of in bits prevents overflowing the uint64_t for some large arrays. | 
 | std::pair<CharUnits, CharUnits> | 
 | static getConstantArrayInfoInChars(const ASTContext &Context, | 
 |                                    const ConstantArrayType *CAT) { | 
 |   std::pair<CharUnits, CharUnits> EltInfo = | 
 |       Context.getTypeInfoInChars(CAT->getElementType()); | 
 |   uint64_t Size = CAT->getSize().getZExtValue(); | 
 |   assert((Size == 0 || static_cast<uint64_t>(EltInfo.first.getQuantity()) <= | 
 |               (uint64_t)(-1)/Size) && | 
 |          "Overflow in array type char size evaluation"); | 
 |   uint64_t Width = EltInfo.first.getQuantity() * Size; | 
 |   unsigned Align = EltInfo.second.getQuantity(); | 
 |   if (!Context.getTargetInfo().getCXXABI().isMicrosoft() || | 
 |       Context.getTargetInfo().getPointerWidth(0) == 64) | 
 |     Width = llvm::RoundUpToAlignment(Width, Align); | 
 |   return std::make_pair(CharUnits::fromQuantity(Width), | 
 |                         CharUnits::fromQuantity(Align)); | 
 | } | 
 |  | 
 | std::pair<CharUnits, CharUnits> | 
 | ASTContext::getTypeInfoInChars(const Type *T) const { | 
 |   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(T)) | 
 |     return getConstantArrayInfoInChars(*this, CAT); | 
 |   std::pair<uint64_t, unsigned> Info = getTypeInfo(T); | 
 |   return std::make_pair(toCharUnitsFromBits(Info.first), | 
 |                         toCharUnitsFromBits(Info.second)); | 
 | } | 
 |  | 
 | std::pair<CharUnits, CharUnits> | 
 | ASTContext::getTypeInfoInChars(QualType T) const { | 
 |   return getTypeInfoInChars(T.getTypePtr()); | 
 | } | 
 |  | 
 | std::pair<uint64_t, unsigned> ASTContext::getTypeInfo(const Type *T) const { | 
 |   TypeInfoMap::iterator it = MemoizedTypeInfo.find(T); | 
 |   if (it != MemoizedTypeInfo.end()) | 
 |     return it->second; | 
 |  | 
 |   std::pair<uint64_t, unsigned> Info = getTypeInfoImpl(T); | 
 |   MemoizedTypeInfo.insert(std::make_pair(T, Info)); | 
 |   return Info; | 
 | } | 
 |  | 
 | /// getTypeInfoImpl - Return the size of the specified type, in bits.  This | 
 | /// method does not work on incomplete types. | 
 | /// | 
 | /// FIXME: Pointers into different addr spaces could have different sizes and | 
 | /// alignment requirements: getPointerInfo should take an AddrSpace, this | 
 | /// should take a QualType, &c. | 
 | std::pair<uint64_t, unsigned> | 
 | ASTContext::getTypeInfoImpl(const Type *T) const { | 
 |   uint64_t Width=0; | 
 |   unsigned Align=8; | 
 |   switch (T->getTypeClass()) { | 
 | #define TYPE(Class, Base) | 
 | #define ABSTRACT_TYPE(Class, Base) | 
 | #define NON_CANONICAL_TYPE(Class, Base) | 
 | #define DEPENDENT_TYPE(Class, Base) case Type::Class: | 
 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)                       \ | 
 |   case Type::Class:                                                            \ | 
 |   assert(!T->isDependentType() && "should not see dependent types here");      \ | 
 |   return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr()); | 
 | #include "clang/AST/TypeNodes.def" | 
 |     llvm_unreachable("Should not see dependent types"); | 
 |  | 
 |   case Type::FunctionNoProto: | 
 |   case Type::FunctionProto: | 
 |     // GCC extension: alignof(function) = 32 bits | 
 |     Width = 0; | 
 |     Align = 32; | 
 |     break; | 
 |  | 
 |   case Type::IncompleteArray: | 
 |   case Type::VariableArray: | 
 |     Width = 0; | 
 |     Align = getTypeAlign(cast<ArrayType>(T)->getElementType()); | 
 |     break; | 
 |  | 
 |   case Type::ConstantArray: { | 
 |     const ConstantArrayType *CAT = cast<ConstantArrayType>(T); | 
 |  | 
 |     std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType()); | 
 |     uint64_t Size = CAT->getSize().getZExtValue(); | 
 |     assert((Size == 0 || EltInfo.first <= (uint64_t)(-1)/Size) &&  | 
 |            "Overflow in array type bit size evaluation"); | 
 |     Width = EltInfo.first*Size; | 
 |     Align = EltInfo.second; | 
 |     if (!getTargetInfo().getCXXABI().isMicrosoft() || | 
 |         getTargetInfo().getPointerWidth(0) == 64) | 
 |       Width = llvm::RoundUpToAlignment(Width, Align); | 
 |     break; | 
 |   } | 
 |   case Type::ExtVector: | 
 |   case Type::Vector: { | 
 |     const VectorType *VT = cast<VectorType>(T); | 
 |     std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType()); | 
 |     Width = EltInfo.first*VT->getNumElements(); | 
 |     Align = Width; | 
 |     // If the alignment is not a power of 2, round up to the next power of 2. | 
 |     // This happens for non-power-of-2 length vectors. | 
 |     if (Align & (Align-1)) { | 
 |       Align = llvm::NextPowerOf2(Align); | 
 |       Width = llvm::RoundUpToAlignment(Width, Align); | 
 |     } | 
 |     // Adjust the alignment based on the target max. | 
 |     uint64_t TargetVectorAlign = Target->getMaxVectorAlign(); | 
 |     if (TargetVectorAlign && TargetVectorAlign < Align) | 
 |       Align = TargetVectorAlign; | 
 |     break; | 
 |   } | 
 |  | 
 |   case Type::Builtin: | 
 |     switch (cast<BuiltinType>(T)->getKind()) { | 
 |     default: llvm_unreachable("Unknown builtin type!"); | 
 |     case BuiltinType::Void: | 
 |       // GCC extension: alignof(void) = 8 bits. | 
 |       Width = 0; | 
 |       Align = 8; | 
 |       break; | 
 |  | 
 |     case BuiltinType::Bool: | 
 |       Width = Target->getBoolWidth(); | 
 |       Align = Target->getBoolAlign(); | 
 |       break; | 
 |     case BuiltinType::Char_S: | 
 |     case BuiltinType::Char_U: | 
 |     case BuiltinType::UChar: | 
 |     case BuiltinType::SChar: | 
 |       Width = Target->getCharWidth(); | 
 |       Align = Target->getCharAlign(); | 
 |       break; | 
 |     case BuiltinType::WChar_S: | 
 |     case BuiltinType::WChar_U: | 
 |       Width = Target->getWCharWidth(); | 
 |       Align = Target->getWCharAlign(); | 
 |       break; | 
 |     case BuiltinType::Char16: | 
 |       Width = Target->getChar16Width(); | 
 |       Align = Target->getChar16Align(); | 
 |       break; | 
 |     case BuiltinType::Char32: | 
 |       Width = Target->getChar32Width(); | 
 |       Align = Target->getChar32Align(); | 
 |       break; | 
 |     case BuiltinType::UShort: | 
 |     case BuiltinType::Short: | 
 |       Width = Target->getShortWidth(); | 
 |       Align = Target->getShortAlign(); | 
 |       break; | 
 |     case BuiltinType::UInt: | 
 |     case BuiltinType::Int: | 
 |       Width = Target->getIntWidth(); | 
 |       Align = Target->getIntAlign(); | 
 |       break; | 
 |     case BuiltinType::ULong: | 
 |     case BuiltinType::Long: | 
 |       Width = Target->getLongWidth(); | 
 |       Align = Target->getLongAlign(); | 
 |       break; | 
 |     case BuiltinType::ULongLong: | 
 |     case BuiltinType::LongLong: | 
 |       Width = Target->getLongLongWidth(); | 
 |       Align = Target->getLongLongAlign(); | 
 |       break; | 
 |     case BuiltinType::Int128: | 
 |     case BuiltinType::UInt128: | 
 |       Width = 128; | 
 |       Align = 128; // int128_t is 128-bit aligned on all targets. | 
 |       break; | 
 |     case BuiltinType::Half: | 
 |       Width = Target->getHalfWidth(); | 
 |       Align = Target->getHalfAlign(); | 
 |       break; | 
 |     case BuiltinType::Float: | 
 |       Width = Target->getFloatWidth(); | 
 |       Align = Target->getFloatAlign(); | 
 |       break; | 
 |     case BuiltinType::Double: | 
 |       Width = Target->getDoubleWidth(); | 
 |       Align = Target->getDoubleAlign(); | 
 |       break; | 
 |     case BuiltinType::LongDouble: | 
 |       Width = Target->getLongDoubleWidth(); | 
 |       Align = Target->getLongDoubleAlign(); | 
 |       break; | 
 |     case BuiltinType::NullPtr: | 
 |       Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t) | 
 |       Align = Target->getPointerAlign(0); //   == sizeof(void*) | 
 |       break; | 
 |     case BuiltinType::ObjCId: | 
 |     case BuiltinType::ObjCClass: | 
 |     case BuiltinType::ObjCSel: | 
 |       Width = Target->getPointerWidth(0);  | 
 |       Align = Target->getPointerAlign(0); | 
 |       break; | 
 |     case BuiltinType::OCLSampler: | 
 |       // Samplers are modeled as integers. | 
 |       Width = Target->getIntWidth(); | 
 |       Align = Target->getIntAlign(); | 
 |       break; | 
 |     case BuiltinType::OCLEvent: | 
 |     case BuiltinType::OCLImage1d: | 
 |     case BuiltinType::OCLImage1dArray: | 
 |     case BuiltinType::OCLImage1dBuffer: | 
 |     case BuiltinType::OCLImage2d: | 
 |     case BuiltinType::OCLImage2dArray: | 
 |     case BuiltinType::OCLImage3d: | 
 |       // Currently these types are pointers to opaque types. | 
 |       Width = Target->getPointerWidth(0); | 
 |       Align = Target->getPointerAlign(0); | 
 |       break; | 
 |     } | 
 |     break; | 
 |   case Type::ObjCObjectPointer: | 
 |     Width = Target->getPointerWidth(0); | 
 |     Align = Target->getPointerAlign(0); | 
 |     break; | 
 |   case Type::BlockPointer: { | 
 |     unsigned AS = getTargetAddressSpace( | 
 |         cast<BlockPointerType>(T)->getPointeeType()); | 
 |     Width = Target->getPointerWidth(AS); | 
 |     Align = Target->getPointerAlign(AS); | 
 |     break; | 
 |   } | 
 |   case Type::LValueReference: | 
 |   case Type::RValueReference: { | 
 |     // alignof and sizeof should never enter this code path here, so we go | 
 |     // the pointer route. | 
 |     unsigned AS = getTargetAddressSpace( | 
 |         cast<ReferenceType>(T)->getPointeeType()); | 
 |     Width = Target->getPointerWidth(AS); | 
 |     Align = Target->getPointerAlign(AS); | 
 |     break; | 
 |   } | 
 |   case Type::Pointer: { | 
 |     unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType()); | 
 |     Width = Target->getPointerWidth(AS); | 
 |     Align = Target->getPointerAlign(AS); | 
 |     break; | 
 |   } | 
 |   case Type::MemberPointer: { | 
 |     const MemberPointerType *MPT = cast<MemberPointerType>(T); | 
 |     std::tie(Width, Align) = ABI->getMemberPointerWidthAndAlign(MPT); | 
 |     break; | 
 |   } | 
 |   case Type::Complex: { | 
 |     // Complex types have the same alignment as their elements, but twice the | 
 |     // size. | 
 |     std::pair<uint64_t, unsigned> EltInfo = | 
 |       getTypeInfo(cast<ComplexType>(T)->getElementType()); | 
 |     Width = EltInfo.first*2; | 
 |     Align = EltInfo.second; | 
 |     break; | 
 |   } | 
 |   case Type::ObjCObject: | 
 |     return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr()); | 
 |   case Type::Adjusted: | 
 |   case Type::Decayed: | 
 |     return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr()); | 
 |   case Type::ObjCInterface: { | 
 |     const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T); | 
 |     const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl()); | 
 |     Width = toBits(Layout.getSize()); | 
 |     Align = toBits(Layout.getAlignment()); | 
 |     break; | 
 |   } | 
 |   case Type::Record: | 
 |   case Type::Enum: { | 
 |     const TagType *TT = cast<TagType>(T); | 
 |  | 
 |     if (TT->getDecl()->isInvalidDecl()) { | 
 |       Width = 8; | 
 |       Align = 8; | 
 |       break; | 
 |     } | 
 |  | 
 |     if (const EnumType *ET = dyn_cast<EnumType>(TT)) | 
 |       return getTypeInfo(ET->getDecl()->getIntegerType()); | 
 |  | 
 |     const RecordType *RT = cast<RecordType>(TT); | 
 |     const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl()); | 
 |     Width = toBits(Layout.getSize()); | 
 |     Align = toBits(Layout.getAlignment()); | 
 |     break; | 
 |   } | 
 |  | 
 |   case Type::SubstTemplateTypeParm: | 
 |     return getTypeInfo(cast<SubstTemplateTypeParmType>(T)-> | 
 |                        getReplacementType().getTypePtr()); | 
 |  | 
 |   case Type::Auto: { | 
 |     const AutoType *A = cast<AutoType>(T); | 
 |     assert(!A->getDeducedType().isNull() && | 
 |            "cannot request the size of an undeduced or dependent auto type"); | 
 |     return getTypeInfo(A->getDeducedType().getTypePtr()); | 
 |   } | 
 |  | 
 |   case Type::Paren: | 
 |     return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr()); | 
 |  | 
 |   case Type::Typedef: { | 
 |     const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl(); | 
 |     std::pair<uint64_t, unsigned> Info | 
 |       = getTypeInfo(Typedef->getUnderlyingType().getTypePtr()); | 
 |     // If the typedef has an aligned attribute on it, it overrides any computed | 
 |     // alignment we have.  This violates the GCC documentation (which says that | 
 |     // attribute(aligned) can only round up) but matches its implementation. | 
 |     if (unsigned AttrAlign = Typedef->getMaxAlignment()) | 
 |       Align = AttrAlign; | 
 |     else | 
 |       Align = Info.second; | 
 |     Width = Info.first; | 
 |     break; | 
 |   } | 
 |  | 
 |   case Type::Elaborated: | 
 |     return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr()); | 
 |  | 
 |   case Type::Attributed: | 
 |     return getTypeInfo( | 
 |                   cast<AttributedType>(T)->getEquivalentType().getTypePtr()); | 
 |  | 
 |   case Type::Atomic: { | 
 |     // Start with the base type information. | 
 |     std::pair<uint64_t, unsigned> Info | 
 |       = getTypeInfo(cast<AtomicType>(T)->getValueType()); | 
 |     Width = Info.first; | 
 |     Align = Info.second; | 
 |  | 
 |     // If the size of the type doesn't exceed the platform's max | 
 |     // atomic promotion width, make the size and alignment more | 
 |     // favorable to atomic operations: | 
 |     if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth()) { | 
 |       // Round the size up to a power of 2. | 
 |       if (!llvm::isPowerOf2_64(Width)) | 
 |         Width = llvm::NextPowerOf2(Width); | 
 |  | 
 |       // Set the alignment equal to the size. | 
 |       Align = static_cast<unsigned>(Width); | 
 |     } | 
 |   } | 
 |  | 
 |   } | 
 |  | 
 |   assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2"); | 
 |   return std::make_pair(Width, Align); | 
 | } | 
 |  | 
 | /// toCharUnitsFromBits - Convert a size in bits to a size in characters. | 
 | CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const { | 
 |   return CharUnits::fromQuantity(BitSize / getCharWidth()); | 
 | } | 
 |  | 
 | /// toBits - Convert a size in characters to a size in characters. | 
 | int64_t ASTContext::toBits(CharUnits CharSize) const { | 
 |   return CharSize.getQuantity() * getCharWidth(); | 
 | } | 
 |  | 
 | /// getTypeSizeInChars - Return the size of the specified type, in characters. | 
 | /// This method does not work on incomplete types. | 
 | CharUnits ASTContext::getTypeSizeInChars(QualType T) const { | 
 |   return getTypeInfoInChars(T).first; | 
 | } | 
 | CharUnits ASTContext::getTypeSizeInChars(const Type *T) const { | 
 |   return getTypeInfoInChars(T).first; | 
 | } | 
 |  | 
 | /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in  | 
 | /// characters. This method does not work on incomplete types. | 
 | CharUnits ASTContext::getTypeAlignInChars(QualType T) const { | 
 |   return toCharUnitsFromBits(getTypeAlign(T)); | 
 | } | 
 | CharUnits ASTContext::getTypeAlignInChars(const Type *T) const { | 
 |   return toCharUnitsFromBits(getTypeAlign(T)); | 
 | } | 
 |  | 
 | /// getPreferredTypeAlign - Return the "preferred" alignment of the specified | 
 | /// type for the current target in bits.  This can be different than the ABI | 
 | /// alignment in cases where it is beneficial for performance to overalign | 
 | /// a data type. | 
 | unsigned ASTContext::getPreferredTypeAlign(const Type *T) const { | 
 |   unsigned ABIAlign = getTypeAlign(T); | 
 |  | 
 |   if (Target->getTriple().getArch() == llvm::Triple::xcore) | 
 |     return ABIAlign;  // Never overalign on XCore. | 
 |  | 
 |   const TypedefType *TT = T->getAs<TypedefType>(); | 
 |  | 
 |   // Double and long long should be naturally aligned if possible. | 
 |   T = T->getBaseElementTypeUnsafe(); | 
 |   if (const ComplexType *CT = T->getAs<ComplexType>()) | 
 |     T = CT->getElementType().getTypePtr(); | 
 |   if (T->isSpecificBuiltinType(BuiltinType::Double) || | 
 |       T->isSpecificBuiltinType(BuiltinType::LongLong) || | 
 |       T->isSpecificBuiltinType(BuiltinType::ULongLong)) | 
 |     // Don't increase the alignment if an alignment attribute was specified on a | 
 |     // typedef declaration. | 
 |     if (!TT || !TT->getDecl()->getMaxAlignment()) | 
 |       return std::max(ABIAlign, (unsigned)getTypeSize(T)); | 
 |  | 
 |   return ABIAlign; | 
 | } | 
 |  | 
 | /// getAlignOfGlobalVar - Return the alignment in bits that should be given | 
 | /// to a global variable of the specified type. | 
 | unsigned ASTContext::getAlignOfGlobalVar(QualType T) const { | 
 |   return std::max(getTypeAlign(T), getTargetInfo().getMinGlobalAlign()); | 
 | } | 
 |  | 
 | /// getAlignOfGlobalVarInChars - Return the alignment in characters that | 
 | /// should be given to a global variable of the specified type. | 
 | CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const { | 
 |   return toCharUnitsFromBits(getAlignOfGlobalVar(T)); | 
 | } | 
 |  | 
 | /// DeepCollectObjCIvars - | 
 | /// This routine first collects all declared, but not synthesized, ivars in | 
 | /// super class and then collects all ivars, including those synthesized for | 
 | /// current class. This routine is used for implementation of current class | 
 | /// when all ivars, declared and synthesized are known. | 
 | /// | 
 | void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, | 
 |                                       bool leafClass, | 
 |                             SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const { | 
 |   if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass()) | 
 |     DeepCollectObjCIvars(SuperClass, false, Ivars); | 
 |   if (!leafClass) { | 
 |     for (const auto *I : OI->ivars()) | 
 |       Ivars.push_back(I); | 
 |   } else { | 
 |     ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI); | 
 |     for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;  | 
 |          Iv= Iv->getNextIvar()) | 
 |       Ivars.push_back(Iv); | 
 |   } | 
 | } | 
 |  | 
 | /// CollectInheritedProtocols - Collect all protocols in current class and | 
 | /// those inherited by it. | 
 | void ASTContext::CollectInheritedProtocols(const Decl *CDecl, | 
 |                           llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) { | 
 |   if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) { | 
 |     // We can use protocol_iterator here instead of | 
 |     // all_referenced_protocol_iterator since we are walking all categories.     | 
 |     for (auto *Proto : OI->all_referenced_protocols()) { | 
 |       Protocols.insert(Proto->getCanonicalDecl()); | 
 |       for (auto *P : Proto->protocols()) { | 
 |         Protocols.insert(P->getCanonicalDecl()); | 
 |         CollectInheritedProtocols(P, Protocols); | 
 |       } | 
 |     } | 
 |      | 
 |     // Categories of this Interface. | 
 |     for (const auto *Cat : OI->visible_categories()) | 
 |       CollectInheritedProtocols(Cat, Protocols); | 
 |  | 
 |     if (ObjCInterfaceDecl *SD = OI->getSuperClass()) | 
 |       while (SD) { | 
 |         CollectInheritedProtocols(SD, Protocols); | 
 |         SD = SD->getSuperClass(); | 
 |       } | 
 |   } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) { | 
 |     for (auto *Proto : OC->protocols()) { | 
 |       Protocols.insert(Proto->getCanonicalDecl()); | 
 |       for (const auto *P : Proto->protocols()) | 
 |         CollectInheritedProtocols(P, Protocols); | 
 |     } | 
 |   } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) { | 
 |     for (auto *Proto : OP->protocols()) { | 
 |       Protocols.insert(Proto->getCanonicalDecl()); | 
 |       for (const auto *P : Proto->protocols()) | 
 |         CollectInheritedProtocols(P, Protocols); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const { | 
 |   unsigned count = 0;   | 
 |   // Count ivars declared in class extension. | 
 |   for (const auto *Ext : OI->known_extensions()) | 
 |     count += Ext->ivar_size(); | 
 |    | 
 |   // Count ivar defined in this class's implementation.  This | 
 |   // includes synthesized ivars. | 
 |   if (ObjCImplementationDecl *ImplDecl = OI->getImplementation()) | 
 |     count += ImplDecl->ivar_size(); | 
 |  | 
 |   return count; | 
 | } | 
 |  | 
 | bool ASTContext::isSentinelNullExpr(const Expr *E) { | 
 |   if (!E) | 
 |     return false; | 
 |  | 
 |   // nullptr_t is always treated as null. | 
 |   if (E->getType()->isNullPtrType()) return true; | 
 |  | 
 |   if (E->getType()->isAnyPointerType() && | 
 |       E->IgnoreParenCasts()->isNullPointerConstant(*this, | 
 |                                                 Expr::NPC_ValueDependentIsNull)) | 
 |     return true; | 
 |  | 
 |   // Unfortunately, __null has type 'int'. | 
 |   if (isa<GNUNullExpr>(E)) return true; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists. | 
 | ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) { | 
 |   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator | 
 |     I = ObjCImpls.find(D); | 
 |   if (I != ObjCImpls.end()) | 
 |     return cast<ObjCImplementationDecl>(I->second); | 
 |   return nullptr; | 
 | } | 
 | /// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists. | 
 | ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) { | 
 |   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator | 
 |     I = ObjCImpls.find(D); | 
 |   if (I != ObjCImpls.end()) | 
 |     return cast<ObjCCategoryImplDecl>(I->second); | 
 |   return nullptr; | 
 | } | 
 |  | 
 | /// \brief Set the implementation of ObjCInterfaceDecl. | 
 | void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD, | 
 |                            ObjCImplementationDecl *ImplD) { | 
 |   assert(IFaceD && ImplD && "Passed null params"); | 
 |   ObjCImpls[IFaceD] = ImplD; | 
 | } | 
 | /// \brief Set the implementation of ObjCCategoryDecl. | 
 | void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD, | 
 |                            ObjCCategoryImplDecl *ImplD) { | 
 |   assert(CatD && ImplD && "Passed null params"); | 
 |   ObjCImpls[CatD] = ImplD; | 
 | } | 
 |  | 
 | const ObjCInterfaceDecl *ASTContext::getObjContainingInterface( | 
 |                                               const NamedDecl *ND) const { | 
 |   if (const ObjCInterfaceDecl *ID = | 
 |           dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext())) | 
 |     return ID; | 
 |   if (const ObjCCategoryDecl *CD = | 
 |           dyn_cast<ObjCCategoryDecl>(ND->getDeclContext())) | 
 |     return CD->getClassInterface(); | 
 |   if (const ObjCImplDecl *IMD = | 
 |           dyn_cast<ObjCImplDecl>(ND->getDeclContext())) | 
 |     return IMD->getClassInterface(); | 
 |  | 
 |   return nullptr; | 
 | } | 
 |  | 
 | /// \brief Get the copy initialization expression of VarDecl,or NULL if  | 
 | /// none exists. | 
 | Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) { | 
 |   assert(VD && "Passed null params"); | 
 |   assert(VD->hasAttr<BlocksAttr>() &&  | 
 |          "getBlockVarCopyInits - not __block var"); | 
 |   llvm::DenseMap<const VarDecl*, Expr*>::iterator | 
 |     I = BlockVarCopyInits.find(VD); | 
 |   return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : nullptr; | 
 | } | 
 |  | 
 | /// \brief Set the copy inialization expression of a block var decl. | 
 | void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) { | 
 |   assert(VD && Init && "Passed null params"); | 
 |   assert(VD->hasAttr<BlocksAttr>() &&  | 
 |          "setBlockVarCopyInits - not __block var"); | 
 |   BlockVarCopyInits[VD] = Init; | 
 | } | 
 |  | 
 | TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T, | 
 |                                                  unsigned DataSize) const { | 
 |   if (!DataSize) | 
 |     DataSize = TypeLoc::getFullDataSizeForType(T); | 
 |   else | 
 |     assert(DataSize == TypeLoc::getFullDataSizeForType(T) && | 
 |            "incorrect data size provided to CreateTypeSourceInfo!"); | 
 |  | 
 |   TypeSourceInfo *TInfo = | 
 |     (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8); | 
 |   new (TInfo) TypeSourceInfo(T); | 
 |   return TInfo; | 
 | } | 
 |  | 
 | TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T, | 
 |                                                      SourceLocation L) const { | 
 |   TypeSourceInfo *DI = CreateTypeSourceInfo(T); | 
 |   DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L); | 
 |   return DI; | 
 | } | 
 |  | 
 | const ASTRecordLayout & | 
 | ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const { | 
 |   return getObjCLayout(D, nullptr); | 
 | } | 
 |  | 
 | const ASTRecordLayout & | 
 | ASTContext::getASTObjCImplementationLayout( | 
 |                                         const ObjCImplementationDecl *D) const { | 
 |   return getObjCLayout(D->getClassInterface(), D); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                   Type creation/memoization methods | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | QualType | 
 | ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const { | 
 |   unsigned fastQuals = quals.getFastQualifiers(); | 
 |   quals.removeFastQualifiers(); | 
 |  | 
 |   // Check if we've already instantiated this type. | 
 |   llvm::FoldingSetNodeID ID; | 
 |   ExtQuals::Profile(ID, baseType, quals); | 
 |   void *insertPos = nullptr; | 
 |   if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) { | 
 |     assert(eq->getQualifiers() == quals); | 
 |     return QualType(eq, fastQuals); | 
 |   } | 
 |  | 
 |   // If the base type is not canonical, make the appropriate canonical type. | 
 |   QualType canon; | 
 |   if (!baseType->isCanonicalUnqualified()) { | 
 |     SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split(); | 
 |     canonSplit.Quals.addConsistentQualifiers(quals); | 
 |     canon = getExtQualType(canonSplit.Ty, canonSplit.Quals); | 
 |  | 
 |     // Re-find the insert position. | 
 |     (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos); | 
 |   } | 
 |  | 
 |   ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals); | 
 |   ExtQualNodes.InsertNode(eq, insertPos); | 
 |   return QualType(eq, fastQuals); | 
 | } | 
 |  | 
 | QualType | 
 | ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const { | 
 |   QualType CanT = getCanonicalType(T); | 
 |   if (CanT.getAddressSpace() == AddressSpace) | 
 |     return T; | 
 |  | 
 |   // If we are composing extended qualifiers together, merge together | 
 |   // into one ExtQuals node. | 
 |   QualifierCollector Quals; | 
 |   const Type *TypeNode = Quals.strip(T); | 
 |  | 
 |   // If this type already has an address space specified, it cannot get | 
 |   // another one. | 
 |   assert(!Quals.hasAddressSpace() && | 
 |          "Type cannot be in multiple addr spaces!"); | 
 |   Quals.addAddressSpace(AddressSpace); | 
 |  | 
 |   return getExtQualType(TypeNode, Quals); | 
 | } | 
 |  | 
 | QualType ASTContext::getObjCGCQualType(QualType T, | 
 |                                        Qualifiers::GC GCAttr) const { | 
 |   QualType CanT = getCanonicalType(T); | 
 |   if (CanT.getObjCGCAttr() == GCAttr) | 
 |     return T; | 
 |  | 
 |   if (const PointerType *ptr = T->getAs<PointerType>()) { | 
 |     QualType Pointee = ptr->getPointeeType(); | 
 |     if (Pointee->isAnyPointerType()) { | 
 |       QualType ResultType = getObjCGCQualType(Pointee, GCAttr); | 
 |       return getPointerType(ResultType); | 
 |     } | 
 |   } | 
 |  | 
 |   // If we are composing extended qualifiers together, merge together | 
 |   // into one ExtQuals node. | 
 |   QualifierCollector Quals; | 
 |   const Type *TypeNode = Quals.strip(T); | 
 |  | 
 |   // If this type already has an ObjCGC specified, it cannot get | 
 |   // another one. | 
 |   assert(!Quals.hasObjCGCAttr() && | 
 |          "Type cannot have multiple ObjCGCs!"); | 
 |   Quals.addObjCGCAttr(GCAttr); | 
 |  | 
 |   return getExtQualType(TypeNode, Quals); | 
 | } | 
 |  | 
 | const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T, | 
 |                                                    FunctionType::ExtInfo Info) { | 
 |   if (T->getExtInfo() == Info) | 
 |     return T; | 
 |  | 
 |   QualType Result; | 
 |   if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) { | 
 |     Result = getFunctionNoProtoType(FNPT->getReturnType(), Info); | 
 |   } else { | 
 |     const FunctionProtoType *FPT = cast<FunctionProtoType>(T); | 
 |     FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); | 
 |     EPI.ExtInfo = Info; | 
 |     Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI); | 
 |   } | 
 |  | 
 |   return cast<FunctionType>(Result.getTypePtr()); | 
 | } | 
 |  | 
 | void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD, | 
 |                                                  QualType ResultType) { | 
 |   FD = FD->getMostRecentDecl(); | 
 |   while (true) { | 
 |     const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>(); | 
 |     FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); | 
 |     FD->setType(getFunctionType(ResultType, FPT->getParamTypes(), EPI)); | 
 |     if (FunctionDecl *Next = FD->getPreviousDecl()) | 
 |       FD = Next; | 
 |     else | 
 |       break; | 
 |   } | 
 |   if (ASTMutationListener *L = getASTMutationListener()) | 
 |     L->DeducedReturnType(FD, ResultType); | 
 | } | 
 |  | 
 | /// getComplexType - Return the uniqued reference to the type for a complex | 
 | /// number with the specified element type. | 
 | QualType ASTContext::getComplexType(QualType T) const { | 
 |   // Unique pointers, to guarantee there is only one pointer of a particular | 
 |   // structure. | 
 |   llvm::FoldingSetNodeID ID; | 
 |   ComplexType::Profile(ID, T); | 
 |  | 
 |   void *InsertPos = nullptr; | 
 |   if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
 |     return QualType(CT, 0); | 
 |  | 
 |   // If the pointee type isn't canonical, this won't be a canonical type either, | 
 |   // so fill in the canonical type field. | 
 |   QualType Canonical; | 
 |   if (!T.isCanonical()) { | 
 |     Canonical = getComplexType(getCanonicalType(T)); | 
 |  | 
 |     // Get the new insert position for the node we care about. | 
 |     ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; | 
 |   } | 
 |   ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical); | 
 |   Types.push_back(New); | 
 |   ComplexTypes.InsertNode(New, InsertPos); | 
 |   return QualType(New, 0); | 
 | } | 
 |  | 
 | /// getPointerType - Return the uniqued reference to the type for a pointer to | 
 | /// the specified type. | 
 | QualType ASTContext::getPointerType(QualType T) const { | 
 |   // Unique pointers, to guarantee there is only one pointer of a particular | 
 |   // structure. | 
 |   llvm::FoldingSetNodeID ID; | 
 |   PointerType::Profile(ID, T); | 
 |  | 
 |   void *InsertPos = nullptr; | 
 |   if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
 |     return QualType(PT, 0); | 
 |  | 
 |   // If the pointee type isn't canonical, this won't be a canonical type either, | 
 |   // so fill in the canonical type field. | 
 |   QualType Canonical; | 
 |   if (!T.isCanonical()) { | 
 |     Canonical = getPointerType(getCanonicalType(T)); | 
 |  | 
 |     // Get the new insert position for the node we care about. | 
 |     PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; | 
 |   } | 
 |   PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical); | 
 |   Types.push_back(New); | 
 |   PointerTypes.InsertNode(New, InsertPos); | 
 |   return QualType(New, 0); | 
 | } | 
 |  | 
 | QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const { | 
 |   llvm::FoldingSetNodeID ID; | 
 |   AdjustedType::Profile(ID, Orig, New); | 
 |   void *InsertPos = nullptr; | 
 |   AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |   if (AT) | 
 |     return QualType(AT, 0); | 
 |  | 
 |   QualType Canonical = getCanonicalType(New); | 
 |  | 
 |   // Get the new insert position for the node we care about. | 
 |   AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |   assert(!AT && "Shouldn't be in the map!"); | 
 |  | 
 |   AT = new (*this, TypeAlignment) | 
 |       AdjustedType(Type::Adjusted, Orig, New, Canonical); | 
 |   Types.push_back(AT); | 
 |   AdjustedTypes.InsertNode(AT, InsertPos); | 
 |   return QualType(AT, 0); | 
 | } | 
 |  | 
 | QualType ASTContext::getDecayedType(QualType T) const { | 
 |   assert((T->isArrayType() || T->isFunctionType()) && "T does not decay"); | 
 |  | 
 |   QualType Decayed; | 
 |  | 
 |   // C99 6.7.5.3p7: | 
 |   //   A declaration of a parameter as "array of type" shall be | 
 |   //   adjusted to "qualified pointer to type", where the type | 
 |   //   qualifiers (if any) are those specified within the [ and ] of | 
 |   //   the array type derivation. | 
 |   if (T->isArrayType()) | 
 |     Decayed = getArrayDecayedType(T); | 
 |  | 
 |   // C99 6.7.5.3p8: | 
 |   //   A declaration of a parameter as "function returning type" | 
 |   //   shall be adjusted to "pointer to function returning type", as | 
 |   //   in 6.3.2.1. | 
 |   if (T->isFunctionType()) | 
 |     Decayed = getPointerType(T); | 
 |  | 
 |   llvm::FoldingSetNodeID ID; | 
 |   AdjustedType::Profile(ID, T, Decayed); | 
 |   void *InsertPos = nullptr; | 
 |   AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |   if (AT) | 
 |     return QualType(AT, 0); | 
 |  | 
 |   QualType Canonical = getCanonicalType(Decayed); | 
 |  | 
 |   // Get the new insert position for the node we care about. | 
 |   AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |   assert(!AT && "Shouldn't be in the map!"); | 
 |  | 
 |   AT = new (*this, TypeAlignment) DecayedType(T, Decayed, Canonical); | 
 |   Types.push_back(AT); | 
 |   AdjustedTypes.InsertNode(AT, InsertPos); | 
 |   return QualType(AT, 0); | 
 | } | 
 |  | 
 | /// getBlockPointerType - Return the uniqued reference to the type for | 
 | /// a pointer to the specified block. | 
 | QualType ASTContext::getBlockPointerType(QualType T) const { | 
 |   assert(T->isFunctionType() && "block of function types only"); | 
 |   // Unique pointers, to guarantee there is only one block of a particular | 
 |   // structure. | 
 |   llvm::FoldingSetNodeID ID; | 
 |   BlockPointerType::Profile(ID, T); | 
 |  | 
 |   void *InsertPos = nullptr; | 
 |   if (BlockPointerType *PT = | 
 |         BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
 |     return QualType(PT, 0); | 
 |  | 
 |   // If the block pointee type isn't canonical, this won't be a canonical | 
 |   // type either so fill in the canonical type field. | 
 |   QualType Canonical; | 
 |   if (!T.isCanonical()) { | 
 |     Canonical = getBlockPointerType(getCanonicalType(T)); | 
 |  | 
 |     // Get the new insert position for the node we care about. | 
 |     BlockPointerType *NewIP = | 
 |       BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; | 
 |   } | 
 |   BlockPointerType *New | 
 |     = new (*this, TypeAlignment) BlockPointerType(T, Canonical); | 
 |   Types.push_back(New); | 
 |   BlockPointerTypes.InsertNode(New, InsertPos); | 
 |   return QualType(New, 0); | 
 | } | 
 |  | 
 | /// getLValueReferenceType - Return the uniqued reference to the type for an | 
 | /// lvalue reference to the specified type. | 
 | QualType | 
 | ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const { | 
 |   assert(getCanonicalType(T) != OverloadTy &&  | 
 |          "Unresolved overloaded function type"); | 
 |    | 
 |   // Unique pointers, to guarantee there is only one pointer of a particular | 
 |   // structure. | 
 |   llvm::FoldingSetNodeID ID; | 
 |   ReferenceType::Profile(ID, T, SpelledAsLValue); | 
 |  | 
 |   void *InsertPos = nullptr; | 
 |   if (LValueReferenceType *RT = | 
 |         LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
 |     return QualType(RT, 0); | 
 |  | 
 |   const ReferenceType *InnerRef = T->getAs<ReferenceType>(); | 
 |  | 
 |   // If the referencee type isn't canonical, this won't be a canonical type | 
 |   // either, so fill in the canonical type field. | 
 |   QualType Canonical; | 
 |   if (!SpelledAsLValue || InnerRef || !T.isCanonical()) { | 
 |     QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T); | 
 |     Canonical = getLValueReferenceType(getCanonicalType(PointeeType)); | 
 |  | 
 |     // Get the new insert position for the node we care about. | 
 |     LValueReferenceType *NewIP = | 
 |       LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; | 
 |   } | 
 |  | 
 |   LValueReferenceType *New | 
 |     = new (*this, TypeAlignment) LValueReferenceType(T, Canonical, | 
 |                                                      SpelledAsLValue); | 
 |   Types.push_back(New); | 
 |   LValueReferenceTypes.InsertNode(New, InsertPos); | 
 |  | 
 |   return QualType(New, 0); | 
 | } | 
 |  | 
 | /// getRValueReferenceType - Return the uniqued reference to the type for an | 
 | /// rvalue reference to the specified type. | 
 | QualType ASTContext::getRValueReferenceType(QualType T) const { | 
 |   // Unique pointers, to guarantee there is only one pointer of a particular | 
 |   // structure. | 
 |   llvm::FoldingSetNodeID ID; | 
 |   ReferenceType::Profile(ID, T, false); | 
 |  | 
 |   void *InsertPos = nullptr; | 
 |   if (RValueReferenceType *RT = | 
 |         RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
 |     return QualType(RT, 0); | 
 |  | 
 |   const ReferenceType *InnerRef = T->getAs<ReferenceType>(); | 
 |  | 
 |   // If the referencee type isn't canonical, this won't be a canonical type | 
 |   // either, so fill in the canonical type field. | 
 |   QualType Canonical; | 
 |   if (InnerRef || !T.isCanonical()) { | 
 |     QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T); | 
 |     Canonical = getRValueReferenceType(getCanonicalType(PointeeType)); | 
 |  | 
 |     // Get the new insert position for the node we care about. | 
 |     RValueReferenceType *NewIP = | 
 |       RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; | 
 |   } | 
 |  | 
 |   RValueReferenceType *New | 
 |     = new (*this, TypeAlignment) RValueReferenceType(T, Canonical); | 
 |   Types.push_back(New); | 
 |   RValueReferenceTypes.InsertNode(New, InsertPos); | 
 |   return QualType(New, 0); | 
 | } | 
 |  | 
 | /// getMemberPointerType - Return the uniqued reference to the type for a | 
 | /// member pointer to the specified type, in the specified class. | 
 | QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const { | 
 |   // Unique pointers, to guarantee there is only one pointer of a particular | 
 |   // structure. | 
 |   llvm::FoldingSetNodeID ID; | 
 |   MemberPointerType::Profile(ID, T, Cls); | 
 |  | 
 |   void *InsertPos = nullptr; | 
 |   if (MemberPointerType *PT = | 
 |       MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
 |     return QualType(PT, 0); | 
 |  | 
 |   // If the pointee or class type isn't canonical, this won't be a canonical | 
 |   // type either, so fill in the canonical type field. | 
 |   QualType Canonical; | 
 |   if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) { | 
 |     Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls)); | 
 |  | 
 |     // Get the new insert position for the node we care about. | 
 |     MemberPointerType *NewIP = | 
 |       MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; | 
 |   } | 
 |   MemberPointerType *New | 
 |     = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical); | 
 |   Types.push_back(New); | 
 |   MemberPointerTypes.InsertNode(New, InsertPos); | 
 |   return QualType(New, 0); | 
 | } | 
 |  | 
 | /// getConstantArrayType - Return the unique reference to the type for an | 
 | /// array of the specified element type. | 
 | QualType ASTContext::getConstantArrayType(QualType EltTy, | 
 |                                           const llvm::APInt &ArySizeIn, | 
 |                                           ArrayType::ArraySizeModifier ASM, | 
 |                                           unsigned IndexTypeQuals) const { | 
 |   assert((EltTy->isDependentType() || | 
 |           EltTy->isIncompleteType() || EltTy->isConstantSizeType()) && | 
 |          "Constant array of VLAs is illegal!"); | 
 |  | 
 |   // Convert the array size into a canonical width matching the pointer size for | 
 |   // the target. | 
 |   llvm::APInt ArySize(ArySizeIn); | 
 |   ArySize = | 
 |     ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy))); | 
 |  | 
 |   llvm::FoldingSetNodeID ID; | 
 |   ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals); | 
 |  | 
 |   void *InsertPos = nullptr; | 
 |   if (ConstantArrayType *ATP = | 
 |       ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
 |     return QualType(ATP, 0); | 
 |  | 
 |   // If the element type isn't canonical or has qualifiers, this won't | 
 |   // be a canonical type either, so fill in the canonical type field. | 
 |   QualType Canon; | 
 |   if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) { | 
 |     SplitQualType canonSplit = getCanonicalType(EltTy).split(); | 
 |     Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize, | 
 |                                  ASM, IndexTypeQuals); | 
 |     Canon = getQualifiedType(Canon, canonSplit.Quals); | 
 |  | 
 |     // Get the new insert position for the node we care about. | 
 |     ConstantArrayType *NewIP = | 
 |       ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; | 
 |   } | 
 |  | 
 |   ConstantArrayType *New = new(*this,TypeAlignment) | 
 |     ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals); | 
 |   ConstantArrayTypes.InsertNode(New, InsertPos); | 
 |   Types.push_back(New); | 
 |   return QualType(New, 0); | 
 | } | 
 |  | 
 | /// getVariableArrayDecayedType - Turns the given type, which may be | 
 | /// variably-modified, into the corresponding type with all the known | 
 | /// sizes replaced with [*]. | 
 | QualType ASTContext::getVariableArrayDecayedType(QualType type) const { | 
 |   // Vastly most common case. | 
 |   if (!type->isVariablyModifiedType()) return type; | 
 |  | 
 |   QualType result; | 
 |  | 
 |   SplitQualType split = type.getSplitDesugaredType(); | 
 |   const Type *ty = split.Ty; | 
 |   switch (ty->getTypeClass()) { | 
 | #define TYPE(Class, Base) | 
 | #define ABSTRACT_TYPE(Class, Base) | 
 | #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: | 
 | #include "clang/AST/TypeNodes.def" | 
 |     llvm_unreachable("didn't desugar past all non-canonical types?"); | 
 |  | 
 |   // These types should never be variably-modified. | 
 |   case Type::Builtin: | 
 |   case Type::Complex: | 
 |   case Type::Vector: | 
 |   case Type::ExtVector: | 
 |   case Type::DependentSizedExtVector: | 
 |   case Type::ObjCObject: | 
 |   case Type::ObjCInterface: | 
 |   case Type::ObjCObjectPointer: | 
 |   case Type::Record: | 
 |   case Type::Enum: | 
 |   case Type::UnresolvedUsing: | 
 |   case Type::TypeOfExpr: | 
 |   case Type::TypeOf: | 
 |   case Type::Decltype: | 
 |   case Type::UnaryTransform: | 
 |   case Type::DependentName: | 
 |   case Type::InjectedClassName: | 
 |   case Type::TemplateSpecialization: | 
 |   case Type::DependentTemplateSpecialization: | 
 |   case Type::TemplateTypeParm: | 
 |   case Type::SubstTemplateTypeParmPack: | 
 |   case Type::Auto: | 
 |   case Type::PackExpansion: | 
 |     llvm_unreachable("type should never be variably-modified"); | 
 |  | 
 |   // These types can be variably-modified but should never need to | 
 |   // further decay. | 
 |   case Type::FunctionNoProto: | 
 |   case Type::FunctionProto: | 
 |   case Type::BlockPointer: | 
 |   case Type::MemberPointer: | 
 |     return type; | 
 |  | 
 |   // These types can be variably-modified.  All these modifications | 
 |   // preserve structure except as noted by comments. | 
 |   // TODO: if we ever care about optimizing VLAs, there are no-op | 
 |   // optimizations available here. | 
 |   case Type::Pointer: | 
 |     result = getPointerType(getVariableArrayDecayedType( | 
 |                               cast<PointerType>(ty)->getPointeeType())); | 
 |     break; | 
 |  | 
 |   case Type::LValueReference: { | 
 |     const LValueReferenceType *lv = cast<LValueReferenceType>(ty); | 
 |     result = getLValueReferenceType( | 
 |                  getVariableArrayDecayedType(lv->getPointeeType()), | 
 |                                     lv->isSpelledAsLValue()); | 
 |     break; | 
 |   } | 
 |  | 
 |   case Type::RValueReference: { | 
 |     const RValueReferenceType *lv = cast<RValueReferenceType>(ty); | 
 |     result = getRValueReferenceType( | 
 |                  getVariableArrayDecayedType(lv->getPointeeType())); | 
 |     break; | 
 |   } | 
 |  | 
 |   case Type::Atomic: { | 
 |     const AtomicType *at = cast<AtomicType>(ty); | 
 |     result = getAtomicType(getVariableArrayDecayedType(at->getValueType())); | 
 |     break; | 
 |   } | 
 |  | 
 |   case Type::ConstantArray: { | 
 |     const ConstantArrayType *cat = cast<ConstantArrayType>(ty); | 
 |     result = getConstantArrayType( | 
 |                  getVariableArrayDecayedType(cat->getElementType()), | 
 |                                   cat->getSize(), | 
 |                                   cat->getSizeModifier(), | 
 |                                   cat->getIndexTypeCVRQualifiers()); | 
 |     break; | 
 |   } | 
 |  | 
 |   case Type::DependentSizedArray: { | 
 |     const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty); | 
 |     result = getDependentSizedArrayType( | 
 |                  getVariableArrayDecayedType(dat->getElementType()), | 
 |                                         dat->getSizeExpr(), | 
 |                                         dat->getSizeModifier(), | 
 |                                         dat->getIndexTypeCVRQualifiers(), | 
 |                                         dat->getBracketsRange()); | 
 |     break; | 
 |   } | 
 |  | 
 |   // Turn incomplete types into [*] types. | 
 |   case Type::IncompleteArray: { | 
 |     const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty); | 
 |     result = getVariableArrayType( | 
 |                  getVariableArrayDecayedType(iat->getElementType()), | 
 |                                   /*size*/ nullptr, | 
 |                                   ArrayType::Normal, | 
 |                                   iat->getIndexTypeCVRQualifiers(), | 
 |                                   SourceRange()); | 
 |     break; | 
 |   } | 
 |  | 
 |   // Turn VLA types into [*] types. | 
 |   case Type::VariableArray: { | 
 |     const VariableArrayType *vat = cast<VariableArrayType>(ty); | 
 |     result = getVariableArrayType( | 
 |                  getVariableArrayDecayedType(vat->getElementType()), | 
 |                                   /*size*/ nullptr, | 
 |                                   ArrayType::Star, | 
 |                                   vat->getIndexTypeCVRQualifiers(), | 
 |                                   vat->getBracketsRange()); | 
 |     break; | 
 |   } | 
 |   } | 
 |  | 
 |   // Apply the top-level qualifiers from the original. | 
 |   return getQualifiedType(result, split.Quals); | 
 | } | 
 |  | 
 | /// getVariableArrayType - Returns a non-unique reference to the type for a | 
 | /// variable array of the specified element type. | 
 | QualType ASTContext::getVariableArrayType(QualType EltTy, | 
 |                                           Expr *NumElts, | 
 |                                           ArrayType::ArraySizeModifier ASM, | 
 |                                           unsigned IndexTypeQuals, | 
 |                                           SourceRange Brackets) const { | 
 |   // Since we don't unique expressions, it isn't possible to unique VLA's | 
 |   // that have an expression provided for their size. | 
 |   QualType Canon; | 
 |    | 
 |   // Be sure to pull qualifiers off the element type. | 
 |   if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) { | 
 |     SplitQualType canonSplit = getCanonicalType(EltTy).split(); | 
 |     Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM, | 
 |                                  IndexTypeQuals, Brackets); | 
 |     Canon = getQualifiedType(Canon, canonSplit.Quals); | 
 |   } | 
 |    | 
 |   VariableArrayType *New = new(*this, TypeAlignment) | 
 |     VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets); | 
 |  | 
 |   VariableArrayTypes.push_back(New); | 
 |   Types.push_back(New); | 
 |   return QualType(New, 0); | 
 | } | 
 |  | 
 | /// getDependentSizedArrayType - Returns a non-unique reference to | 
 | /// the type for a dependently-sized array of the specified element | 
 | /// type. | 
 | QualType ASTContext::getDependentSizedArrayType(QualType elementType, | 
 |                                                 Expr *numElements, | 
 |                                                 ArrayType::ArraySizeModifier ASM, | 
 |                                                 unsigned elementTypeQuals, | 
 |                                                 SourceRange brackets) const { | 
 |   assert((!numElements || numElements->isTypeDependent() ||  | 
 |           numElements->isValueDependent()) && | 
 |          "Size must be type- or value-dependent!"); | 
 |  | 
 |   // Dependently-sized array types that do not have a specified number | 
 |   // of elements will have their sizes deduced from a dependent | 
 |   // initializer.  We do no canonicalization here at all, which is okay | 
 |   // because they can't be used in most locations. | 
 |   if (!numElements) { | 
 |     DependentSizedArrayType *newType | 
 |       = new (*this, TypeAlignment) | 
 |           DependentSizedArrayType(*this, elementType, QualType(), | 
 |                                   numElements, ASM, elementTypeQuals, | 
 |                                   brackets); | 
 |     Types.push_back(newType); | 
 |     return QualType(newType, 0); | 
 |   } | 
 |  | 
 |   // Otherwise, we actually build a new type every time, but we | 
 |   // also build a canonical type. | 
 |  | 
 |   SplitQualType canonElementType = getCanonicalType(elementType).split(); | 
 |  | 
 |   void *insertPos = nullptr; | 
 |   llvm::FoldingSetNodeID ID; | 
 |   DependentSizedArrayType::Profile(ID, *this, | 
 |                                    QualType(canonElementType.Ty, 0), | 
 |                                    ASM, elementTypeQuals, numElements); | 
 |  | 
 |   // Look for an existing type with these properties. | 
 |   DependentSizedArrayType *canonTy = | 
 |     DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos); | 
 |  | 
 |   // If we don't have one, build one. | 
 |   if (!canonTy) { | 
 |     canonTy = new (*this, TypeAlignment) | 
 |       DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0), | 
 |                               QualType(), numElements, ASM, elementTypeQuals, | 
 |                               brackets); | 
 |     DependentSizedArrayTypes.InsertNode(canonTy, insertPos); | 
 |     Types.push_back(canonTy); | 
 |   } | 
 |  | 
 |   // Apply qualifiers from the element type to the array. | 
 |   QualType canon = getQualifiedType(QualType(canonTy,0), | 
 |                                     canonElementType.Quals); | 
 |  | 
 |   // If we didn't need extra canonicalization for the element type, | 
 |   // then just use that as our result. | 
 |   if (QualType(canonElementType.Ty, 0) == elementType) | 
 |     return canon; | 
 |  | 
 |   // Otherwise, we need to build a type which follows the spelling | 
 |   // of the element type. | 
 |   DependentSizedArrayType *sugaredType | 
 |     = new (*this, TypeAlignment) | 
 |         DependentSizedArrayType(*this, elementType, canon, numElements, | 
 |                                 ASM, elementTypeQuals, brackets); | 
 |   Types.push_back(sugaredType); | 
 |   return QualType(sugaredType, 0); | 
 | } | 
 |  | 
 | QualType ASTContext::getIncompleteArrayType(QualType elementType, | 
 |                                             ArrayType::ArraySizeModifier ASM, | 
 |                                             unsigned elementTypeQuals) const { | 
 |   llvm::FoldingSetNodeID ID; | 
 |   IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals); | 
 |  | 
 |   void *insertPos = nullptr; | 
 |   if (IncompleteArrayType *iat = | 
 |        IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos)) | 
 |     return QualType(iat, 0); | 
 |  | 
 |   // If the element type isn't canonical, this won't be a canonical type | 
 |   // either, so fill in the canonical type field.  We also have to pull | 
 |   // qualifiers off the element type. | 
 |   QualType canon; | 
 |  | 
 |   if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) { | 
 |     SplitQualType canonSplit = getCanonicalType(elementType).split(); | 
 |     canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0), | 
 |                                    ASM, elementTypeQuals); | 
 |     canon = getQualifiedType(canon, canonSplit.Quals); | 
 |  | 
 |     // Get the new insert position for the node we care about. | 
 |     IncompleteArrayType *existing = | 
 |       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos); | 
 |     assert(!existing && "Shouldn't be in the map!"); (void) existing; | 
 |   } | 
 |  | 
 |   IncompleteArrayType *newType = new (*this, TypeAlignment) | 
 |     IncompleteArrayType(elementType, canon, ASM, elementTypeQuals); | 
 |  | 
 |   IncompleteArrayTypes.InsertNode(newType, insertPos); | 
 |   Types.push_back(newType); | 
 |   return QualType(newType, 0); | 
 | } | 
 |  | 
 | /// getVectorType - Return the unique reference to a vector type of | 
 | /// the specified element type and size. VectorType must be a built-in type. | 
 | QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts, | 
 |                                    VectorType::VectorKind VecKind) const { | 
 |   assert(vecType->isBuiltinType()); | 
 |  | 
 |   // Check if we've already instantiated a vector of this type. | 
 |   llvm::FoldingSetNodeID ID; | 
 |   VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind); | 
 |  | 
 |   void *InsertPos = nullptr; | 
 |   if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
 |     return QualType(VTP, 0); | 
 |  | 
 |   // If the element type isn't canonical, this won't be a canonical type either, | 
 |   // so fill in the canonical type field. | 
 |   QualType Canonical; | 
 |   if (!vecType.isCanonical()) { | 
 |     Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind); | 
 |  | 
 |     // Get the new insert position for the node we care about. | 
 |     VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; | 
 |   } | 
 |   VectorType *New = new (*this, TypeAlignment) | 
 |     VectorType(vecType, NumElts, Canonical, VecKind); | 
 |   VectorTypes.InsertNode(New, InsertPos); | 
 |   Types.push_back(New); | 
 |   return QualType(New, 0); | 
 | } | 
 |  | 
 | /// getExtVectorType - Return the unique reference to an extended vector type of | 
 | /// the specified element type and size. VectorType must be a built-in type. | 
 | QualType | 
 | ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const { | 
 |   assert(vecType->isBuiltinType() || vecType->isDependentType()); | 
 |  | 
 |   // Check if we've already instantiated a vector of this type. | 
 |   llvm::FoldingSetNodeID ID; | 
 |   VectorType::Profile(ID, vecType, NumElts, Type::ExtVector, | 
 |                       VectorType::GenericVector); | 
 |   void *InsertPos = nullptr; | 
 |   if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
 |     return QualType(VTP, 0); | 
 |  | 
 |   // If the element type isn't canonical, this won't be a canonical type either, | 
 |   // so fill in the canonical type field. | 
 |   QualType Canonical; | 
 |   if (!vecType.isCanonical()) { | 
 |     Canonical = getExtVectorType(getCanonicalType(vecType), NumElts); | 
 |  | 
 |     // Get the new insert position for the node we care about. | 
 |     VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; | 
 |   } | 
 |   ExtVectorType *New = new (*this, TypeAlignment) | 
 |     ExtVectorType(vecType, NumElts, Canonical); | 
 |   VectorTypes.InsertNode(New, InsertPos); | 
 |   Types.push_back(New); | 
 |   return QualType(New, 0); | 
 | } | 
 |  | 
 | QualType | 
 | ASTContext::getDependentSizedExtVectorType(QualType vecType, | 
 |                                            Expr *SizeExpr, | 
 |                                            SourceLocation AttrLoc) const { | 
 |   llvm::FoldingSetNodeID ID; | 
 |   DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType), | 
 |                                        SizeExpr); | 
 |  | 
 |   void *InsertPos = nullptr; | 
 |   DependentSizedExtVectorType *Canon | 
 |     = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |   DependentSizedExtVectorType *New; | 
 |   if (Canon) { | 
 |     // We already have a canonical version of this array type; use it as | 
 |     // the canonical type for a newly-built type. | 
 |     New = new (*this, TypeAlignment) | 
 |       DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0), | 
 |                                   SizeExpr, AttrLoc); | 
 |   } else { | 
 |     QualType CanonVecTy = getCanonicalType(vecType); | 
 |     if (CanonVecTy == vecType) { | 
 |       New = new (*this, TypeAlignment) | 
 |         DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr, | 
 |                                     AttrLoc); | 
 |  | 
 |       DependentSizedExtVectorType *CanonCheck | 
 |         = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |       assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken"); | 
 |       (void)CanonCheck; | 
 |       DependentSizedExtVectorTypes.InsertNode(New, InsertPos); | 
 |     } else { | 
 |       QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr, | 
 |                                                       SourceLocation()); | 
 |       New = new (*this, TypeAlignment)  | 
 |         DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc); | 
 |     } | 
 |   } | 
 |  | 
 |   Types.push_back(New); | 
 |   return QualType(New, 0); | 
 | } | 
 |  | 
 | /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'. | 
 | /// | 
 | QualType | 
 | ASTContext::getFunctionNoProtoType(QualType ResultTy, | 
 |                                    const FunctionType::ExtInfo &Info) const { | 
 |   const CallingConv CallConv = Info.getCC(); | 
 |  | 
 |   // Unique functions, to guarantee there is only one function of a particular | 
 |   // structure. | 
 |   llvm::FoldingSetNodeID ID; | 
 |   FunctionNoProtoType::Profile(ID, ResultTy, Info); | 
 |  | 
 |   void *InsertPos = nullptr; | 
 |   if (FunctionNoProtoType *FT = | 
 |         FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
 |     return QualType(FT, 0); | 
 |  | 
 |   QualType Canonical; | 
 |   if (!ResultTy.isCanonical()) { | 
 |     Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy), Info); | 
 |  | 
 |     // Get the new insert position for the node we care about. | 
 |     FunctionNoProtoType *NewIP = | 
 |       FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; | 
 |   } | 
 |  | 
 |   FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv); | 
 |   FunctionNoProtoType *New = new (*this, TypeAlignment) | 
 |     FunctionNoProtoType(ResultTy, Canonical, newInfo); | 
 |   Types.push_back(New); | 
 |   FunctionNoProtoTypes.InsertNode(New, InsertPos); | 
 |   return QualType(New, 0); | 
 | } | 
 |  | 
 | /// \brief Determine whether \p T is canonical as the result type of a function. | 
 | static bool isCanonicalResultType(QualType T) { | 
 |   return T.isCanonical() && | 
 |          (T.getObjCLifetime() == Qualifiers::OCL_None || | 
 |           T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone); | 
 | } | 
 |  | 
 | QualType | 
 | ASTContext::getFunctionType(QualType ResultTy, ArrayRef<QualType> ArgArray, | 
 |                             const FunctionProtoType::ExtProtoInfo &EPI) const { | 
 |   size_t NumArgs = ArgArray.size(); | 
 |  | 
 |   // Unique functions, to guarantee there is only one function of a particular | 
 |   // structure. | 
 |   llvm::FoldingSetNodeID ID; | 
 |   FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI, | 
 |                              *this); | 
 |  | 
 |   void *InsertPos = nullptr; | 
 |   if (FunctionProtoType *FTP = | 
 |         FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
 |     return QualType(FTP, 0); | 
 |  | 
 |   // Determine whether the type being created is already canonical or not. | 
 |   bool isCanonical = | 
 |     EPI.ExceptionSpecType == EST_None && isCanonicalResultType(ResultTy) && | 
 |     !EPI.HasTrailingReturn; | 
 |   for (unsigned i = 0; i != NumArgs && isCanonical; ++i) | 
 |     if (!ArgArray[i].isCanonicalAsParam()) | 
 |       isCanonical = false; | 
 |  | 
 |   // If this type isn't canonical, get the canonical version of it. | 
 |   // The exception spec is not part of the canonical type. | 
 |   QualType Canonical; | 
 |   if (!isCanonical) { | 
 |     SmallVector<QualType, 16> CanonicalArgs; | 
 |     CanonicalArgs.reserve(NumArgs); | 
 |     for (unsigned i = 0; i != NumArgs; ++i) | 
 |       CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i])); | 
 |  | 
 |     FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI; | 
 |     CanonicalEPI.HasTrailingReturn = false; | 
 |     CanonicalEPI.ExceptionSpecType = EST_None; | 
 |     CanonicalEPI.NumExceptions = 0; | 
 |  | 
 |     // Result types do not have ARC lifetime qualifiers. | 
 |     QualType CanResultTy = getCanonicalType(ResultTy); | 
 |     if (ResultTy.getQualifiers().hasObjCLifetime()) { | 
 |       Qualifiers Qs = CanResultTy.getQualifiers(); | 
 |       Qs.removeObjCLifetime(); | 
 |       CanResultTy = getQualifiedType(CanResultTy.getUnqualifiedType(), Qs); | 
 |     } | 
 |  | 
 |     Canonical = getFunctionType(CanResultTy, CanonicalArgs, CanonicalEPI); | 
 |  | 
 |     // Get the new insert position for the node we care about. | 
 |     FunctionProtoType *NewIP = | 
 |       FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; | 
 |   } | 
 |  | 
 |   // FunctionProtoType objects are allocated with extra bytes after | 
 |   // them for three variable size arrays at the end: | 
 |   //  - parameter types | 
 |   //  - exception types | 
 |   //  - consumed-arguments flags | 
 |   // Instead of the exception types, there could be a noexcept | 
 |   // expression, or information used to resolve the exception | 
 |   // specification. | 
 |   size_t Size = sizeof(FunctionProtoType) + | 
 |                 NumArgs * sizeof(QualType); | 
 |   if (EPI.ExceptionSpecType == EST_Dynamic) { | 
 |     Size += EPI.NumExceptions * sizeof(QualType); | 
 |   } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) { | 
 |     Size += sizeof(Expr*); | 
 |   } else if (EPI.ExceptionSpecType == EST_Uninstantiated) { | 
 |     Size += 2 * sizeof(FunctionDecl*); | 
 |   } else if (EPI.ExceptionSpecType == EST_Unevaluated) { | 
 |     Size += sizeof(FunctionDecl*); | 
 |   } | 
 |   if (EPI.ConsumedParameters) | 
 |     Size += NumArgs * sizeof(bool); | 
 |  | 
 |   FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment); | 
 |   FunctionProtoType::ExtProtoInfo newEPI = EPI; | 
 |   new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI); | 
 |   Types.push_back(FTP); | 
 |   FunctionProtoTypes.InsertNode(FTP, InsertPos); | 
 |   return QualType(FTP, 0); | 
 | } | 
 |  | 
 | #ifndef NDEBUG | 
 | static bool NeedsInjectedClassNameType(const RecordDecl *D) { | 
 |   if (!isa<CXXRecordDecl>(D)) return false; | 
 |   const CXXRecordDecl *RD = cast<CXXRecordDecl>(D); | 
 |   if (isa<ClassTemplatePartialSpecializationDecl>(RD)) | 
 |     return true; | 
 |   if (RD->getDescribedClassTemplate() && | 
 |       !isa<ClassTemplateSpecializationDecl>(RD)) | 
 |     return true; | 
 |   return false; | 
 | } | 
 | #endif | 
 |  | 
 | /// getInjectedClassNameType - Return the unique reference to the | 
 | /// injected class name type for the specified templated declaration. | 
 | QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl, | 
 |                                               QualType TST) const { | 
 |   assert(NeedsInjectedClassNameType(Decl)); | 
 |   if (Decl->TypeForDecl) { | 
 |     assert(isa<InjectedClassNameType>(Decl->TypeForDecl)); | 
 |   } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) { | 
 |     assert(PrevDecl->TypeForDecl && "previous declaration has no type"); | 
 |     Decl->TypeForDecl = PrevDecl->TypeForDecl; | 
 |     assert(isa<InjectedClassNameType>(Decl->TypeForDecl)); | 
 |   } else { | 
 |     Type *newType = | 
 |       new (*this, TypeAlignment) InjectedClassNameType(Decl, TST); | 
 |     Decl->TypeForDecl = newType; | 
 |     Types.push_back(newType); | 
 |   } | 
 |   return QualType(Decl->TypeForDecl, 0); | 
 | } | 
 |  | 
 | /// getTypeDeclType - Return the unique reference to the type for the | 
 | /// specified type declaration. | 
 | QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const { | 
 |   assert(Decl && "Passed null for Decl param"); | 
 |   assert(!Decl->TypeForDecl && "TypeForDecl present in slow case"); | 
 |  | 
 |   if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl)) | 
 |     return getTypedefType(Typedef); | 
 |  | 
 |   assert(!isa<TemplateTypeParmDecl>(Decl) && | 
 |          "Template type parameter types are always available."); | 
 |  | 
 |   if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) { | 
 |     assert(Record->isFirstDecl() && "struct/union has previous declaration"); | 
 |     assert(!NeedsInjectedClassNameType(Record)); | 
 |     return getRecordType(Record); | 
 |   } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) { | 
 |     assert(Enum->isFirstDecl() && "enum has previous declaration"); | 
 |     return getEnumType(Enum); | 
 |   } else if (const UnresolvedUsingTypenameDecl *Using = | 
 |                dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) { | 
 |     Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using); | 
 |     Decl->TypeForDecl = newType; | 
 |     Types.push_back(newType); | 
 |   } else | 
 |     llvm_unreachable("TypeDecl without a type?"); | 
 |  | 
 |   return QualType(Decl->TypeForDecl, 0); | 
 | } | 
 |  | 
 | /// getTypedefType - Return the unique reference to the type for the | 
 | /// specified typedef name decl. | 
 | QualType | 
 | ASTContext::getTypedefType(const TypedefNameDecl *Decl, | 
 |                            QualType Canonical) const { | 
 |   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); | 
 |  | 
 |   if (Canonical.isNull()) | 
 |     Canonical = getCanonicalType(Decl->getUnderlyingType()); | 
 |   TypedefType *newType = new(*this, TypeAlignment) | 
 |     TypedefType(Type::Typedef, Decl, Canonical); | 
 |   Decl->TypeForDecl = newType; | 
 |   Types.push_back(newType); | 
 |   return QualType(newType, 0); | 
 | } | 
 |  | 
 | QualType ASTContext::getRecordType(const RecordDecl *Decl) const { | 
 |   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); | 
 |  | 
 |   if (const RecordDecl *PrevDecl = Decl->getPreviousDecl()) | 
 |     if (PrevDecl->TypeForDecl) | 
 |       return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);  | 
 |  | 
 |   RecordType *newType = new (*this, TypeAlignment) RecordType(Decl); | 
 |   Decl->TypeForDecl = newType; | 
 |   Types.push_back(newType); | 
 |   return QualType(newType, 0); | 
 | } | 
 |  | 
 | QualType ASTContext::getEnumType(const EnumDecl *Decl) const { | 
 |   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); | 
 |  | 
 |   if (const EnumDecl *PrevDecl = Decl->getPreviousDecl()) | 
 |     if (PrevDecl->TypeForDecl) | 
 |       return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);  | 
 |  | 
 |   EnumType *newType = new (*this, TypeAlignment) EnumType(Decl); | 
 |   Decl->TypeForDecl = newType; | 
 |   Types.push_back(newType); | 
 |   return QualType(newType, 0); | 
 | } | 
 |  | 
 | QualType ASTContext::getAttributedType(AttributedType::Kind attrKind, | 
 |                                        QualType modifiedType, | 
 |                                        QualType equivalentType) { | 
 |   llvm::FoldingSetNodeID id; | 
 |   AttributedType::Profile(id, attrKind, modifiedType, equivalentType); | 
 |  | 
 |   void *insertPos = nullptr; | 
 |   AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos); | 
 |   if (type) return QualType(type, 0); | 
 |  | 
 |   QualType canon = getCanonicalType(equivalentType); | 
 |   type = new (*this, TypeAlignment) | 
 |            AttributedType(canon, attrKind, modifiedType, equivalentType); | 
 |  | 
 |   Types.push_back(type); | 
 |   AttributedTypes.InsertNode(type, insertPos); | 
 |  | 
 |   return QualType(type, 0); | 
 | } | 
 |  | 
 |  | 
 | /// \brief Retrieve a substitution-result type. | 
 | QualType | 
 | ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm, | 
 |                                          QualType Replacement) const { | 
 |   assert(Replacement.isCanonical() | 
 |          && "replacement types must always be canonical"); | 
 |  | 
 |   llvm::FoldingSetNodeID ID; | 
 |   SubstTemplateTypeParmType::Profile(ID, Parm, Replacement); | 
 |   void *InsertPos = nullptr; | 
 |   SubstTemplateTypeParmType *SubstParm | 
 |     = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |  | 
 |   if (!SubstParm) { | 
 |     SubstParm = new (*this, TypeAlignment) | 
 |       SubstTemplateTypeParmType(Parm, Replacement); | 
 |     Types.push_back(SubstParm); | 
 |     SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos); | 
 |   } | 
 |  | 
 |   return QualType(SubstParm, 0); | 
 | } | 
 |  | 
 | /// \brief Retrieve a  | 
 | QualType ASTContext::getSubstTemplateTypeParmPackType( | 
 |                                           const TemplateTypeParmType *Parm, | 
 |                                               const TemplateArgument &ArgPack) { | 
 | #ifndef NDEBUG | 
 |   for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),  | 
 |                                     PEnd = ArgPack.pack_end(); | 
 |        P != PEnd; ++P) { | 
 |     assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type"); | 
 |     assert(P->getAsType().isCanonical() && "Pack contains non-canonical type"); | 
 |   } | 
 | #endif | 
 |    | 
 |   llvm::FoldingSetNodeID ID; | 
 |   SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack); | 
 |   void *InsertPos = nullptr; | 
 |   if (SubstTemplateTypeParmPackType *SubstParm | 
 |         = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
 |     return QualType(SubstParm, 0); | 
 |    | 
 |   QualType Canon; | 
 |   if (!Parm->isCanonicalUnqualified()) { | 
 |     Canon = getCanonicalType(QualType(Parm, 0)); | 
 |     Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon), | 
 |                                              ArgPack); | 
 |     SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |   } | 
 |  | 
 |   SubstTemplateTypeParmPackType *SubstParm | 
 |     = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon, | 
 |                                                                ArgPack); | 
 |   Types.push_back(SubstParm); | 
 |   SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos); | 
 |   return QualType(SubstParm, 0);   | 
 | } | 
 |  | 
 | /// \brief Retrieve the template type parameter type for a template | 
 | /// parameter or parameter pack with the given depth, index, and (optionally) | 
 | /// name. | 
 | QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index, | 
 |                                              bool ParameterPack, | 
 |                                              TemplateTypeParmDecl *TTPDecl) const { | 
 |   llvm::FoldingSetNodeID ID; | 
 |   TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl); | 
 |   void *InsertPos = nullptr; | 
 |   TemplateTypeParmType *TypeParm | 
 |     = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |  | 
 |   if (TypeParm) | 
 |     return QualType(TypeParm, 0); | 
 |  | 
 |   if (TTPDecl) { | 
 |     QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack); | 
 |     TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon); | 
 |  | 
 |     TemplateTypeParmType *TypeCheck  | 
 |       = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |     assert(!TypeCheck && "Template type parameter canonical type broken"); | 
 |     (void)TypeCheck; | 
 |   } else | 
 |     TypeParm = new (*this, TypeAlignment) | 
 |       TemplateTypeParmType(Depth, Index, ParameterPack); | 
 |  | 
 |   Types.push_back(TypeParm); | 
 |   TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos); | 
 |  | 
 |   return QualType(TypeParm, 0); | 
 | } | 
 |  | 
 | TypeSourceInfo * | 
 | ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name, | 
 |                                               SourceLocation NameLoc, | 
 |                                         const TemplateArgumentListInfo &Args, | 
 |                                               QualType Underlying) const { | 
 |   assert(!Name.getAsDependentTemplateName() &&  | 
 |          "No dependent template names here!"); | 
 |   QualType TST = getTemplateSpecializationType(Name, Args, Underlying); | 
 |  | 
 |   TypeSourceInfo *DI = CreateTypeSourceInfo(TST); | 
 |   TemplateSpecializationTypeLoc TL = | 
 |       DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>(); | 
 |   TL.setTemplateKeywordLoc(SourceLocation()); | 
 |   TL.setTemplateNameLoc(NameLoc); | 
 |   TL.setLAngleLoc(Args.getLAngleLoc()); | 
 |   TL.setRAngleLoc(Args.getRAngleLoc()); | 
 |   for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) | 
 |     TL.setArgLocInfo(i, Args[i].getLocInfo()); | 
 |   return DI; | 
 | } | 
 |  | 
 | QualType | 
 | ASTContext::getTemplateSpecializationType(TemplateName Template, | 
 |                                           const TemplateArgumentListInfo &Args, | 
 |                                           QualType Underlying) const { | 
 |   assert(!Template.getAsDependentTemplateName() &&  | 
 |          "No dependent template names here!"); | 
 |    | 
 |   unsigned NumArgs = Args.size(); | 
 |  | 
 |   SmallVector<TemplateArgument, 4> ArgVec; | 
 |   ArgVec.reserve(NumArgs); | 
 |   for (unsigned i = 0; i != NumArgs; ++i) | 
 |     ArgVec.push_back(Args[i].getArgument()); | 
 |  | 
 |   return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs, | 
 |                                        Underlying); | 
 | } | 
 |  | 
 | #ifndef NDEBUG | 
 | static bool hasAnyPackExpansions(const TemplateArgument *Args, | 
 |                                  unsigned NumArgs) { | 
 |   for (unsigned I = 0; I != NumArgs; ++I) | 
 |     if (Args[I].isPackExpansion()) | 
 |       return true; | 
 |    | 
 |   return true; | 
 | } | 
 | #endif | 
 |  | 
 | QualType | 
 | ASTContext::getTemplateSpecializationType(TemplateName Template, | 
 |                                           const TemplateArgument *Args, | 
 |                                           unsigned NumArgs, | 
 |                                           QualType Underlying) const { | 
 |   assert(!Template.getAsDependentTemplateName() &&  | 
 |          "No dependent template names here!"); | 
 |   // Look through qualified template names. | 
 |   if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName()) | 
 |     Template = TemplateName(QTN->getTemplateDecl()); | 
 |    | 
 |   bool IsTypeAlias =  | 
 |     Template.getAsTemplateDecl() && | 
 |     isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl()); | 
 |   QualType CanonType; | 
 |   if (!Underlying.isNull()) | 
 |     CanonType = getCanonicalType(Underlying); | 
 |   else { | 
 |     // We can get here with an alias template when the specialization contains | 
 |     // a pack expansion that does not match up with a parameter pack. | 
 |     assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) && | 
 |            "Caller must compute aliased type"); | 
 |     IsTypeAlias = false; | 
 |     CanonType = getCanonicalTemplateSpecializationType(Template, Args, | 
 |                                                        NumArgs); | 
 |   } | 
 |  | 
 |   // Allocate the (non-canonical) template specialization type, but don't | 
 |   // try to unique it: these types typically have location information that | 
 |   // we don't unique and don't want to lose. | 
 |   void *Mem = Allocate(sizeof(TemplateSpecializationType) + | 
 |                        sizeof(TemplateArgument) * NumArgs + | 
 |                        (IsTypeAlias? sizeof(QualType) : 0), | 
 |                        TypeAlignment); | 
 |   TemplateSpecializationType *Spec | 
 |     = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType, | 
 |                                          IsTypeAlias ? Underlying : QualType()); | 
 |  | 
 |   Types.push_back(Spec); | 
 |   return QualType(Spec, 0); | 
 | } | 
 |  | 
 | QualType | 
 | ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template, | 
 |                                                    const TemplateArgument *Args, | 
 |                                                    unsigned NumArgs) const { | 
 |   assert(!Template.getAsDependentTemplateName() &&  | 
 |          "No dependent template names here!"); | 
 |  | 
 |   // Look through qualified template names. | 
 |   if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName()) | 
 |     Template = TemplateName(QTN->getTemplateDecl()); | 
 |    | 
 |   // Build the canonical template specialization type. | 
 |   TemplateName CanonTemplate = getCanonicalTemplateName(Template); | 
 |   SmallVector<TemplateArgument, 4> CanonArgs; | 
 |   CanonArgs.reserve(NumArgs); | 
 |   for (unsigned I = 0; I != NumArgs; ++I) | 
 |     CanonArgs.push_back(getCanonicalTemplateArgument(Args[I])); | 
 |  | 
 |   // Determine whether this canonical template specialization type already | 
 |   // exists. | 
 |   llvm::FoldingSetNodeID ID; | 
 |   TemplateSpecializationType::Profile(ID, CanonTemplate, | 
 |                                       CanonArgs.data(), NumArgs, *this); | 
 |  | 
 |   void *InsertPos = nullptr; | 
 |   TemplateSpecializationType *Spec | 
 |     = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |  | 
 |   if (!Spec) { | 
 |     // Allocate a new canonical template specialization type. | 
 |     void *Mem = Allocate((sizeof(TemplateSpecializationType) + | 
 |                           sizeof(TemplateArgument) * NumArgs), | 
 |                          TypeAlignment); | 
 |     Spec = new (Mem) TemplateSpecializationType(CanonTemplate, | 
 |                                                 CanonArgs.data(), NumArgs, | 
 |                                                 QualType(), QualType()); | 
 |     Types.push_back(Spec); | 
 |     TemplateSpecializationTypes.InsertNode(Spec, InsertPos); | 
 |   } | 
 |  | 
 |   assert(Spec->isDependentType() && | 
 |          "Non-dependent template-id type must have a canonical type"); | 
 |   return QualType(Spec, 0); | 
 | } | 
 |  | 
 | QualType | 
 | ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword, | 
 |                               NestedNameSpecifier *NNS, | 
 |                               QualType NamedType) const { | 
 |   llvm::FoldingSetNodeID ID; | 
 |   ElaboratedType::Profile(ID, Keyword, NNS, NamedType); | 
 |  | 
 |   void *InsertPos = nullptr; | 
 |   ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |   if (T) | 
 |     return QualType(T, 0); | 
 |  | 
 |   QualType Canon = NamedType; | 
 |   if (!Canon.isCanonical()) { | 
 |     Canon = getCanonicalType(NamedType); | 
 |     ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |     assert(!CheckT && "Elaborated canonical type broken"); | 
 |     (void)CheckT; | 
 |   } | 
 |  | 
 |   T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon); | 
 |   Types.push_back(T); | 
 |   ElaboratedTypes.InsertNode(T, InsertPos); | 
 |   return QualType(T, 0); | 
 | } | 
 |  | 
 | QualType | 
 | ASTContext::getParenType(QualType InnerType) const { | 
 |   llvm::FoldingSetNodeID ID; | 
 |   ParenType::Profile(ID, InnerType); | 
 |  | 
 |   void *InsertPos = nullptr; | 
 |   ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |   if (T) | 
 |     return QualType(T, 0); | 
 |  | 
 |   QualType Canon = InnerType; | 
 |   if (!Canon.isCanonical()) { | 
 |     Canon = getCanonicalType(InnerType); | 
 |     ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |     assert(!CheckT && "Paren canonical type broken"); | 
 |     (void)CheckT; | 
 |   } | 
 |  | 
 |   T = new (*this) ParenType(InnerType, Canon); | 
 |   Types.push_back(T); | 
 |   ParenTypes.InsertNode(T, InsertPos); | 
 |   return QualType(T, 0); | 
 | } | 
 |  | 
 | QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword, | 
 |                                           NestedNameSpecifier *NNS, | 
 |                                           const IdentifierInfo *Name, | 
 |                                           QualType Canon) const { | 
 |   if (Canon.isNull()) { | 
 |     NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); | 
 |     ElaboratedTypeKeyword CanonKeyword = Keyword; | 
 |     if (Keyword == ETK_None) | 
 |       CanonKeyword = ETK_Typename; | 
 |      | 
 |     if (CanonNNS != NNS || CanonKeyword != Keyword) | 
 |       Canon = getDependentNameType(CanonKeyword, CanonNNS, Name); | 
 |   } | 
 |  | 
 |   llvm::FoldingSetNodeID ID; | 
 |   DependentNameType::Profile(ID, Keyword, NNS, Name); | 
 |  | 
 |   void *InsertPos = nullptr; | 
 |   DependentNameType *T | 
 |     = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |   if (T) | 
 |     return QualType(T, 0); | 
 |  | 
 |   T = new (*this) DependentNameType(Keyword, NNS, Name, Canon); | 
 |   Types.push_back(T); | 
 |   DependentNameTypes.InsertNode(T, InsertPos); | 
 |   return QualType(T, 0); | 
 | } | 
 |  | 
 | QualType | 
 | ASTContext::getDependentTemplateSpecializationType( | 
 |                                  ElaboratedTypeKeyword Keyword, | 
 |                                  NestedNameSpecifier *NNS, | 
 |                                  const IdentifierInfo *Name, | 
 |                                  const TemplateArgumentListInfo &Args) const { | 
 |   // TODO: avoid this copy | 
 |   SmallVector<TemplateArgument, 16> ArgCopy; | 
 |   for (unsigned I = 0, E = Args.size(); I != E; ++I) | 
 |     ArgCopy.push_back(Args[I].getArgument()); | 
 |   return getDependentTemplateSpecializationType(Keyword, NNS, Name, | 
 |                                                 ArgCopy.size(), | 
 |                                                 ArgCopy.data()); | 
 | } | 
 |  | 
 | QualType | 
 | ASTContext::getDependentTemplateSpecializationType( | 
 |                                  ElaboratedTypeKeyword Keyword, | 
 |                                  NestedNameSpecifier *NNS, | 
 |                                  const IdentifierInfo *Name, | 
 |                                  unsigned NumArgs, | 
 |                                  const TemplateArgument *Args) const { | 
 |   assert((!NNS || NNS->isDependent()) &&  | 
 |          "nested-name-specifier must be dependent"); | 
 |  | 
 |   llvm::FoldingSetNodeID ID; | 
 |   DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS, | 
 |                                                Name, NumArgs, Args); | 
 |  | 
 |   void *InsertPos = nullptr; | 
 |   DependentTemplateSpecializationType *T | 
 |     = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |   if (T) | 
 |     return QualType(T, 0); | 
 |  | 
 |   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); | 
 |  | 
 |   ElaboratedTypeKeyword CanonKeyword = Keyword; | 
 |   if (Keyword == ETK_None) CanonKeyword = ETK_Typename; | 
 |  | 
 |   bool AnyNonCanonArgs = false; | 
 |   SmallVector<TemplateArgument, 16> CanonArgs(NumArgs); | 
 |   for (unsigned I = 0; I != NumArgs; ++I) { | 
 |     CanonArgs[I] = getCanonicalTemplateArgument(Args[I]); | 
 |     if (!CanonArgs[I].structurallyEquals(Args[I])) | 
 |       AnyNonCanonArgs = true; | 
 |   } | 
 |  | 
 |   QualType Canon; | 
 |   if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) { | 
 |     Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS, | 
 |                                                    Name, NumArgs, | 
 |                                                    CanonArgs.data()); | 
 |  | 
 |     // Find the insert position again. | 
 |     DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |   } | 
 |  | 
 |   void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) + | 
 |                         sizeof(TemplateArgument) * NumArgs), | 
 |                        TypeAlignment); | 
 |   T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS, | 
 |                                                     Name, NumArgs, Args, Canon); | 
 |   Types.push_back(T); | 
 |   DependentTemplateSpecializationTypes.InsertNode(T, InsertPos); | 
 |   return QualType(T, 0); | 
 | } | 
 |  | 
 | QualType ASTContext::getPackExpansionType(QualType Pattern, | 
 |                                           Optional<unsigned> NumExpansions) { | 
 |   llvm::FoldingSetNodeID ID; | 
 |   PackExpansionType::Profile(ID, Pattern, NumExpansions); | 
 |  | 
 |   assert(Pattern->containsUnexpandedParameterPack() && | 
 |          "Pack expansions must expand one or more parameter packs"); | 
 |   void *InsertPos = nullptr; | 
 |   PackExpansionType *T | 
 |     = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |   if (T) | 
 |     return QualType(T, 0); | 
 |  | 
 |   QualType Canon; | 
 |   if (!Pattern.isCanonical()) { | 
 |     Canon = getCanonicalType(Pattern); | 
 |     // The canonical type might not contain an unexpanded parameter pack, if it | 
 |     // contains an alias template specialization which ignores one of its | 
 |     // parameters. | 
 |     if (Canon->containsUnexpandedParameterPack()) { | 
 |       Canon = getPackExpansionType(Canon, NumExpansions); | 
 |  | 
 |       // Find the insert position again, in case we inserted an element into | 
 |       // PackExpansionTypes and invalidated our insert position. | 
 |       PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |     } | 
 |   } | 
 |  | 
 |   T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions); | 
 |   Types.push_back(T); | 
 |   PackExpansionTypes.InsertNode(T, InsertPos); | 
 |   return QualType(T, 0); | 
 | } | 
 |  | 
 | /// CmpProtocolNames - Comparison predicate for sorting protocols | 
 | /// alphabetically. | 
 | static bool CmpProtocolNames(const ObjCProtocolDecl *LHS, | 
 |                             const ObjCProtocolDecl *RHS) { | 
 |   return LHS->getDeclName() < RHS->getDeclName(); | 
 | } | 
 |  | 
 | static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols, | 
 |                                 unsigned NumProtocols) { | 
 |   if (NumProtocols == 0) return true; | 
 |  | 
 |   if (Protocols[0]->getCanonicalDecl() != Protocols[0]) | 
 |     return false; | 
 |    | 
 |   for (unsigned i = 1; i != NumProtocols; ++i) | 
 |     if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) || | 
 |         Protocols[i]->getCanonicalDecl() != Protocols[i]) | 
 |       return false; | 
 |   return true; | 
 | } | 
 |  | 
 | static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols, | 
 |                                    unsigned &NumProtocols) { | 
 |   ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols; | 
 |  | 
 |   // Sort protocols, keyed by name. | 
 |   std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames); | 
 |  | 
 |   // Canonicalize. | 
 |   for (unsigned I = 0, N = NumProtocols; I != N; ++I) | 
 |     Protocols[I] = Protocols[I]->getCanonicalDecl(); | 
 |    | 
 |   // Remove duplicates. | 
 |   ProtocolsEnd = std::unique(Protocols, ProtocolsEnd); | 
 |   NumProtocols = ProtocolsEnd-Protocols; | 
 | } | 
 |  | 
 | QualType ASTContext::getObjCObjectType(QualType BaseType, | 
 |                                        ObjCProtocolDecl * const *Protocols, | 
 |                                        unsigned NumProtocols) const { | 
 |   // If the base type is an interface and there aren't any protocols | 
 |   // to add, then the interface type will do just fine. | 
 |   if (!NumProtocols && isa<ObjCInterfaceType>(BaseType)) | 
 |     return BaseType; | 
 |  | 
 |   // Look in the folding set for an existing type. | 
 |   llvm::FoldingSetNodeID ID; | 
 |   ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols); | 
 |   void *InsertPos = nullptr; | 
 |   if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
 |     return QualType(QT, 0); | 
 |  | 
 |   // Build the canonical type, which has the canonical base type and | 
 |   // a sorted-and-uniqued list of protocols. | 
 |   QualType Canonical; | 
 |   bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols); | 
 |   if (!ProtocolsSorted || !BaseType.isCanonical()) { | 
 |     if (!ProtocolsSorted) { | 
 |       SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols, | 
 |                                                      Protocols + NumProtocols); | 
 |       unsigned UniqueCount = NumProtocols; | 
 |  | 
 |       SortAndUniqueProtocols(&Sorted[0], UniqueCount); | 
 |       Canonical = getObjCObjectType(getCanonicalType(BaseType), | 
 |                                     &Sorted[0], UniqueCount); | 
 |     } else { | 
 |       Canonical = getObjCObjectType(getCanonicalType(BaseType), | 
 |                                     Protocols, NumProtocols); | 
 |     } | 
 |  | 
 |     // Regenerate InsertPos. | 
 |     ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |   } | 
 |  | 
 |   unsigned Size = sizeof(ObjCObjectTypeImpl); | 
 |   Size += NumProtocols * sizeof(ObjCProtocolDecl *); | 
 |   void *Mem = Allocate(Size, TypeAlignment); | 
 |   ObjCObjectTypeImpl *T = | 
 |     new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols); | 
 |  | 
 |   Types.push_back(T); | 
 |   ObjCObjectTypes.InsertNode(T, InsertPos); | 
 |   return QualType(T, 0); | 
 | } | 
 |  | 
 | /// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's | 
 | /// protocol list adopt all protocols in QT's qualified-id protocol | 
 | /// list. | 
 | bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT, | 
 |                                                 ObjCInterfaceDecl *IC) { | 
 |   if (!QT->isObjCQualifiedIdType()) | 
 |     return false; | 
 |    | 
 |   if (const ObjCObjectPointerType *OPT = QT->getAs<ObjCObjectPointerType>()) { | 
 |     // If both the right and left sides have qualifiers. | 
 |     for (auto *Proto : OPT->quals()) { | 
 |       if (!IC->ClassImplementsProtocol(Proto, false)) | 
 |         return false; | 
 |     } | 
 |     return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in | 
 | /// QT's qualified-id protocol list adopt all protocols in IDecl's list | 
 | /// of protocols. | 
 | bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT, | 
 |                                                 ObjCInterfaceDecl *IDecl) { | 
 |   if (!QT->isObjCQualifiedIdType()) | 
 |     return false; | 
 |   const ObjCObjectPointerType *OPT = QT->getAs<ObjCObjectPointerType>(); | 
 |   if (!OPT) | 
 |     return false; | 
 |   if (!IDecl->hasDefinition()) | 
 |     return false; | 
 |   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols; | 
 |   CollectInheritedProtocols(IDecl, InheritedProtocols); | 
 |   if (InheritedProtocols.empty()) | 
 |     return false; | 
 |   // Check that if every protocol in list of id<plist> conforms to a protcol | 
 |   // of IDecl's, then bridge casting is ok. | 
 |   bool Conforms = false; | 
 |   for (auto *Proto : OPT->quals()) { | 
 |     Conforms = false; | 
 |     for (auto *PI : InheritedProtocols) { | 
 |       if (ProtocolCompatibleWithProtocol(Proto, PI)) { | 
 |         Conforms = true; | 
 |         break; | 
 |       } | 
 |     } | 
 |     if (!Conforms) | 
 |       break; | 
 |   } | 
 |   if (Conforms) | 
 |     return true; | 
 |    | 
 |   for (auto *PI : InheritedProtocols) { | 
 |     // If both the right and left sides have qualifiers. | 
 |     bool Adopts = false; | 
 |     for (auto *Proto : OPT->quals()) { | 
 |       // return 'true' if 'PI' is in the inheritance hierarchy of Proto | 
 |       if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto))) | 
 |         break; | 
 |     } | 
 |     if (!Adopts) | 
 |       return false; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for | 
 | /// the given object type. | 
 | QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const { | 
 |   llvm::FoldingSetNodeID ID; | 
 |   ObjCObjectPointerType::Profile(ID, ObjectT); | 
 |  | 
 |   void *InsertPos = nullptr; | 
 |   if (ObjCObjectPointerType *QT = | 
 |               ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
 |     return QualType(QT, 0); | 
 |  | 
 |   // Find the canonical object type. | 
 |   QualType Canonical; | 
 |   if (!ObjectT.isCanonical()) { | 
 |     Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT)); | 
 |  | 
 |     // Regenerate InsertPos. | 
 |     ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |   } | 
 |  | 
 |   // No match. | 
 |   void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment); | 
 |   ObjCObjectPointerType *QType = | 
 |     new (Mem) ObjCObjectPointerType(Canonical, ObjectT); | 
 |  | 
 |   Types.push_back(QType); | 
 |   ObjCObjectPointerTypes.InsertNode(QType, InsertPos); | 
 |   return QualType(QType, 0); | 
 | } | 
 |  | 
 | /// getObjCInterfaceType - Return the unique reference to the type for the | 
 | /// specified ObjC interface decl. The list of protocols is optional. | 
 | QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl, | 
 |                                           ObjCInterfaceDecl *PrevDecl) const { | 
 |   if (Decl->TypeForDecl) | 
 |     return QualType(Decl->TypeForDecl, 0); | 
 |  | 
 |   if (PrevDecl) { | 
 |     assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl"); | 
 |     Decl->TypeForDecl = PrevDecl->TypeForDecl; | 
 |     return QualType(PrevDecl->TypeForDecl, 0); | 
 |   } | 
 |  | 
 |   // Prefer the definition, if there is one. | 
 |   if (const ObjCInterfaceDecl *Def = Decl->getDefinition()) | 
 |     Decl = Def; | 
 |    | 
 |   void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment); | 
 |   ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl); | 
 |   Decl->TypeForDecl = T; | 
 |   Types.push_back(T); | 
 |   return QualType(T, 0); | 
 | } | 
 |  | 
 | /// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique | 
 | /// TypeOfExprType AST's (since expression's are never shared). For example, | 
 | /// multiple declarations that refer to "typeof(x)" all contain different | 
 | /// DeclRefExpr's. This doesn't effect the type checker, since it operates | 
 | /// on canonical type's (which are always unique). | 
 | QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const { | 
 |   TypeOfExprType *toe; | 
 |   if (tofExpr->isTypeDependent()) { | 
 |     llvm::FoldingSetNodeID ID; | 
 |     DependentTypeOfExprType::Profile(ID, *this, tofExpr); | 
 |  | 
 |     void *InsertPos = nullptr; | 
 |     DependentTypeOfExprType *Canon | 
 |       = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |     if (Canon) { | 
 |       // We already have a "canonical" version of an identical, dependent | 
 |       // typeof(expr) type. Use that as our canonical type. | 
 |       toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, | 
 |                                           QualType((TypeOfExprType*)Canon, 0)); | 
 |     } else { | 
 |       // Build a new, canonical typeof(expr) type. | 
 |       Canon | 
 |         = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr); | 
 |       DependentTypeOfExprTypes.InsertNode(Canon, InsertPos); | 
 |       toe = Canon; | 
 |     } | 
 |   } else { | 
 |     QualType Canonical = getCanonicalType(tofExpr->getType()); | 
 |     toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical); | 
 |   } | 
 |   Types.push_back(toe); | 
 |   return QualType(toe, 0); | 
 | } | 
 |  | 
 | /// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique | 
 | /// TypeOfType nodes. The only motivation to unique these nodes would be | 
 | /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be | 
 | /// an issue. This doesn't affect the type checker, since it operates | 
 | /// on canonical types (which are always unique). | 
 | QualType ASTContext::getTypeOfType(QualType tofType) const { | 
 |   QualType Canonical = getCanonicalType(tofType); | 
 |   TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical); | 
 |   Types.push_back(tot); | 
 |   return QualType(tot, 0); | 
 | } | 
 |  | 
 |  | 
 | /// \brief Unlike many "get<Type>" functions, we don't unique DecltypeType | 
 | /// nodes. This would never be helpful, since each such type has its own | 
 | /// expression, and would not give a significant memory saving, since there | 
 | /// is an Expr tree under each such type. | 
 | QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const { | 
 |   DecltypeType *dt; | 
 |  | 
 |   // C++11 [temp.type]p2: | 
 |   //   If an expression e involves a template parameter, decltype(e) denotes a | 
 |   //   unique dependent type. Two such decltype-specifiers refer to the same | 
 |   //   type only if their expressions are equivalent (14.5.6.1). | 
 |   if (e->isInstantiationDependent()) { | 
 |     llvm::FoldingSetNodeID ID; | 
 |     DependentDecltypeType::Profile(ID, *this, e); | 
 |  | 
 |     void *InsertPos = nullptr; | 
 |     DependentDecltypeType *Canon | 
 |       = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |     if (!Canon) { | 
 |       // Build a new, canonical typeof(expr) type. | 
 |       Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e); | 
 |       DependentDecltypeTypes.InsertNode(Canon, InsertPos); | 
 |     } | 
 |     dt = new (*this, TypeAlignment) | 
 |         DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0)); | 
 |   } else { | 
 |     dt = new (*this, TypeAlignment) | 
 |         DecltypeType(e, UnderlyingType, getCanonicalType(UnderlyingType)); | 
 |   } | 
 |   Types.push_back(dt); | 
 |   return QualType(dt, 0); | 
 | } | 
 |  | 
 | /// getUnaryTransformationType - We don't unique these, since the memory | 
 | /// savings are minimal and these are rare. | 
 | QualType ASTContext::getUnaryTransformType(QualType BaseType, | 
 |                                            QualType UnderlyingType, | 
 |                                            UnaryTransformType::UTTKind Kind) | 
 |     const { | 
 |   UnaryTransformType *Ty = | 
 |     new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,  | 
 |                                                    Kind, | 
 |                                  UnderlyingType->isDependentType() ? | 
 |                                  QualType() : getCanonicalType(UnderlyingType)); | 
 |   Types.push_back(Ty); | 
 |   return QualType(Ty, 0); | 
 | } | 
 |  | 
 | /// getAutoType - Return the uniqued reference to the 'auto' type which has been | 
 | /// deduced to the given type, or to the canonical undeduced 'auto' type, or the | 
 | /// canonical deduced-but-dependent 'auto' type. | 
 | QualType ASTContext::getAutoType(QualType DeducedType, bool IsDecltypeAuto, | 
 |                                  bool IsDependent) const { | 
 |   if (DeducedType.isNull() && !IsDecltypeAuto && !IsDependent) | 
 |     return getAutoDeductType(); | 
 |  | 
 |   // Look in the folding set for an existing type. | 
 |   void *InsertPos = nullptr; | 
 |   llvm::FoldingSetNodeID ID; | 
 |   AutoType::Profile(ID, DeducedType, IsDecltypeAuto, IsDependent); | 
 |   if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
 |     return QualType(AT, 0); | 
 |  | 
 |   AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType, | 
 |                                                      IsDecltypeAuto, | 
 |                                                      IsDependent); | 
 |   Types.push_back(AT); | 
 |   if (InsertPos) | 
 |     AutoTypes.InsertNode(AT, InsertPos); | 
 |   return QualType(AT, 0); | 
 | } | 
 |  | 
 | /// getAtomicType - Return the uniqued reference to the atomic type for | 
 | /// the given value type. | 
 | QualType ASTContext::getAtomicType(QualType T) const { | 
 |   // Unique pointers, to guarantee there is only one pointer of a particular | 
 |   // structure. | 
 |   llvm::FoldingSetNodeID ID; | 
 |   AtomicType::Profile(ID, T); | 
 |  | 
 |   void *InsertPos = nullptr; | 
 |   if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
 |     return QualType(AT, 0); | 
 |  | 
 |   // If the atomic value type isn't canonical, this won't be a canonical type | 
 |   // either, so fill in the canonical type field. | 
 |   QualType Canonical; | 
 |   if (!T.isCanonical()) { | 
 |     Canonical = getAtomicType(getCanonicalType(T)); | 
 |  | 
 |     // Get the new insert position for the node we care about. | 
 |     AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; | 
 |   } | 
 |   AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical); | 
 |   Types.push_back(New); | 
 |   AtomicTypes.InsertNode(New, InsertPos); | 
 |   return QualType(New, 0); | 
 | } | 
 |  | 
 | /// getAutoDeductType - Get type pattern for deducing against 'auto'. | 
 | QualType ASTContext::getAutoDeductType() const { | 
 |   if (AutoDeductTy.isNull()) | 
 |     AutoDeductTy = QualType( | 
 |       new (*this, TypeAlignment) AutoType(QualType(), /*decltype(auto)*/false, | 
 |                                           /*dependent*/false), | 
 |       0); | 
 |   return AutoDeductTy; | 
 | } | 
 |  | 
 | /// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'. | 
 | QualType ASTContext::getAutoRRefDeductType() const { | 
 |   if (AutoRRefDeductTy.isNull()) | 
 |     AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType()); | 
 |   assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern"); | 
 |   return AutoRRefDeductTy; | 
 | } | 
 |  | 
 | /// getTagDeclType - Return the unique reference to the type for the | 
 | /// specified TagDecl (struct/union/class/enum) decl. | 
 | QualType ASTContext::getTagDeclType(const TagDecl *Decl) const { | 
 |   assert (Decl); | 
 |   // FIXME: What is the design on getTagDeclType when it requires casting | 
 |   // away const?  mutable? | 
 |   return getTypeDeclType(const_cast<TagDecl*>(Decl)); | 
 | } | 
 |  | 
 | /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result | 
 | /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and | 
 | /// needs to agree with the definition in <stddef.h>. | 
 | CanQualType ASTContext::getSizeType() const { | 
 |   return getFromTargetType(Target->getSizeType()); | 
 | } | 
 |  | 
 | /// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5). | 
 | CanQualType ASTContext::getIntMaxType() const { | 
 |   return getFromTargetType(Target->getIntMaxType()); | 
 | } | 
 |  | 
 | /// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5). | 
 | CanQualType ASTContext::getUIntMaxType() const { | 
 |   return getFromTargetType(Target->getUIntMaxType()); | 
 | } | 
 |  | 
 | /// getSignedWCharType - Return the type of "signed wchar_t". | 
 | /// Used when in C++, as a GCC extension. | 
 | QualType ASTContext::getSignedWCharType() const { | 
 |   // FIXME: derive from "Target" ? | 
 |   return WCharTy; | 
 | } | 
 |  | 
 | /// getUnsignedWCharType - Return the type of "unsigned wchar_t". | 
 | /// Used when in C++, as a GCC extension. | 
 | QualType ASTContext::getUnsignedWCharType() const { | 
 |   // FIXME: derive from "Target" ? | 
 |   return UnsignedIntTy; | 
 | } | 
 |  | 
 | QualType ASTContext::getIntPtrType() const { | 
 |   return getFromTargetType(Target->getIntPtrType()); | 
 | } | 
 |  | 
 | QualType ASTContext::getUIntPtrType() const { | 
 |   return getCorrespondingUnsignedType(getIntPtrType()); | 
 | } | 
 |  | 
 | /// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17) | 
 | /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9). | 
 | QualType ASTContext::getPointerDiffType() const { | 
 |   return getFromTargetType(Target->getPtrDiffType(0)); | 
 | } | 
 |  | 
 | /// \brief Return the unique type for "pid_t" defined in | 
 | /// <sys/types.h>. We need this to compute the correct type for vfork(). | 
 | QualType ASTContext::getProcessIDType() const { | 
 |   return getFromTargetType(Target->getProcessIDType()); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                              Type Operators | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | CanQualType ASTContext::getCanonicalParamType(QualType T) const { | 
 |   // Push qualifiers into arrays, and then discard any remaining | 
 |   // qualifiers. | 
 |   T = getCanonicalType(T); | 
 |   T = getVariableArrayDecayedType(T); | 
 |   const Type *Ty = T.getTypePtr(); | 
 |   QualType Result; | 
 |   if (isa<ArrayType>(Ty)) { | 
 |     Result = getArrayDecayedType(QualType(Ty,0)); | 
 |   } else if (isa<FunctionType>(Ty)) { | 
 |     Result = getPointerType(QualType(Ty, 0)); | 
 |   } else { | 
 |     Result = QualType(Ty, 0); | 
 |   } | 
 |  | 
 |   return CanQualType::CreateUnsafe(Result); | 
 | } | 
 |  | 
 | QualType ASTContext::getUnqualifiedArrayType(QualType type, | 
 |                                              Qualifiers &quals) { | 
 |   SplitQualType splitType = type.getSplitUnqualifiedType(); | 
 |  | 
 |   // FIXME: getSplitUnqualifiedType() actually walks all the way to | 
 |   // the unqualified desugared type and then drops it on the floor. | 
 |   // We then have to strip that sugar back off with | 
 |   // getUnqualifiedDesugaredType(), which is silly. | 
 |   const ArrayType *AT = | 
 |     dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType()); | 
 |  | 
 |   // If we don't have an array, just use the results in splitType. | 
 |   if (!AT) { | 
 |     quals = splitType.Quals; | 
 |     return QualType(splitType.Ty, 0); | 
 |   } | 
 |  | 
 |   // Otherwise, recurse on the array's element type. | 
 |   QualType elementType = AT->getElementType(); | 
 |   QualType unqualElementType = getUnqualifiedArrayType(elementType, quals); | 
 |  | 
 |   // If that didn't change the element type, AT has no qualifiers, so we | 
 |   // can just use the results in splitType. | 
 |   if (elementType == unqualElementType) { | 
 |     assert(quals.empty()); // from the recursive call | 
 |     quals = splitType.Quals; | 
 |     return QualType(splitType.Ty, 0); | 
 |   } | 
 |  | 
 |   // Otherwise, add in the qualifiers from the outermost type, then | 
 |   // build the type back up. | 
 |   quals.addConsistentQualifiers(splitType.Quals); | 
 |  | 
 |   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) { | 
 |     return getConstantArrayType(unqualElementType, CAT->getSize(), | 
 |                                 CAT->getSizeModifier(), 0); | 
 |   } | 
 |  | 
 |   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) { | 
 |     return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0); | 
 |   } | 
 |  | 
 |   if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) { | 
 |     return getVariableArrayType(unqualElementType, | 
 |                                 VAT->getSizeExpr(), | 
 |                                 VAT->getSizeModifier(), | 
 |                                 VAT->getIndexTypeCVRQualifiers(), | 
 |                                 VAT->getBracketsRange()); | 
 |   } | 
 |  | 
 |   const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT); | 
 |   return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(), | 
 |                                     DSAT->getSizeModifier(), 0, | 
 |                                     SourceRange()); | 
 | } | 
 |  | 
 | /// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that | 
 | /// may be similar (C++ 4.4), replaces T1 and T2 with the type that | 
 | /// they point to and return true. If T1 and T2 aren't pointer types | 
 | /// or pointer-to-member types, or if they are not similar at this | 
 | /// level, returns false and leaves T1 and T2 unchanged. Top-level | 
 | /// qualifiers on T1 and T2 are ignored. This function will typically | 
 | /// be called in a loop that successively "unwraps" pointer and | 
 | /// pointer-to-member types to compare them at each level. | 
 | bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) { | 
 |   const PointerType *T1PtrType = T1->getAs<PointerType>(), | 
 |                     *T2PtrType = T2->getAs<PointerType>(); | 
 |   if (T1PtrType && T2PtrType) { | 
 |     T1 = T1PtrType->getPointeeType(); | 
 |     T2 = T2PtrType->getPointeeType(); | 
 |     return true; | 
 |   } | 
 |    | 
 |   const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(), | 
 |                           *T2MPType = T2->getAs<MemberPointerType>(); | 
 |   if (T1MPType && T2MPType &&  | 
 |       hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),  | 
 |                              QualType(T2MPType->getClass(), 0))) { | 
 |     T1 = T1MPType->getPointeeType(); | 
 |     T2 = T2MPType->getPointeeType(); | 
 |     return true; | 
 |   } | 
 |    | 
 |   if (getLangOpts().ObjC1) { | 
 |     const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(), | 
 |                                 *T2OPType = T2->getAs<ObjCObjectPointerType>(); | 
 |     if (T1OPType && T2OPType) { | 
 |       T1 = T1OPType->getPointeeType(); | 
 |       T2 = T2OPType->getPointeeType(); | 
 |       return true; | 
 |     } | 
 |   } | 
 |    | 
 |   // FIXME: Block pointers, too? | 
 |    | 
 |   return false; | 
 | } | 
 |  | 
 | DeclarationNameInfo | 
 | ASTContext::getNameForTemplate(TemplateName Name, | 
 |                                SourceLocation NameLoc) const { | 
 |   switch (Name.getKind()) { | 
 |   case TemplateName::QualifiedTemplate: | 
 |   case TemplateName::Template: | 
 |     // DNInfo work in progress: CHECKME: what about DNLoc? | 
 |     return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(), | 
 |                                NameLoc); | 
 |  | 
 |   case TemplateName::OverloadedTemplate: { | 
 |     OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate(); | 
 |     // DNInfo work in progress: CHECKME: what about DNLoc? | 
 |     return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc); | 
 |   } | 
 |  | 
 |   case TemplateName::DependentTemplate: { | 
 |     DependentTemplateName *DTN = Name.getAsDependentTemplateName(); | 
 |     DeclarationName DName; | 
 |     if (DTN->isIdentifier()) { | 
 |       DName = DeclarationNames.getIdentifier(DTN->getIdentifier()); | 
 |       return DeclarationNameInfo(DName, NameLoc); | 
 |     } else { | 
 |       DName = DeclarationNames.getCXXOperatorName(DTN->getOperator()); | 
 |       // DNInfo work in progress: FIXME: source locations? | 
 |       DeclarationNameLoc DNLoc; | 
 |       DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding(); | 
 |       DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding(); | 
 |       return DeclarationNameInfo(DName, NameLoc, DNLoc); | 
 |     } | 
 |   } | 
 |  | 
 |   case TemplateName::SubstTemplateTemplateParm: { | 
 |     SubstTemplateTemplateParmStorage *subst | 
 |       = Name.getAsSubstTemplateTemplateParm(); | 
 |     return DeclarationNameInfo(subst->getParameter()->getDeclName(), | 
 |                                NameLoc); | 
 |   } | 
 |  | 
 |   case TemplateName::SubstTemplateTemplateParmPack: { | 
 |     SubstTemplateTemplateParmPackStorage *subst | 
 |       = Name.getAsSubstTemplateTemplateParmPack(); | 
 |     return DeclarationNameInfo(subst->getParameterPack()->getDeclName(), | 
 |                                NameLoc); | 
 |   } | 
 |   } | 
 |  | 
 |   llvm_unreachable("bad template name kind!"); | 
 | } | 
 |  | 
 | TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const { | 
 |   switch (Name.getKind()) { | 
 |   case TemplateName::QualifiedTemplate: | 
 |   case TemplateName::Template: { | 
 |     TemplateDecl *Template = Name.getAsTemplateDecl(); | 
 |     if (TemplateTemplateParmDecl *TTP  | 
 |           = dyn_cast<TemplateTemplateParmDecl>(Template)) | 
 |       Template = getCanonicalTemplateTemplateParmDecl(TTP); | 
 |    | 
 |     // The canonical template name is the canonical template declaration. | 
 |     return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl())); | 
 |   } | 
 |  | 
 |   case TemplateName::OverloadedTemplate: | 
 |     llvm_unreachable("cannot canonicalize overloaded template"); | 
 |  | 
 |   case TemplateName::DependentTemplate: { | 
 |     DependentTemplateName *DTN = Name.getAsDependentTemplateName(); | 
 |     assert(DTN && "Non-dependent template names must refer to template decls."); | 
 |     return DTN->CanonicalTemplateName; | 
 |   } | 
 |  | 
 |   case TemplateName::SubstTemplateTemplateParm: { | 
 |     SubstTemplateTemplateParmStorage *subst | 
 |       = Name.getAsSubstTemplateTemplateParm(); | 
 |     return getCanonicalTemplateName(subst->getReplacement()); | 
 |   } | 
 |  | 
 |   case TemplateName::SubstTemplateTemplateParmPack: { | 
 |     SubstTemplateTemplateParmPackStorage *subst | 
 |                                   = Name.getAsSubstTemplateTemplateParmPack(); | 
 |     TemplateTemplateParmDecl *canonParameter | 
 |       = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack()); | 
 |     TemplateArgument canonArgPack | 
 |       = getCanonicalTemplateArgument(subst->getArgumentPack()); | 
 |     return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack); | 
 |   } | 
 |   } | 
 |  | 
 |   llvm_unreachable("bad template name!"); | 
 | } | 
 |  | 
 | bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) { | 
 |   X = getCanonicalTemplateName(X); | 
 |   Y = getCanonicalTemplateName(Y); | 
 |   return X.getAsVoidPointer() == Y.getAsVoidPointer(); | 
 | } | 
 |  | 
 | TemplateArgument | 
 | ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const { | 
 |   switch (Arg.getKind()) { | 
 |     case TemplateArgument::Null: | 
 |       return Arg; | 
 |  | 
 |     case TemplateArgument::Expression: | 
 |       return Arg; | 
 |  | 
 |     case TemplateArgument::Declaration: { | 
 |       ValueDecl *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl()); | 
 |       return TemplateArgument(D, Arg.isDeclForReferenceParam()); | 
 |     } | 
 |  | 
 |     case TemplateArgument::NullPtr: | 
 |       return TemplateArgument(getCanonicalType(Arg.getNullPtrType()), | 
 |                               /*isNullPtr*/true); | 
 |  | 
 |     case TemplateArgument::Template: | 
 |       return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate())); | 
 |  | 
 |     case TemplateArgument::TemplateExpansion: | 
 |       return TemplateArgument(getCanonicalTemplateName( | 
 |                                          Arg.getAsTemplateOrTemplatePattern()), | 
 |                               Arg.getNumTemplateExpansions()); | 
 |  | 
 |     case TemplateArgument::Integral: | 
 |       return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType())); | 
 |  | 
 |     case TemplateArgument::Type: | 
 |       return TemplateArgument(getCanonicalType(Arg.getAsType())); | 
 |  | 
 |     case TemplateArgument::Pack: { | 
 |       if (Arg.pack_size() == 0) | 
 |         return Arg; | 
 |        | 
 |       TemplateArgument *CanonArgs | 
 |         = new (*this) TemplateArgument[Arg.pack_size()]; | 
 |       unsigned Idx = 0; | 
 |       for (TemplateArgument::pack_iterator A = Arg.pack_begin(), | 
 |                                         AEnd = Arg.pack_end(); | 
 |            A != AEnd; (void)++A, ++Idx) | 
 |         CanonArgs[Idx] = getCanonicalTemplateArgument(*A); | 
 |  | 
 |       return TemplateArgument(CanonArgs, Arg.pack_size()); | 
 |     } | 
 |   } | 
 |  | 
 |   // Silence GCC warning | 
 |   llvm_unreachable("Unhandled template argument kind"); | 
 | } | 
 |  | 
 | NestedNameSpecifier * | 
 | ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const { | 
 |   if (!NNS) | 
 |     return nullptr; | 
 |  | 
 |   switch (NNS->getKind()) { | 
 |   case NestedNameSpecifier::Identifier: | 
 |     // Canonicalize the prefix but keep the identifier the same. | 
 |     return NestedNameSpecifier::Create(*this, | 
 |                          getCanonicalNestedNameSpecifier(NNS->getPrefix()), | 
 |                                        NNS->getAsIdentifier()); | 
 |  | 
 |   case NestedNameSpecifier::Namespace: | 
 |     // A namespace is canonical; build a nested-name-specifier with | 
 |     // this namespace and no prefix. | 
 |     return NestedNameSpecifier::Create(*this, nullptr, | 
 |                                  NNS->getAsNamespace()->getOriginalNamespace()); | 
 |  | 
 |   case NestedNameSpecifier::NamespaceAlias: | 
 |     // A namespace is canonical; build a nested-name-specifier with | 
 |     // this namespace and no prefix. | 
 |     return NestedNameSpecifier::Create(*this, nullptr, | 
 |                                     NNS->getAsNamespaceAlias()->getNamespace() | 
 |                                                       ->getOriginalNamespace()); | 
 |  | 
 |   case NestedNameSpecifier::TypeSpec: | 
 |   case NestedNameSpecifier::TypeSpecWithTemplate: { | 
 |     QualType T = getCanonicalType(QualType(NNS->getAsType(), 0)); | 
 |      | 
 |     // If we have some kind of dependent-named type (e.g., "typename T::type"), | 
 |     // break it apart into its prefix and identifier, then reconsititute those | 
 |     // as the canonical nested-name-specifier. This is required to canonicalize | 
 |     // a dependent nested-name-specifier involving typedefs of dependent-name | 
 |     // types, e.g., | 
 |     //   typedef typename T::type T1; | 
 |     //   typedef typename T1::type T2; | 
 |     if (const DependentNameType *DNT = T->getAs<DependentNameType>()) | 
 |       return NestedNameSpecifier::Create(*this, DNT->getQualifier(),  | 
 |                            const_cast<IdentifierInfo *>(DNT->getIdentifier())); | 
 |  | 
 |     // Otherwise, just canonicalize the type, and force it to be a TypeSpec. | 
 |     // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the | 
 |     // first place? | 
 |     return NestedNameSpecifier::Create(*this, nullptr, false, | 
 |                                        const_cast<Type *>(T.getTypePtr())); | 
 |   } | 
 |  | 
 |   case NestedNameSpecifier::Global: | 
 |     // The global specifier is canonical and unique. | 
 |     return NNS; | 
 |   } | 
 |  | 
 |   llvm_unreachable("Invalid NestedNameSpecifier::Kind!"); | 
 | } | 
 |  | 
 |  | 
 | const ArrayType *ASTContext::getAsArrayType(QualType T) const { | 
 |   // Handle the non-qualified case efficiently. | 
 |   if (!T.hasLocalQualifiers()) { | 
 |     // Handle the common positive case fast. | 
 |     if (const ArrayType *AT = dyn_cast<ArrayType>(T)) | 
 |       return AT; | 
 |   } | 
 |  | 
 |   // Handle the common negative case fast. | 
 |   if (!isa<ArrayType>(T.getCanonicalType())) | 
 |     return nullptr; | 
 |  | 
 |   // Apply any qualifiers from the array type to the element type.  This | 
 |   // implements C99 6.7.3p8: "If the specification of an array type includes | 
 |   // any type qualifiers, the element type is so qualified, not the array type." | 
 |  | 
 |   // If we get here, we either have type qualifiers on the type, or we have | 
 |   // sugar such as a typedef in the way.  If we have type qualifiers on the type | 
 |   // we must propagate them down into the element type. | 
 |  | 
 |   SplitQualType split = T.getSplitDesugaredType(); | 
 |   Qualifiers qs = split.Quals; | 
 |  | 
 |   // If we have a simple case, just return now. | 
 |   const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty); | 
 |   if (!ATy || qs.empty()) | 
 |     return ATy; | 
 |  | 
 |   // Otherwise, we have an array and we have qualifiers on it.  Push the | 
 |   // qualifiers into the array element type and return a new array type. | 
 |   QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs); | 
 |  | 
 |   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy)) | 
 |     return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(), | 
 |                                                 CAT->getSizeModifier(), | 
 |                                            CAT->getIndexTypeCVRQualifiers())); | 
 |   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy)) | 
 |     return cast<ArrayType>(getIncompleteArrayType(NewEltTy, | 
 |                                                   IAT->getSizeModifier(), | 
 |                                            IAT->getIndexTypeCVRQualifiers())); | 
 |  | 
 |   if (const DependentSizedArrayType *DSAT | 
 |         = dyn_cast<DependentSizedArrayType>(ATy)) | 
 |     return cast<ArrayType>( | 
 |                      getDependentSizedArrayType(NewEltTy, | 
 |                                                 DSAT->getSizeExpr(), | 
 |                                                 DSAT->getSizeModifier(), | 
 |                                               DSAT->getIndexTypeCVRQualifiers(), | 
 |                                                 DSAT->getBracketsRange())); | 
 |  | 
 |   const VariableArrayType *VAT = cast<VariableArrayType>(ATy); | 
 |   return cast<ArrayType>(getVariableArrayType(NewEltTy, | 
 |                                               VAT->getSizeExpr(), | 
 |                                               VAT->getSizeModifier(), | 
 |                                               VAT->getIndexTypeCVRQualifiers(), | 
 |                                               VAT->getBracketsRange())); | 
 | } | 
 |  | 
 | QualType ASTContext::getAdjustedParameterType(QualType T) const { | 
 |   if (T->isArrayType() || T->isFunctionType()) | 
 |     return getDecayedType(T); | 
 |   return T; | 
 | } | 
 |  | 
 | QualType ASTContext::getSignatureParameterType(QualType T) const { | 
 |   T = getVariableArrayDecayedType(T); | 
 |   T = getAdjustedParameterType(T); | 
 |   return T.getUnqualifiedType(); | 
 | } | 
 |  | 
 | /// getArrayDecayedType - Return the properly qualified result of decaying the | 
 | /// specified array type to a pointer.  This operation is non-trivial when | 
 | /// handling typedefs etc.  The canonical type of "T" must be an array type, | 
 | /// this returns a pointer to a properly qualified element of the array. | 
 | /// | 
 | /// See C99 6.7.5.3p7 and C99 6.3.2.1p3. | 
 | QualType ASTContext::getArrayDecayedType(QualType Ty) const { | 
 |   // Get the element type with 'getAsArrayType' so that we don't lose any | 
 |   // typedefs in the element type of the array.  This also handles propagation | 
 |   // of type qualifiers from the array type into the element type if present | 
 |   // (C99 6.7.3p8). | 
 |   const ArrayType *PrettyArrayType = getAsArrayType(Ty); | 
 |   assert(PrettyArrayType && "Not an array type!"); | 
 |  | 
 |   QualType PtrTy = getPointerType(PrettyArrayType->getElementType()); | 
 |  | 
 |   // int x[restrict 4] ->  int *restrict | 
 |   return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers()); | 
 | } | 
 |  | 
 | QualType ASTContext::getBaseElementType(const ArrayType *array) const { | 
 |   return getBaseElementType(array->getElementType()); | 
 | } | 
 |  | 
 | QualType ASTContext::getBaseElementType(QualType type) const { | 
 |   Qualifiers qs; | 
 |   while (true) { | 
 |     SplitQualType split = type.getSplitDesugaredType(); | 
 |     const ArrayType *array = split.Ty->getAsArrayTypeUnsafe(); | 
 |     if (!array) break; | 
 |  | 
 |     type = array->getElementType(); | 
 |     qs.addConsistentQualifiers(split.Quals); | 
 |   } | 
 |  | 
 |   return getQualifiedType(type, qs); | 
 | } | 
 |  | 
 | /// getConstantArrayElementCount - Returns number of constant array elements. | 
 | uint64_t | 
 | ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const { | 
 |   uint64_t ElementCount = 1; | 
 |   do { | 
 |     ElementCount *= CA->getSize().getZExtValue(); | 
 |     CA = dyn_cast_or_null<ConstantArrayType>( | 
 |       CA->getElementType()->getAsArrayTypeUnsafe()); | 
 |   } while (CA); | 
 |   return ElementCount; | 
 | } | 
 |  | 
 | /// getFloatingRank - Return a relative rank for floating point types. | 
 | /// This routine will assert if passed a built-in type that isn't a float. | 
 | static FloatingRank getFloatingRank(QualType T) { | 
 |   if (const ComplexType *CT = T->getAs<ComplexType>()) | 
 |     return getFloatingRank(CT->getElementType()); | 
 |  | 
 |   assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type"); | 
 |   switch (T->getAs<BuiltinType>()->getKind()) { | 
 |   default: llvm_unreachable("getFloatingRank(): not a floating type"); | 
 |   case BuiltinType::Half:       return HalfRank; | 
 |   case BuiltinType::Float:      return FloatRank; | 
 |   case BuiltinType::Double:     return DoubleRank; | 
 |   case BuiltinType::LongDouble: return LongDoubleRank; | 
 |   } | 
 | } | 
 |  | 
 | /// getFloatingTypeOfSizeWithinDomain - Returns a real floating | 
 | /// point or a complex type (based on typeDomain/typeSize). | 
 | /// 'typeDomain' is a real floating point or complex type. | 
 | /// 'typeSize' is a real floating point or complex type. | 
 | QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size, | 
 |                                                        QualType Domain) const { | 
 |   FloatingRank EltRank = getFloatingRank(Size); | 
 |   if (Domain->isComplexType()) { | 
 |     switch (EltRank) { | 
 |     case HalfRank: llvm_unreachable("Complex half is not supported"); | 
 |     case FloatRank:      return FloatComplexTy; | 
 |     case DoubleRank:     return DoubleComplexTy; | 
 |     case LongDoubleRank: return LongDoubleComplexTy; | 
 |     } | 
 |   } | 
 |  | 
 |   assert(Domain->isRealFloatingType() && "Unknown domain!"); | 
 |   switch (EltRank) { | 
 |   case HalfRank:       return HalfTy; | 
 |   case FloatRank:      return FloatTy; | 
 |   case DoubleRank:     return DoubleTy; | 
 |   case LongDoubleRank: return LongDoubleTy; | 
 |   } | 
 |   llvm_unreachable("getFloatingRank(): illegal value for rank"); | 
 | } | 
 |  | 
 | /// getFloatingTypeOrder - Compare the rank of the two specified floating | 
 | /// point types, ignoring the domain of the type (i.e. 'double' == | 
 | /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If | 
 | /// LHS < RHS, return -1. | 
 | int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const { | 
 |   FloatingRank LHSR = getFloatingRank(LHS); | 
 |   FloatingRank RHSR = getFloatingRank(RHS); | 
 |  | 
 |   if (LHSR == RHSR) | 
 |     return 0; | 
 |   if (LHSR > RHSR) | 
 |     return 1; | 
 |   return -1; | 
 | } | 
 |  | 
 | /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This | 
 | /// routine will assert if passed a built-in type that isn't an integer or enum, | 
 | /// or if it is not canonicalized. | 
 | unsigned ASTContext::getIntegerRank(const Type *T) const { | 
 |   assert(T->isCanonicalUnqualified() && "T should be canonicalized"); | 
 |  | 
 |   switch (cast<BuiltinType>(T)->getKind()) { | 
 |   default: llvm_unreachable("getIntegerRank(): not a built-in integer"); | 
 |   case BuiltinType::Bool: | 
 |     return 1 + (getIntWidth(BoolTy) << 3); | 
 |   case BuiltinType::Char_S: | 
 |   case BuiltinType::Char_U: | 
 |   case BuiltinType::SChar: | 
 |   case BuiltinType::UChar: | 
 |     return 2 + (getIntWidth(CharTy) << 3); | 
 |   case BuiltinType::Short: | 
 |   case BuiltinType::UShort: | 
 |     return 3 + (getIntWidth(ShortTy) << 3); | 
 |   case BuiltinType::Int: | 
 |   case BuiltinType::UInt: | 
 |     return 4 + (getIntWidth(IntTy) << 3); | 
 |   case BuiltinType::Long: | 
 |   case BuiltinType::ULong: | 
 |     return 5 + (getIntWidth(LongTy) << 3); | 
 |   case BuiltinType::LongLong: | 
 |   case BuiltinType::ULongLong: | 
 |     return 6 + (getIntWidth(LongLongTy) << 3); | 
 |   case BuiltinType::Int128: | 
 |   case BuiltinType::UInt128: | 
 |     return 7 + (getIntWidth(Int128Ty) << 3); | 
 |   } | 
 | } | 
 |  | 
 | /// \brief Whether this is a promotable bitfield reference according | 
 | /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions). | 
 | /// | 
 | /// \returns the type this bit-field will promote to, or NULL if no | 
 | /// promotion occurs. | 
 | QualType ASTContext::isPromotableBitField(Expr *E) const { | 
 |   if (E->isTypeDependent() || E->isValueDependent()) | 
 |     return QualType(); | 
 |    | 
 |   FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields? | 
 |   if (!Field) | 
 |     return QualType(); | 
 |  | 
 |   QualType FT = Field->getType(); | 
 |  | 
 |   uint64_t BitWidth = Field->getBitWidthValue(*this); | 
 |   uint64_t IntSize = getTypeSize(IntTy); | 
 |   // GCC extension compatibility: if the bit-field size is less than or equal | 
 |   // to the size of int, it gets promoted no matter what its type is. | 
 |   // For instance, unsigned long bf : 4 gets promoted to signed int. | 
 |   if (BitWidth < IntSize) | 
 |     return IntTy; | 
 |  | 
 |   if (BitWidth == IntSize) | 
 |     return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy; | 
 |  | 
 |   // Types bigger than int are not subject to promotions, and therefore act | 
 |   // like the base type. | 
 |   // FIXME: This doesn't quite match what gcc does, but what gcc does here | 
 |   // is ridiculous. | 
 |   return QualType(); | 
 | } | 
 |  | 
 | /// getPromotedIntegerType - Returns the type that Promotable will | 
 | /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable | 
 | /// integer type. | 
 | QualType ASTContext::getPromotedIntegerType(QualType Promotable) const { | 
 |   assert(!Promotable.isNull()); | 
 |   assert(Promotable->isPromotableIntegerType()); | 
 |   if (const EnumType *ET = Promotable->getAs<EnumType>()) | 
 |     return ET->getDecl()->getPromotionType(); | 
 |  | 
 |   if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) { | 
 |     // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t | 
 |     // (3.9.1) can be converted to a prvalue of the first of the following | 
 |     // types that can represent all the values of its underlying type: | 
 |     // int, unsigned int, long int, unsigned long int, long long int, or | 
 |     // unsigned long long int [...] | 
 |     // FIXME: Is there some better way to compute this? | 
 |     if (BT->getKind() == BuiltinType::WChar_S || | 
 |         BT->getKind() == BuiltinType::WChar_U || | 
 |         BT->getKind() == BuiltinType::Char16 || | 
 |         BT->getKind() == BuiltinType::Char32) { | 
 |       bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S; | 
 |       uint64_t FromSize = getTypeSize(BT); | 
 |       QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy, | 
 |                                   LongLongTy, UnsignedLongLongTy }; | 
 |       for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) { | 
 |         uint64_t ToSize = getTypeSize(PromoteTypes[Idx]); | 
 |         if (FromSize < ToSize || | 
 |             (FromSize == ToSize && | 
 |              FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) | 
 |           return PromoteTypes[Idx]; | 
 |       } | 
 |       llvm_unreachable("char type should fit into long long"); | 
 |     } | 
 |   } | 
 |  | 
 |   // At this point, we should have a signed or unsigned integer type. | 
 |   if (Promotable->isSignedIntegerType()) | 
 |     return IntTy; | 
 |   uint64_t PromotableSize = getIntWidth(Promotable); | 
 |   uint64_t IntSize = getIntWidth(IntTy); | 
 |   assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize); | 
 |   return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy; | 
 | } | 
 |  | 
 | /// \brief Recurses in pointer/array types until it finds an objc retainable | 
 | /// type and returns its ownership. | 
 | Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const { | 
 |   while (!T.isNull()) { | 
 |     if (T.getObjCLifetime() != Qualifiers::OCL_None) | 
 |       return T.getObjCLifetime(); | 
 |     if (T->isArrayType()) | 
 |       T = getBaseElementType(T); | 
 |     else if (const PointerType *PT = T->getAs<PointerType>()) | 
 |       T = PT->getPointeeType(); | 
 |     else if (const ReferenceType *RT = T->getAs<ReferenceType>()) | 
 |       T = RT->getPointeeType(); | 
 |     else | 
 |       break; | 
 |   } | 
 |  | 
 |   return Qualifiers::OCL_None; | 
 | } | 
 |  | 
 | static const Type *getIntegerTypeForEnum(const EnumType *ET) { | 
 |   // Incomplete enum types are not treated as integer types. | 
 |   // FIXME: In C++, enum types are never integer types. | 
 |   if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped()) | 
 |     return ET->getDecl()->getIntegerType().getTypePtr(); | 
 |   return nullptr; | 
 | } | 
 |  | 
 | /// getIntegerTypeOrder - Returns the highest ranked integer type: | 
 | /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If | 
 | /// LHS < RHS, return -1. | 
 | int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const { | 
 |   const Type *LHSC = getCanonicalType(LHS).getTypePtr(); | 
 |   const Type *RHSC = getCanonicalType(RHS).getTypePtr(); | 
 |  | 
 |   // Unwrap enums to their underlying type. | 
 |   if (const EnumType *ET = dyn_cast<EnumType>(LHSC)) | 
 |     LHSC = getIntegerTypeForEnum(ET); | 
 |   if (const EnumType *ET = dyn_cast<EnumType>(RHSC)) | 
 |     RHSC = getIntegerTypeForEnum(ET); | 
 |  | 
 |   if (LHSC == RHSC) return 0; | 
 |  | 
 |   bool LHSUnsigned = LHSC->isUnsignedIntegerType(); | 
 |   bool RHSUnsigned = RHSC->isUnsignedIntegerType(); | 
 |  | 
 |   unsigned LHSRank = getIntegerRank(LHSC); | 
 |   unsigned RHSRank = getIntegerRank(RHSC); | 
 |  | 
 |   if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned. | 
 |     if (LHSRank == RHSRank) return 0; | 
 |     return LHSRank > RHSRank ? 1 : -1; | 
 |   } | 
 |  | 
 |   // Otherwise, the LHS is signed and the RHS is unsigned or visa versa. | 
 |   if (LHSUnsigned) { | 
 |     // If the unsigned [LHS] type is larger, return it. | 
 |     if (LHSRank >= RHSRank) | 
 |       return 1; | 
 |  | 
 |     // If the signed type can represent all values of the unsigned type, it | 
 |     // wins.  Because we are dealing with 2's complement and types that are | 
 |     // powers of two larger than each other, this is always safe. | 
 |     return -1; | 
 |   } | 
 |  | 
 |   // If the unsigned [RHS] type is larger, return it. | 
 |   if (RHSRank >= LHSRank) | 
 |     return -1; | 
 |  | 
 |   // If the signed type can represent all values of the unsigned type, it | 
 |   // wins.  Because we are dealing with 2's complement and types that are | 
 |   // powers of two larger than each other, this is always safe. | 
 |   return 1; | 
 | } | 
 |  | 
 | // getCFConstantStringType - Return the type used for constant CFStrings. | 
 | QualType ASTContext::getCFConstantStringType() const { | 
 |   if (!CFConstantStringTypeDecl) { | 
 |     CFConstantStringTypeDecl = buildImplicitRecord("NSConstantString"); | 
 |     CFConstantStringTypeDecl->startDefinition(); | 
 |  | 
 |     QualType FieldTypes[4]; | 
 |  | 
 |     // const int *isa; | 
 |     FieldTypes[0] = getPointerType(IntTy.withConst()); | 
 |     // int flags; | 
 |     FieldTypes[1] = IntTy; | 
 |     // const char *str; | 
 |     FieldTypes[2] = getPointerType(CharTy.withConst()); | 
 |     // long length; | 
 |     FieldTypes[3] = LongTy; | 
 |  | 
 |     // Create fields | 
 |     for (unsigned i = 0; i < 4; ++i) { | 
 |       FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl, | 
 |                                            SourceLocation(), | 
 |                                            SourceLocation(), nullptr, | 
 |                                            FieldTypes[i], /*TInfo=*/nullptr, | 
 |                                            /*BitWidth=*/nullptr, | 
 |                                            /*Mutable=*/false, | 
 |                                            ICIS_NoInit); | 
 |       Field->setAccess(AS_public); | 
 |       CFConstantStringTypeDecl->addDecl(Field); | 
 |     } | 
 |  | 
 |     CFConstantStringTypeDecl->completeDefinition(); | 
 |   } | 
 |  | 
 |   return getTagDeclType(CFConstantStringTypeDecl); | 
 | } | 
 |  | 
 | QualType ASTContext::getObjCSuperType() const { | 
 |   if (ObjCSuperType.isNull()) { | 
 |     RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord("objc_super"); | 
 |     TUDecl->addDecl(ObjCSuperTypeDecl); | 
 |     ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl); | 
 |   } | 
 |   return ObjCSuperType; | 
 | } | 
 |  | 
 | void ASTContext::setCFConstantStringType(QualType T) { | 
 |   const RecordType *Rec = T->getAs<RecordType>(); | 
 |   assert(Rec && "Invalid CFConstantStringType"); | 
 |   CFConstantStringTypeDecl = Rec->getDecl(); | 
 | } | 
 |  | 
 | QualType ASTContext::getBlockDescriptorType() const { | 
 |   if (BlockDescriptorType) | 
 |     return getTagDeclType(BlockDescriptorType); | 
 |  | 
 |   RecordDecl *RD; | 
 |   // FIXME: Needs the FlagAppleBlock bit. | 
 |   RD = buildImplicitRecord("__block_descriptor"); | 
 |   RD->startDefinition(); | 
 |  | 
 |   QualType FieldTypes[] = { | 
 |     UnsignedLongTy, | 
 |     UnsignedLongTy, | 
 |   }; | 
 |  | 
 |   static const char *const FieldNames[] = { | 
 |     "reserved", | 
 |     "Size" | 
 |   }; | 
 |  | 
 |   for (size_t i = 0; i < 2; ++i) { | 
 |     FieldDecl *Field = FieldDecl::Create( | 
 |         *this, RD, SourceLocation(), SourceLocation(), | 
 |         &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr, | 
 |         /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit); | 
 |     Field->setAccess(AS_public); | 
 |     RD->addDecl(Field); | 
 |   } | 
 |  | 
 |   RD->completeDefinition(); | 
 |  | 
 |   BlockDescriptorType = RD; | 
 |  | 
 |   return getTagDeclType(BlockDescriptorType); | 
 | } | 
 |  | 
 | QualType ASTContext::getBlockDescriptorExtendedType() const { | 
 |   if (BlockDescriptorExtendedType) | 
 |     return getTagDeclType(BlockDescriptorExtendedType); | 
 |  | 
 |   RecordDecl *RD; | 
 |   // FIXME: Needs the FlagAppleBlock bit. | 
 |   RD = buildImplicitRecord("__block_descriptor_withcopydispose"); | 
 |   RD->startDefinition(); | 
 |  | 
 |   QualType FieldTypes[] = { | 
 |     UnsignedLongTy, | 
 |     UnsignedLongTy, | 
 |     getPointerType(VoidPtrTy), | 
 |     getPointerType(VoidPtrTy) | 
 |   }; | 
 |  | 
 |   static const char *const FieldNames[] = { | 
 |     "reserved", | 
 |     "Size", | 
 |     "CopyFuncPtr", | 
 |     "DestroyFuncPtr" | 
 |   }; | 
 |  | 
 |   for (size_t i = 0; i < 4; ++i) { | 
 |     FieldDecl *Field = FieldDecl::Create( | 
 |         *this, RD, SourceLocation(), SourceLocation(), | 
 |         &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr, | 
 |         /*BitWidth=*/nullptr, | 
 |         /*Mutable=*/false, ICIS_NoInit); | 
 |     Field->setAccess(AS_public); | 
 |     RD->addDecl(Field); | 
 |   } | 
 |  | 
 |   RD->completeDefinition(); | 
 |  | 
 |   BlockDescriptorExtendedType = RD; | 
 |   return getTagDeclType(BlockDescriptorExtendedType); | 
 | } | 
 |  | 
 | /// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty" | 
 | /// requires copy/dispose. Note that this must match the logic | 
 | /// in buildByrefHelpers. | 
 | bool ASTContext::BlockRequiresCopying(QualType Ty, | 
 |                                       const VarDecl *D) { | 
 |   if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) { | 
 |     const Expr *copyExpr = getBlockVarCopyInits(D); | 
 |     if (!copyExpr && record->hasTrivialDestructor()) return false; | 
 |      | 
 |     return true; | 
 |   } | 
 |    | 
 |   if (!Ty->isObjCRetainableType()) return false; | 
 |    | 
 |   Qualifiers qs = Ty.getQualifiers(); | 
 |    | 
 |   // If we have lifetime, that dominates. | 
 |   if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) { | 
 |     assert(getLangOpts().ObjCAutoRefCount); | 
 |      | 
 |     switch (lifetime) { | 
 |       case Qualifiers::OCL_None: llvm_unreachable("impossible"); | 
 |          | 
 |       // These are just bits as far as the runtime is concerned. | 
 |       case Qualifiers::OCL_ExplicitNone: | 
 |       case Qualifiers::OCL_Autoreleasing: | 
 |         return false; | 
 |          | 
 |       // Tell the runtime that this is ARC __weak, called by the | 
 |       // byref routines. | 
 |       case Qualifiers::OCL_Weak: | 
 |       // ARC __strong __block variables need to be retained. | 
 |       case Qualifiers::OCL_Strong: | 
 |         return true; | 
 |     } | 
 |     llvm_unreachable("fell out of lifetime switch!"); | 
 |   } | 
 |   return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) || | 
 |           Ty->isObjCObjectPointerType()); | 
 | } | 
 |  | 
 | bool ASTContext::getByrefLifetime(QualType Ty, | 
 |                               Qualifiers::ObjCLifetime &LifeTime, | 
 |                               bool &HasByrefExtendedLayout) const { | 
 |    | 
 |   if (!getLangOpts().ObjC1 || | 
 |       getLangOpts().getGC() != LangOptions::NonGC) | 
 |     return false; | 
 |    | 
 |   HasByrefExtendedLayout = false; | 
 |   if (Ty->isRecordType()) { | 
 |     HasByrefExtendedLayout = true; | 
 |     LifeTime = Qualifiers::OCL_None; | 
 |   } | 
 |   else if (getLangOpts().ObjCAutoRefCount) | 
 |     LifeTime = Ty.getObjCLifetime(); | 
 |   // MRR. | 
 |   else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) | 
 |     LifeTime = Qualifiers::OCL_ExplicitNone; | 
 |   else | 
 |     LifeTime = Qualifiers::OCL_None; | 
 |   return true; | 
 | } | 
 |  | 
 | TypedefDecl *ASTContext::getObjCInstanceTypeDecl() { | 
 |   if (!ObjCInstanceTypeDecl) | 
 |     ObjCInstanceTypeDecl = | 
 |         buildImplicitTypedef(getObjCIdType(), "instancetype"); | 
 |   return ObjCInstanceTypeDecl; | 
 | } | 
 |  | 
 | // This returns true if a type has been typedefed to BOOL: | 
 | // typedef <type> BOOL; | 
 | static bool isTypeTypedefedAsBOOL(QualType T) { | 
 |   if (const TypedefType *TT = dyn_cast<TypedefType>(T)) | 
 |     if (IdentifierInfo *II = TT->getDecl()->getIdentifier()) | 
 |       return II->isStr("BOOL"); | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// getObjCEncodingTypeSize returns size of type for objective-c encoding | 
 | /// purpose. | 
 | CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const { | 
 |   if (!type->isIncompleteArrayType() && type->isIncompleteType()) | 
 |     return CharUnits::Zero(); | 
 |    | 
 |   CharUnits sz = getTypeSizeInChars(type); | 
 |  | 
 |   // Make all integer and enum types at least as large as an int | 
 |   if (sz.isPositive() && type->isIntegralOrEnumerationType()) | 
 |     sz = std::max(sz, getTypeSizeInChars(IntTy)); | 
 |   // Treat arrays as pointers, since that's how they're passed in. | 
 |   else if (type->isArrayType()) | 
 |     sz = getTypeSizeInChars(VoidPtrTy); | 
 |   return sz; | 
 | } | 
 |  | 
 | static inline  | 
 | std::string charUnitsToString(const CharUnits &CU) { | 
 |   return llvm::itostr(CU.getQuantity()); | 
 | } | 
 |  | 
 | /// getObjCEncodingForBlock - Return the encoded type for this block | 
 | /// declaration. | 
 | std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const { | 
 |   std::string S; | 
 |  | 
 |   const BlockDecl *Decl = Expr->getBlockDecl(); | 
 |   QualType BlockTy = | 
 |       Expr->getType()->getAs<BlockPointerType>()->getPointeeType(); | 
 |   // Encode result type. | 
 |   if (getLangOpts().EncodeExtendedBlockSig) | 
 |     getObjCEncodingForMethodParameter( | 
 |         Decl::OBJC_TQ_None, BlockTy->getAs<FunctionType>()->getReturnType(), S, | 
 |         true /*Extended*/); | 
 |   else | 
 |     getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getReturnType(), S); | 
 |   // Compute size of all parameters. | 
 |   // Start with computing size of a pointer in number of bytes. | 
 |   // FIXME: There might(should) be a better way of doing this computation! | 
 |   SourceLocation Loc; | 
 |   CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy); | 
 |   CharUnits ParmOffset = PtrSize; | 
 |   for (auto PI : Decl->params()) { | 
 |     QualType PType = PI->getType(); | 
 |     CharUnits sz = getObjCEncodingTypeSize(PType); | 
 |     if (sz.isZero()) | 
 |       continue; | 
 |     assert (sz.isPositive() && "BlockExpr - Incomplete param type"); | 
 |     ParmOffset += sz; | 
 |   } | 
 |   // Size of the argument frame | 
 |   S += charUnitsToString(ParmOffset); | 
 |   // Block pointer and offset. | 
 |   S += "@?0"; | 
 |    | 
 |   // Argument types. | 
 |   ParmOffset = PtrSize; | 
 |   for (auto PVDecl : Decl->params()) { | 
 |     QualType PType = PVDecl->getOriginalType();  | 
 |     if (const ArrayType *AT = | 
 |           dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) { | 
 |       // Use array's original type only if it has known number of | 
 |       // elements. | 
 |       if (!isa<ConstantArrayType>(AT)) | 
 |         PType = PVDecl->getType(); | 
 |     } else if (PType->isFunctionType()) | 
 |       PType = PVDecl->getType(); | 
 |     if (getLangOpts().EncodeExtendedBlockSig) | 
 |       getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType, | 
 |                                       S, true /*Extended*/); | 
 |     else | 
 |       getObjCEncodingForType(PType, S); | 
 |     S += charUnitsToString(ParmOffset); | 
 |     ParmOffset += getObjCEncodingTypeSize(PType); | 
 |   } | 
 |  | 
 |   return S; | 
 | } | 
 |  | 
 | bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl, | 
 |                                                 std::string& S) { | 
 |   // Encode result type. | 
 |   getObjCEncodingForType(Decl->getReturnType(), S); | 
 |   CharUnits ParmOffset; | 
 |   // Compute size of all parameters. | 
 |   for (auto PI : Decl->params()) { | 
 |     QualType PType = PI->getType(); | 
 |     CharUnits sz = getObjCEncodingTypeSize(PType); | 
 |     if (sz.isZero()) | 
 |       continue; | 
 |   | 
 |     assert (sz.isPositive() &&  | 
 |         "getObjCEncodingForFunctionDecl - Incomplete param type"); | 
 |     ParmOffset += sz; | 
 |   } | 
 |   S += charUnitsToString(ParmOffset); | 
 |   ParmOffset = CharUnits::Zero(); | 
 |  | 
 |   // Argument types. | 
 |   for (auto PVDecl : Decl->params()) { | 
 |     QualType PType = PVDecl->getOriginalType(); | 
 |     if (const ArrayType *AT = | 
 |           dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) { | 
 |       // Use array's original type only if it has known number of | 
 |       // elements. | 
 |       if (!isa<ConstantArrayType>(AT)) | 
 |         PType = PVDecl->getType(); | 
 |     } else if (PType->isFunctionType()) | 
 |       PType = PVDecl->getType(); | 
 |     getObjCEncodingForType(PType, S); | 
 |     S += charUnitsToString(ParmOffset); | 
 |     ParmOffset += getObjCEncodingTypeSize(PType); | 
 |   } | 
 |    | 
 |   return false; | 
 | } | 
 |  | 
 | /// getObjCEncodingForMethodParameter - Return the encoded type for a single | 
 | /// method parameter or return type. If Extended, include class names and  | 
 | /// block object types. | 
 | void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT, | 
 |                                                    QualType T, std::string& S, | 
 |                                                    bool Extended) const { | 
 |   // Encode type qualifer, 'in', 'inout', etc. for the parameter. | 
 |   getObjCEncodingForTypeQualifier(QT, S); | 
 |   // Encode parameter type. | 
 |   getObjCEncodingForTypeImpl(T, S, true, true, nullptr, | 
 |                              true     /*OutermostType*/, | 
 |                              false    /*EncodingProperty*/,  | 
 |                              false    /*StructField*/,  | 
 |                              Extended /*EncodeBlockParameters*/,  | 
 |                              Extended /*EncodeClassNames*/); | 
 | } | 
 |  | 
 | /// getObjCEncodingForMethodDecl - Return the encoded type for this method | 
 | /// declaration. | 
 | bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, | 
 |                                               std::string& S,  | 
 |                                               bool Extended) const { | 
 |   // FIXME: This is not very efficient. | 
 |   // Encode return type. | 
 |   getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(), | 
 |                                     Decl->getReturnType(), S, Extended); | 
 |   // Compute size of all parameters. | 
 |   // Start with computing size of a pointer in number of bytes. | 
 |   // FIXME: There might(should) be a better way of doing this computation! | 
 |   SourceLocation Loc; | 
 |   CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy); | 
 |   // The first two arguments (self and _cmd) are pointers; account for | 
 |   // their size. | 
 |   CharUnits ParmOffset = 2 * PtrSize; | 
 |   for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(), | 
 |        E = Decl->sel_param_end(); PI != E; ++PI) { | 
 |     QualType PType = (*PI)->getType(); | 
 |     CharUnits sz = getObjCEncodingTypeSize(PType); | 
 |     if (sz.isZero()) | 
 |       continue; | 
 |   | 
 |     assert (sz.isPositive() &&  | 
 |         "getObjCEncodingForMethodDecl - Incomplete param type"); | 
 |     ParmOffset += sz; | 
 |   } | 
 |   S += charUnitsToString(ParmOffset); | 
 |   S += "@0:"; | 
 |   S += charUnitsToString(PtrSize); | 
 |  | 
 |   // Argument types. | 
 |   ParmOffset = 2 * PtrSize; | 
 |   for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(), | 
 |        E = Decl->sel_param_end(); PI != E; ++PI) { | 
 |     const ParmVarDecl *PVDecl = *PI; | 
 |     QualType PType = PVDecl->getOriginalType(); | 
 |     if (const ArrayType *AT = | 
 |           dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) { | 
 |       // Use array's original type only if it has known number of | 
 |       // elements. | 
 |       if (!isa<ConstantArrayType>(AT)) | 
 |         PType = PVDecl->getType(); | 
 |     } else if (PType->isFunctionType()) | 
 |       PType = PVDecl->getType(); | 
 |     getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),  | 
 |                                       PType, S, Extended); | 
 |     S += charUnitsToString(ParmOffset); | 
 |     ParmOffset += getObjCEncodingTypeSize(PType); | 
 |   } | 
 |    | 
 |   return false; | 
 | } | 
 |  | 
 | ObjCPropertyImplDecl * | 
 | ASTContext::getObjCPropertyImplDeclForPropertyDecl( | 
 |                                       const ObjCPropertyDecl *PD, | 
 |                                       const Decl *Container) const { | 
 |   if (!Container) | 
 |     return nullptr; | 
 |   if (const ObjCCategoryImplDecl *CID = | 
 |       dyn_cast<ObjCCategoryImplDecl>(Container)) { | 
 |     for (auto *PID : CID->property_impls()) | 
 |       if (PID->getPropertyDecl() == PD) | 
 |         return PID; | 
 |   } else { | 
 |     const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container); | 
 |     for (auto *PID : OID->property_impls()) | 
 |       if (PID->getPropertyDecl() == PD) | 
 |         return PID; | 
 |   } | 
 |   return nullptr; | 
 | } | 
 |  | 
 | /// getObjCEncodingForPropertyDecl - Return the encoded type for this | 
 | /// property declaration. If non-NULL, Container must be either an | 
 | /// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be | 
 | /// NULL when getting encodings for protocol properties. | 
 | /// Property attributes are stored as a comma-delimited C string. The simple | 
 | /// attributes readonly and bycopy are encoded as single characters. The | 
 | /// parametrized attributes, getter=name, setter=name, and ivar=name, are | 
 | /// encoded as single characters, followed by an identifier. Property types | 
 | /// are also encoded as a parametrized attribute. The characters used to encode | 
 | /// these attributes are defined by the following enumeration: | 
 | /// @code | 
 | /// enum PropertyAttributes { | 
 | /// kPropertyReadOnly = 'R',   // property is read-only. | 
 | /// kPropertyBycopy = 'C',     // property is a copy of the value last assigned | 
 | /// kPropertyByref = '&',  // property is a reference to the value last assigned | 
 | /// kPropertyDynamic = 'D',    // property is dynamic | 
 | /// kPropertyGetter = 'G',     // followed by getter selector name | 
 | /// kPropertySetter = 'S',     // followed by setter selector name | 
 | /// kPropertyInstanceVariable = 'V'  // followed by instance variable  name | 
 | /// kPropertyType = 'T'              // followed by old-style type encoding. | 
 | /// kPropertyWeak = 'W'              // 'weak' property | 
 | /// kPropertyStrong = 'P'            // property GC'able | 
 | /// kPropertyNonAtomic = 'N'         // property non-atomic | 
 | /// }; | 
 | /// @endcode | 
 | void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD, | 
 |                                                 const Decl *Container, | 
 |                                                 std::string& S) const { | 
 |   // Collect information from the property implementation decl(s). | 
 |   bool Dynamic = false; | 
 |   ObjCPropertyImplDecl *SynthesizePID = nullptr; | 
 |  | 
 |   if (ObjCPropertyImplDecl *PropertyImpDecl = | 
 |       getObjCPropertyImplDeclForPropertyDecl(PD, Container)) { | 
 |     if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic) | 
 |       Dynamic = true; | 
 |     else | 
 |       SynthesizePID = PropertyImpDecl; | 
 |   } | 
 |  | 
 |   // FIXME: This is not very efficient. | 
 |   S = "T"; | 
 |  | 
 |   // Encode result type. | 
 |   // GCC has some special rules regarding encoding of properties which | 
 |   // closely resembles encoding of ivars. | 
 |   getObjCEncodingForPropertyType(PD->getType(), S); | 
 |  | 
 |   if (PD->isReadOnly()) { | 
 |     S += ",R"; | 
 |     if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_copy) | 
 |       S += ",C"; | 
 |     if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_retain) | 
 |       S += ",&"; | 
 |     if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_weak) | 
 |       S += ",W"; | 
 |   } else { | 
 |     switch (PD->getSetterKind()) { | 
 |     case ObjCPropertyDecl::Assign: break; | 
 |     case ObjCPropertyDecl::Copy:   S += ",C"; break; | 
 |     case ObjCPropertyDecl::Retain: S += ",&"; break; | 
 |     case ObjCPropertyDecl::Weak:   S += ",W"; break; | 
 |     } | 
 |   } | 
 |  | 
 |   // It really isn't clear at all what this means, since properties | 
 |   // are "dynamic by default". | 
 |   if (Dynamic) | 
 |     S += ",D"; | 
 |  | 
 |   if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic) | 
 |     S += ",N"; | 
 |  | 
 |   if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) { | 
 |     S += ",G"; | 
 |     S += PD->getGetterName().getAsString(); | 
 |   } | 
 |  | 
 |   if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) { | 
 |     S += ",S"; | 
 |     S += PD->getSetterName().getAsString(); | 
 |   } | 
 |  | 
 |   if (SynthesizePID) { | 
 |     const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl(); | 
 |     S += ",V"; | 
 |     S += OID->getNameAsString(); | 
 |   } | 
 |  | 
 |   // FIXME: OBJCGC: weak & strong | 
 | } | 
 |  | 
 | /// getLegacyIntegralTypeEncoding - | 
 | /// Another legacy compatibility encoding: 32-bit longs are encoded as | 
 | /// 'l' or 'L' , but not always.  For typedefs, we need to use | 
 | /// 'i' or 'I' instead if encoding a struct field, or a pointer! | 
 | /// | 
 | void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const { | 
 |   if (isa<TypedefType>(PointeeTy.getTypePtr())) { | 
 |     if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) { | 
 |       if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32) | 
 |         PointeeTy = UnsignedIntTy; | 
 |       else | 
 |         if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32) | 
 |           PointeeTy = IntTy; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void ASTContext::getObjCEncodingForType(QualType T, std::string& S, | 
 |                                         const FieldDecl *Field) const { | 
 |   // We follow the behavior of gcc, expanding structures which are | 
 |   // directly pointed to, and expanding embedded structures. Note that | 
 |   // these rules are sufficient to prevent recursive encoding of the | 
 |   // same type. | 
 |   getObjCEncodingForTypeImpl(T, S, true, true, Field, | 
 |                              true /* outermost type */); | 
 | } | 
 |  | 
 | void ASTContext::getObjCEncodingForPropertyType(QualType T, | 
 |                                                 std::string& S) const { | 
 |   // Encode result type. | 
 |   // GCC has some special rules regarding encoding of properties which | 
 |   // closely resembles encoding of ivars. | 
 |   getObjCEncodingForTypeImpl(T, S, true, true, nullptr, | 
 |                              true /* outermost type */, | 
 |                              true /* encoding property */); | 
 | } | 
 |  | 
 | static char getObjCEncodingForPrimitiveKind(const ASTContext *C, | 
 |                                             BuiltinType::Kind kind) { | 
 |     switch (kind) { | 
 |     case BuiltinType::Void:       return 'v'; | 
 |     case BuiltinType::Bool:       return 'B'; | 
 |     case BuiltinType::Char_U: | 
 |     case BuiltinType::UChar:      return 'C'; | 
 |     case BuiltinType::Char16: | 
 |     case BuiltinType::UShort:     return 'S'; | 
 |     case BuiltinType::Char32: | 
 |     case BuiltinType::UInt:       return 'I'; | 
 |     case BuiltinType::ULong: | 
 |         return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q'; | 
 |     case BuiltinType::UInt128:    return 'T'; | 
 |     case BuiltinType::ULongLong:  return 'Q'; | 
 |     case BuiltinType::Char_S: | 
 |     case BuiltinType::SChar:      return 'c'; | 
 |     case BuiltinType::Short:      return 's'; | 
 |     case BuiltinType::WChar_S: | 
 |     case BuiltinType::WChar_U: | 
 |     case BuiltinType::Int:        return 'i'; | 
 |     case BuiltinType::Long: | 
 |       return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q'; | 
 |     case BuiltinType::LongLong:   return 'q'; | 
 |     case BuiltinType::Int128:     return 't'; | 
 |     case BuiltinType::Float:      return 'f'; | 
 |     case BuiltinType::Double:     return 'd'; | 
 |     case BuiltinType::LongDouble: return 'D'; | 
 |     case BuiltinType::NullPtr:    return '*'; // like char* | 
 |  | 
 |     case BuiltinType::Half: | 
 |       // FIXME: potentially need @encodes for these! | 
 |       return ' '; | 
 |  | 
 |     case BuiltinType::ObjCId: | 
 |     case BuiltinType::ObjCClass: | 
 |     case BuiltinType::ObjCSel: | 
 |       llvm_unreachable("@encoding ObjC primitive type"); | 
 |  | 
 |     // OpenCL and placeholder types don't need @encodings. | 
 |     case BuiltinType::OCLImage1d: | 
 |     case BuiltinType::OCLImage1dArray: | 
 |     case BuiltinType::OCLImage1dBuffer: | 
 |     case BuiltinType::OCLImage2d: | 
 |     case BuiltinType::OCLImage2dArray: | 
 |     case BuiltinType::OCLImage3d: | 
 |     case BuiltinType::OCLEvent: | 
 |     case BuiltinType::OCLSampler: | 
 |     case BuiltinType::Dependent: | 
 | #define BUILTIN_TYPE(KIND, ID) | 
 | #define PLACEHOLDER_TYPE(KIND, ID) \ | 
 |     case BuiltinType::KIND: | 
 | #include "clang/AST/BuiltinTypes.def" | 
 |       llvm_unreachable("invalid builtin type for @encode"); | 
 |     } | 
 |     llvm_unreachable("invalid BuiltinType::Kind value"); | 
 | } | 
 |  | 
 | static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) { | 
 |   EnumDecl *Enum = ET->getDecl(); | 
 |    | 
 |   // The encoding of an non-fixed enum type is always 'i', regardless of size. | 
 |   if (!Enum->isFixed()) | 
 |     return 'i'; | 
 |    | 
 |   // The encoding of a fixed enum type matches its fixed underlying type. | 
 |   const BuiltinType *BT = Enum->getIntegerType()->castAs<BuiltinType>(); | 
 |   return getObjCEncodingForPrimitiveKind(C, BT->getKind()); | 
 | } | 
 |  | 
 | static void EncodeBitField(const ASTContext *Ctx, std::string& S, | 
 |                            QualType T, const FieldDecl *FD) { | 
 |   assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl"); | 
 |   S += 'b'; | 
 |   // The NeXT runtime encodes bit fields as b followed by the number of bits. | 
 |   // The GNU runtime requires more information; bitfields are encoded as b, | 
 |   // then the offset (in bits) of the first element, then the type of the | 
 |   // bitfield, then the size in bits.  For example, in this structure: | 
 |   // | 
 |   // struct | 
 |   // { | 
 |   //    int integer; | 
 |   //    int flags:2; | 
 |   // }; | 
 |   // On a 32-bit system, the encoding for flags would be b2 for the NeXT | 
 |   // runtime, but b32i2 for the GNU runtime.  The reason for this extra | 
 |   // information is not especially sensible, but we're stuck with it for | 
 |   // compatibility with GCC, although providing it breaks anything that | 
 |   // actually uses runtime introspection and wants to work on both runtimes... | 
 |   if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) { | 
 |     const RecordDecl *RD = FD->getParent(); | 
 |     const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD); | 
 |     S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex())); | 
 |     if (const EnumType *ET = T->getAs<EnumType>()) | 
 |       S += ObjCEncodingForEnumType(Ctx, ET); | 
 |     else { | 
 |       const BuiltinType *BT = T->castAs<BuiltinType>(); | 
 |       S += getObjCEncodingForPrimitiveKind(Ctx, BT->getKind()); | 
 |     } | 
 |   } | 
 |   S += llvm::utostr(FD->getBitWidthValue(*Ctx)); | 
 | } | 
 |  | 
 | // FIXME: Use SmallString for accumulating string. | 
 | void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S, | 
 |                                             bool ExpandPointedToStructures, | 
 |                                             bool ExpandStructures, | 
 |                                             const FieldDecl *FD, | 
 |                                             bool OutermostType, | 
 |                                             bool EncodingProperty, | 
 |                                             bool StructField, | 
 |                                             bool EncodeBlockParameters, | 
 |                                             bool EncodeClassNames, | 
 |                                             bool EncodePointerToObjCTypedef) const { | 
 |   CanQualType CT = getCanonicalType(T); | 
 |   switch (CT->getTypeClass()) { | 
 |   case Type::Builtin: | 
 |   case Type::Enum: | 
 |     if (FD && FD->isBitField()) | 
 |       return EncodeBitField(this, S, T, FD); | 
 |     if (const BuiltinType *BT = dyn_cast<BuiltinType>(CT)) | 
 |       S += getObjCEncodingForPrimitiveKind(this, BT->getKind()); | 
 |     else | 
 |       S += ObjCEncodingForEnumType(this, cast<EnumType>(CT)); | 
 |     return; | 
 |  | 
 |   case Type::Complex: { | 
 |     const ComplexType *CT = T->castAs<ComplexType>(); | 
 |     S += 'j'; | 
 |     getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, nullptr, | 
 |                                false, false); | 
 |     return; | 
 |   } | 
 |  | 
 |   case Type::Atomic: { | 
 |     const AtomicType *AT = T->castAs<AtomicType>(); | 
 |     S += 'A'; | 
 |     getObjCEncodingForTypeImpl(AT->getValueType(), S, false, false, nullptr, | 
 |                                false, false); | 
 |     return; | 
 |   } | 
 |  | 
 |   // encoding for pointer or reference types. | 
 |   case Type::Pointer: | 
 |   case Type::LValueReference: | 
 |   case Type::RValueReference: { | 
 |     QualType PointeeTy; | 
 |     if (isa<PointerType>(CT)) { | 
 |       const PointerType *PT = T->castAs<PointerType>(); | 
 |       if (PT->isObjCSelType()) { | 
 |         S += ':'; | 
 |         return; | 
 |       } | 
 |       PointeeTy = PT->getPointeeType(); | 
 |     } else { | 
 |       PointeeTy = T->castAs<ReferenceType>()->getPointeeType(); | 
 |     } | 
 |  | 
 |     bool isReadOnly = false; | 
 |     // For historical/compatibility reasons, the read-only qualifier of the | 
 |     // pointee gets emitted _before_ the '^'.  The read-only qualifier of | 
 |     // the pointer itself gets ignored, _unless_ we are looking at a typedef! | 
 |     // Also, do not emit the 'r' for anything but the outermost type! | 
 |     if (isa<TypedefType>(T.getTypePtr())) { | 
 |       if (OutermostType && T.isConstQualified()) { | 
 |         isReadOnly = true; | 
 |         S += 'r'; | 
 |       } | 
 |     } else if (OutermostType) { | 
 |       QualType P = PointeeTy; | 
 |       while (P->getAs<PointerType>()) | 
 |         P = P->getAs<PointerType>()->getPointeeType(); | 
 |       if (P.isConstQualified()) { | 
 |         isReadOnly = true; | 
 |         S += 'r'; | 
 |       } | 
 |     } | 
 |     if (isReadOnly) { | 
 |       // Another legacy compatibility encoding. Some ObjC qualifier and type | 
 |       // combinations need to be rearranged. | 
 |       // Rewrite "in const" from "nr" to "rn" | 
 |       if (StringRef(S).endswith("nr")) | 
 |         S.replace(S.end()-2, S.end(), "rn"); | 
 |     } | 
 |  | 
 |     if (PointeeTy->isCharType()) { | 
 |       // char pointer types should be encoded as '*' unless it is a | 
 |       // type that has been typedef'd to 'BOOL'. | 
 |       if (!isTypeTypedefedAsBOOL(PointeeTy)) { | 
 |         S += '*'; | 
 |         return; | 
 |       } | 
 |     } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) { | 
 |       // GCC binary compat: Need to convert "struct objc_class *" to "#". | 
 |       if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) { | 
 |         S += '#'; | 
 |         return; | 
 |       } | 
 |       // GCC binary compat: Need to convert "struct objc_object *" to "@". | 
 |       if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) { | 
 |         S += '@'; | 
 |         return; | 
 |       } | 
 |       // fall through... | 
 |     } | 
 |     S += '^'; | 
 |     getLegacyIntegralTypeEncoding(PointeeTy); | 
 |  | 
 |     getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures, | 
 |                                nullptr); | 
 |     return; | 
 |   } | 
 |  | 
 |   case Type::ConstantArray: | 
 |   case Type::IncompleteArray: | 
 |   case Type::VariableArray: { | 
 |     const ArrayType *AT = cast<ArrayType>(CT); | 
 |  | 
 |     if (isa<IncompleteArrayType>(AT) && !StructField) { | 
 |       // Incomplete arrays are encoded as a pointer to the array element. | 
 |       S += '^'; | 
 |  | 
 |       getObjCEncodingForTypeImpl(AT->getElementType(), S, | 
 |                                  false, ExpandStructures, FD); | 
 |     } else { | 
 |       S += '['; | 
 |  | 
 |       if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) | 
 |         S += llvm::utostr(CAT->getSize().getZExtValue()); | 
 |       else { | 
 |         //Variable length arrays are encoded as a regular array with 0 elements. | 
 |         assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) && | 
 |                "Unknown array type!"); | 
 |         S += '0'; | 
 |       } | 
 |  | 
 |       getObjCEncodingForTypeImpl(AT->getElementType(), S, | 
 |                                  false, ExpandStructures, FD); | 
 |       S += ']'; | 
 |     } | 
 |     return; | 
 |   } | 
 |  | 
 |   case Type::FunctionNoProto: | 
 |   case Type::FunctionProto: | 
 |     S += '?'; | 
 |     return; | 
 |  | 
 |   case Type::Record: { | 
 |     RecordDecl *RDecl = cast<RecordType>(CT)->getDecl(); | 
 |     S += RDecl->isUnion() ? '(' : '{'; | 
 |     // Anonymous structures print as '?' | 
 |     if (const IdentifierInfo *II = RDecl->getIdentifier()) { | 
 |       S += II->getName(); | 
 |       if (ClassTemplateSpecializationDecl *Spec | 
 |           = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) { | 
 |         const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); | 
 |         llvm::raw_string_ostream OS(S); | 
 |         TemplateSpecializationType::PrintTemplateArgumentList(OS, | 
 |                                             TemplateArgs.data(), | 
 |                                             TemplateArgs.size(), | 
 |                                             (*this).getPrintingPolicy()); | 
 |       } | 
 |     } else { | 
 |       S += '?'; | 
 |     } | 
 |     if (ExpandStructures) { | 
 |       S += '='; | 
 |       if (!RDecl->isUnion()) { | 
 |         getObjCEncodingForStructureImpl(RDecl, S, FD); | 
 |       } else { | 
 |         for (const auto *Field : RDecl->fields()) { | 
 |           if (FD) { | 
 |             S += '"'; | 
 |             S += Field->getNameAsString(); | 
 |             S += '"'; | 
 |           } | 
 |  | 
 |           // Special case bit-fields. | 
 |           if (Field->isBitField()) { | 
 |             getObjCEncodingForTypeImpl(Field->getType(), S, false, true, | 
 |                                        Field); | 
 |           } else { | 
 |             QualType qt = Field->getType(); | 
 |             getLegacyIntegralTypeEncoding(qt); | 
 |             getObjCEncodingForTypeImpl(qt, S, false, true, | 
 |                                        FD, /*OutermostType*/false, | 
 |                                        /*EncodingProperty*/false, | 
 |                                        /*StructField*/true); | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |     S += RDecl->isUnion() ? ')' : '}'; | 
 |     return; | 
 |   } | 
 |  | 
 |   case Type::BlockPointer: { | 
 |     const BlockPointerType *BT = T->castAs<BlockPointerType>(); | 
 |     S += "@?"; // Unlike a pointer-to-function, which is "^?". | 
 |     if (EncodeBlockParameters) { | 
 |       const FunctionType *FT = BT->getPointeeType()->castAs<FunctionType>(); | 
 |        | 
 |       S += '<'; | 
 |       // Block return type | 
 |       getObjCEncodingForTypeImpl( | 
 |           FT->getReturnType(), S, ExpandPointedToStructures, ExpandStructures, | 
 |           FD, false /* OutermostType */, EncodingProperty, | 
 |           false /* StructField */, EncodeBlockParameters, EncodeClassNames); | 
 |       // Block self | 
 |       S += "@?"; | 
 |       // Block parameters | 
 |       if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) { | 
 |         for (const auto &I : FPT->param_types()) | 
 |           getObjCEncodingForTypeImpl( | 
 |               I, S, ExpandPointedToStructures, ExpandStructures, FD, | 
 |               false /* OutermostType */, EncodingProperty, | 
 |               false /* StructField */, EncodeBlockParameters, EncodeClassNames); | 
 |       } | 
 |       S += '>'; | 
 |     } | 
 |     return; | 
 |   } | 
 |  | 
 |   case Type::ObjCObject: { | 
 |     // hack to match legacy encoding of *id and *Class | 
 |     QualType Ty = getObjCObjectPointerType(CT); | 
 |     if (Ty->isObjCIdType()) { | 
 |       S += "{objc_object=}"; | 
 |       return; | 
 |     } | 
 |     else if (Ty->isObjCClassType()) { | 
 |       S += "{objc_class=}"; | 
 |       return; | 
 |     } | 
 |   } | 
 |    | 
 |   case Type::ObjCInterface: { | 
 |     // Ignore protocol qualifiers when mangling at this level. | 
 |     T = T->castAs<ObjCObjectType>()->getBaseType(); | 
 |  | 
 |     // The assumption seems to be that this assert will succeed | 
 |     // because nested levels will have filtered out 'id' and 'Class'. | 
 |     const ObjCInterfaceType *OIT = T->castAs<ObjCInterfaceType>(); | 
 |     // @encode(class_name) | 
 |     ObjCInterfaceDecl *OI = OIT->getDecl(); | 
 |     S += '{'; | 
 |     const IdentifierInfo *II = OI->getIdentifier(); | 
 |     S += II->getName(); | 
 |     S += '='; | 
 |     SmallVector<const ObjCIvarDecl*, 32> Ivars; | 
 |     DeepCollectObjCIvars(OI, true, Ivars); | 
 |     for (unsigned i = 0, e = Ivars.size(); i != e; ++i) { | 
 |       const FieldDecl *Field = cast<FieldDecl>(Ivars[i]); | 
 |       if (Field->isBitField()) | 
 |         getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field); | 
 |       else | 
 |         getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD, | 
 |                                    false, false, false, false, false, | 
 |                                    EncodePointerToObjCTypedef); | 
 |     } | 
 |     S += '}'; | 
 |     return; | 
 |   } | 
 |  | 
 |   case Type::ObjCObjectPointer: { | 
 |     const ObjCObjectPointerType *OPT = T->castAs<ObjCObjectPointerType>(); | 
 |     if (OPT->isObjCIdType()) { | 
 |       S += '@'; | 
 |       return; | 
 |     } | 
 |  | 
 |     if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) { | 
 |       // FIXME: Consider if we need to output qualifiers for 'Class<p>'. | 
 |       // Since this is a binary compatibility issue, need to consult with runtime | 
 |       // folks. Fortunately, this is a *very* obsure construct. | 
 |       S += '#'; | 
 |       return; | 
 |     } | 
 |  | 
 |     if (OPT->isObjCQualifiedIdType()) { | 
 |       getObjCEncodingForTypeImpl(getObjCIdType(), S, | 
 |                                  ExpandPointedToStructures, | 
 |                                  ExpandStructures, FD); | 
 |       if (FD || EncodingProperty || EncodeClassNames) { | 
 |         // Note that we do extended encoding of protocol qualifer list | 
 |         // Only when doing ivar or property encoding. | 
 |         S += '"'; | 
 |         for (const auto *I : OPT->quals()) { | 
 |           S += '<'; | 
 |           S += I->getNameAsString(); | 
 |           S += '>'; | 
 |         } | 
 |         S += '"'; | 
 |       } | 
 |       return; | 
 |     } | 
 |  | 
 |     QualType PointeeTy = OPT->getPointeeType(); | 
 |     if (!EncodingProperty && | 
 |         isa<TypedefType>(PointeeTy.getTypePtr()) && | 
 |         !EncodePointerToObjCTypedef) { | 
 |       // Another historical/compatibility reason. | 
 |       // We encode the underlying type which comes out as | 
 |       // {...}; | 
 |       S += '^'; | 
 |       if (FD && OPT->getInterfaceDecl()) { | 
 |         // Prevent recursive encoding of fields in some rare cases. | 
 |         ObjCInterfaceDecl *OI = OPT->getInterfaceDecl(); | 
 |         SmallVector<const ObjCIvarDecl*, 32> Ivars; | 
 |         DeepCollectObjCIvars(OI, true, Ivars); | 
 |         for (unsigned i = 0, e = Ivars.size(); i != e; ++i) { | 
 |           if (cast<FieldDecl>(Ivars[i]) == FD) { | 
 |             S += '{'; | 
 |             S += OI->getIdentifier()->getName(); | 
 |             S += '}'; | 
 |             return; | 
 |           } | 
 |         } | 
 |       } | 
 |       getObjCEncodingForTypeImpl(PointeeTy, S, | 
 |                                  false, ExpandPointedToStructures, | 
 |                                  nullptr, | 
 |                                  false, false, false, false, false, | 
 |                                  /*EncodePointerToObjCTypedef*/true); | 
 |       return; | 
 |     } | 
 |  | 
 |     S += '@'; | 
 |     if (OPT->getInterfaceDecl() &&  | 
 |         (FD || EncodingProperty || EncodeClassNames)) { | 
 |       S += '"'; | 
 |       S += OPT->getInterfaceDecl()->getIdentifier()->getName(); | 
 |       for (const auto *I : OPT->quals()) { | 
 |         S += '<'; | 
 |         S += I->getNameAsString(); | 
 |         S += '>'; | 
 |       } | 
 |       S += '"'; | 
 |     } | 
 |     return; | 
 |   } | 
 |  | 
 |   // gcc just blithely ignores member pointers. | 
 |   // FIXME: we shoul do better than that.  'M' is available. | 
 |   case Type::MemberPointer: | 
 |     return; | 
 |    | 
 |   case Type::Vector: | 
 |   case Type::ExtVector: | 
 |     // This matches gcc's encoding, even though technically it is | 
 |     // insufficient. | 
 |     // FIXME. We should do a better job than gcc. | 
 |     return; | 
 |  | 
 |   case Type::Auto: | 
 |     // We could see an undeduced auto type here during error recovery. | 
 |     // Just ignore it. | 
 |     return; | 
 |  | 
 | #define ABSTRACT_TYPE(KIND, BASE) | 
 | #define TYPE(KIND, BASE) | 
 | #define DEPENDENT_TYPE(KIND, BASE) \ | 
 |   case Type::KIND: | 
 | #define NON_CANONICAL_TYPE(KIND, BASE) \ | 
 |   case Type::KIND: | 
 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \ | 
 |   case Type::KIND: | 
 | #include "clang/AST/TypeNodes.def" | 
 |     llvm_unreachable("@encode for dependent type!"); | 
 |   } | 
 |   llvm_unreachable("bad type kind!"); | 
 | } | 
 |  | 
 | void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl, | 
 |                                                  std::string &S, | 
 |                                                  const FieldDecl *FD, | 
 |                                                  bool includeVBases) const { | 
 |   assert(RDecl && "Expected non-null RecordDecl"); | 
 |   assert(!RDecl->isUnion() && "Should not be called for unions"); | 
 |   if (!RDecl->getDefinition()) | 
 |     return; | 
 |  | 
 |   CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl); | 
 |   std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets; | 
 |   const ASTRecordLayout &layout = getASTRecordLayout(RDecl); | 
 |  | 
 |   if (CXXRec) { | 
 |     for (const auto &BI : CXXRec->bases()) { | 
 |       if (!BI.isVirtual()) { | 
 |         CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl(); | 
 |         if (base->isEmpty()) | 
 |           continue; | 
 |         uint64_t offs = toBits(layout.getBaseClassOffset(base)); | 
 |         FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs), | 
 |                                   std::make_pair(offs, base)); | 
 |       } | 
 |     } | 
 |   } | 
 |    | 
 |   unsigned i = 0; | 
 |   for (RecordDecl::field_iterator Field = RDecl->field_begin(), | 
 |                                FieldEnd = RDecl->field_end(); | 
 |        Field != FieldEnd; ++Field, ++i) { | 
 |     uint64_t offs = layout.getFieldOffset(i); | 
 |     FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs), | 
 |                               std::make_pair(offs, *Field)); | 
 |   } | 
 |  | 
 |   if (CXXRec && includeVBases) { | 
 |     for (const auto &BI : CXXRec->vbases()) { | 
 |       CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl(); | 
 |       if (base->isEmpty()) | 
 |         continue; | 
 |       uint64_t offs = toBits(layout.getVBaseClassOffset(base)); | 
 |       if (offs >= uint64_t(toBits(layout.getNonVirtualSize())) && | 
 |           FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end()) | 
 |         FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(), | 
 |                                   std::make_pair(offs, base)); | 
 |     } | 
 |   } | 
 |  | 
 |   CharUnits size; | 
 |   if (CXXRec) { | 
 |     size = includeVBases ? layout.getSize() : layout.getNonVirtualSize(); | 
 |   } else { | 
 |     size = layout.getSize(); | 
 |   } | 
 |  | 
 | #ifndef NDEBUG | 
 |   uint64_t CurOffs = 0; | 
 | #endif | 
 |   std::multimap<uint64_t, NamedDecl *>::iterator | 
 |     CurLayObj = FieldOrBaseOffsets.begin(); | 
 |  | 
 |   if (CXXRec && CXXRec->isDynamicClass() && | 
 |       (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) { | 
 |     if (FD) { | 
 |       S += "\"_vptr$"; | 
 |       std::string recname = CXXRec->getNameAsString(); | 
 |       if (recname.empty()) recname = "?"; | 
 |       S += recname; | 
 |       S += '"'; | 
 |     } | 
 |     S += "^^?"; | 
 | #ifndef NDEBUG | 
 |     CurOffs += getTypeSize(VoidPtrTy); | 
 | #endif | 
 |   } | 
 |  | 
 |   if (!RDecl->hasFlexibleArrayMember()) { | 
 |     // Mark the end of the structure. | 
 |     uint64_t offs = toBits(size); | 
 |     FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs), | 
 |                               std::make_pair(offs, nullptr)); | 
 |   } | 
 |  | 
 |   for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) { | 
 | #ifndef NDEBUG | 
 |     assert(CurOffs <= CurLayObj->first); | 
 |     if (CurOffs < CurLayObj->first) { | 
 |       uint64_t padding = CurLayObj->first - CurOffs;  | 
 |       // FIXME: There doesn't seem to be a way to indicate in the encoding that | 
 |       // packing/alignment of members is different that normal, in which case | 
 |       // the encoding will be out-of-sync with the real layout. | 
 |       // If the runtime switches to just consider the size of types without | 
 |       // taking into account alignment, we could make padding explicit in the | 
 |       // encoding (e.g. using arrays of chars). The encoding strings would be | 
 |       // longer then though. | 
 |       CurOffs += padding; | 
 |     } | 
 | #endif | 
 |  | 
 |     NamedDecl *dcl = CurLayObj->second; | 
 |     if (!dcl) | 
 |       break; // reached end of structure. | 
 |  | 
 |     if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) { | 
 |       // We expand the bases without their virtual bases since those are going | 
 |       // in the initial structure. Note that this differs from gcc which | 
 |       // expands virtual bases each time one is encountered in the hierarchy, | 
 |       // making the encoding type bigger than it really is. | 
 |       getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false); | 
 |       assert(!base->isEmpty()); | 
 | #ifndef NDEBUG | 
 |       CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize()); | 
 | #endif | 
 |     } else { | 
 |       FieldDecl *field = cast<FieldDecl>(dcl); | 
 |       if (FD) { | 
 |         S += '"'; | 
 |         S += field->getNameAsString(); | 
 |         S += '"'; | 
 |       } | 
 |  | 
 |       if (field->isBitField()) { | 
 |         EncodeBitField(this, S, field->getType(), field); | 
 | #ifndef NDEBUG | 
 |         CurOffs += field->getBitWidthValue(*this); | 
 | #endif | 
 |       } else { | 
 |         QualType qt = field->getType(); | 
 |         getLegacyIntegralTypeEncoding(qt); | 
 |         getObjCEncodingForTypeImpl(qt, S, false, true, FD, | 
 |                                    /*OutermostType*/false, | 
 |                                    /*EncodingProperty*/false, | 
 |                                    /*StructField*/true); | 
 | #ifndef NDEBUG | 
 |         CurOffs += getTypeSize(field->getType()); | 
 | #endif | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT, | 
 |                                                  std::string& S) const { | 
 |   if (QT & Decl::OBJC_TQ_In) | 
 |     S += 'n'; | 
 |   if (QT & Decl::OBJC_TQ_Inout) | 
 |     S += 'N'; | 
 |   if (QT & Decl::OBJC_TQ_Out) | 
 |     S += 'o'; | 
 |   if (QT & Decl::OBJC_TQ_Bycopy) | 
 |     S += 'O'; | 
 |   if (QT & Decl::OBJC_TQ_Byref) | 
 |     S += 'R'; | 
 |   if (QT & Decl::OBJC_TQ_Oneway) | 
 |     S += 'V'; | 
 | } | 
 |  | 
 | TypedefDecl *ASTContext::getObjCIdDecl() const { | 
 |   if (!ObjCIdDecl) { | 
 |     QualType T = getObjCObjectType(ObjCBuiltinIdTy, nullptr, 0); | 
 |     T = getObjCObjectPointerType(T); | 
 |     ObjCIdDecl = buildImplicitTypedef(T, "id"); | 
 |   } | 
 |   return ObjCIdDecl; | 
 | } | 
 |  | 
 | TypedefDecl *ASTContext::getObjCSelDecl() const { | 
 |   if (!ObjCSelDecl) { | 
 |     QualType T = getPointerType(ObjCBuiltinSelTy); | 
 |     ObjCSelDecl = buildImplicitTypedef(T, "SEL"); | 
 |   } | 
 |   return ObjCSelDecl; | 
 | } | 
 |  | 
 | TypedefDecl *ASTContext::getObjCClassDecl() const { | 
 |   if (!ObjCClassDecl) { | 
 |     QualType T = getObjCObjectType(ObjCBuiltinClassTy, nullptr, 0); | 
 |     T = getObjCObjectPointerType(T); | 
 |     ObjCClassDecl = buildImplicitTypedef(T, "Class"); | 
 |   } | 
 |   return ObjCClassDecl; | 
 | } | 
 |  | 
 | ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const { | 
 |   if (!ObjCProtocolClassDecl) { | 
 |     ObjCProtocolClassDecl  | 
 |       = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),  | 
 |                                   SourceLocation(), | 
 |                                   &Idents.get("Protocol"), | 
 |                                   /*PrevDecl=*/nullptr, | 
 |                                   SourceLocation(), true);     | 
 |   } | 
 |    | 
 |   return ObjCProtocolClassDecl; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // __builtin_va_list Construction Functions | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) { | 
 |   // typedef char* __builtin_va_list; | 
 |   QualType T = Context->getPointerType(Context->CharTy); | 
 |   return Context->buildImplicitTypedef(T, "__builtin_va_list"); | 
 | } | 
 |  | 
 | static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) { | 
 |   // typedef void* __builtin_va_list; | 
 |   QualType T = Context->getPointerType(Context->VoidTy); | 
 |   return Context->buildImplicitTypedef(T, "__builtin_va_list"); | 
 | } | 
 |  | 
 | static TypedefDecl * | 
 | CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) { | 
 |   // struct __va_list | 
 |   RecordDecl *VaListTagDecl = Context->buildImplicitRecord("__va_list"); | 
 |   if (Context->getLangOpts().CPlusPlus) { | 
 |     // namespace std { struct __va_list { | 
 |     NamespaceDecl *NS; | 
 |     NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context), | 
 |                                Context->getTranslationUnitDecl(), | 
 |                                /*Inline*/ false, SourceLocation(), | 
 |                                SourceLocation(), &Context->Idents.get("std"), | 
 |                                /*PrevDecl*/ nullptr); | 
 |     NS->setImplicit(); | 
 |     VaListTagDecl->setDeclContext(NS); | 
 |   } | 
 |  | 
 |   VaListTagDecl->startDefinition(); | 
 |  | 
 |   const size_t NumFields = 5; | 
 |   QualType FieldTypes[NumFields]; | 
 |   const char *FieldNames[NumFields]; | 
 |  | 
 |   // void *__stack; | 
 |   FieldTypes[0] = Context->getPointerType(Context->VoidTy); | 
 |   FieldNames[0] = "__stack"; | 
 |  | 
 |   // void *__gr_top; | 
 |   FieldTypes[1] = Context->getPointerType(Context->VoidTy); | 
 |   FieldNames[1] = "__gr_top"; | 
 |  | 
 |   // void *__vr_top; | 
 |   FieldTypes[2] = Context->getPointerType(Context->VoidTy); | 
 |   FieldNames[2] = "__vr_top"; | 
 |  | 
 |   // int __gr_offs; | 
 |   FieldTypes[3] = Context->IntTy; | 
 |   FieldNames[3] = "__gr_offs"; | 
 |  | 
 |   // int __vr_offs; | 
 |   FieldTypes[4] = Context->IntTy; | 
 |   FieldNames[4] = "__vr_offs"; | 
 |  | 
 |   // Create fields | 
 |   for (unsigned i = 0; i < NumFields; ++i) { | 
 |     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), | 
 |                                          VaListTagDecl, | 
 |                                          SourceLocation(), | 
 |                                          SourceLocation(), | 
 |                                          &Context->Idents.get(FieldNames[i]), | 
 |                                          FieldTypes[i], /*TInfo=*/nullptr, | 
 |                                          /*BitWidth=*/nullptr, | 
 |                                          /*Mutable=*/false, | 
 |                                          ICIS_NoInit); | 
 |     Field->setAccess(AS_public); | 
 |     VaListTagDecl->addDecl(Field); | 
 |   } | 
 |   VaListTagDecl->completeDefinition(); | 
 |   QualType VaListTagType = Context->getRecordType(VaListTagDecl); | 
 |   Context->VaListTagTy = VaListTagType; | 
 |  | 
 |   // } __builtin_va_list; | 
 |   return Context->buildImplicitTypedef(VaListTagType, "__builtin_va_list"); | 
 | } | 
 |  | 
 | static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) { | 
 |   // typedef struct __va_list_tag { | 
 |   RecordDecl *VaListTagDecl; | 
 |  | 
 |   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag"); | 
 |   VaListTagDecl->startDefinition(); | 
 |  | 
 |   const size_t NumFields = 5; | 
 |   QualType FieldTypes[NumFields]; | 
 |   const char *FieldNames[NumFields]; | 
 |  | 
 |   //   unsigned char gpr; | 
 |   FieldTypes[0] = Context->UnsignedCharTy; | 
 |   FieldNames[0] = "gpr"; | 
 |  | 
 |   //   unsigned char fpr; | 
 |   FieldTypes[1] = Context->UnsignedCharTy; | 
 |   FieldNames[1] = "fpr"; | 
 |  | 
 |   //   unsigned short reserved; | 
 |   FieldTypes[2] = Context->UnsignedShortTy; | 
 |   FieldNames[2] = "reserved"; | 
 |  | 
 |   //   void* overflow_arg_area; | 
 |   FieldTypes[3] = Context->getPointerType(Context->VoidTy); | 
 |   FieldNames[3] = "overflow_arg_area"; | 
 |  | 
 |   //   void* reg_save_area; | 
 |   FieldTypes[4] = Context->getPointerType(Context->VoidTy); | 
 |   FieldNames[4] = "reg_save_area"; | 
 |  | 
 |   // Create fields | 
 |   for (unsigned i = 0; i < NumFields; ++i) { | 
 |     FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl, | 
 |                                          SourceLocation(), | 
 |                                          SourceLocation(), | 
 |                                          &Context->Idents.get(FieldNames[i]), | 
 |                                          FieldTypes[i], /*TInfo=*/nullptr, | 
 |                                          /*BitWidth=*/nullptr, | 
 |                                          /*Mutable=*/false, | 
 |                                          ICIS_NoInit); | 
 |     Field->setAccess(AS_public); | 
 |     VaListTagDecl->addDecl(Field); | 
 |   } | 
 |   VaListTagDecl->completeDefinition(); | 
 |   QualType VaListTagType = Context->getRecordType(VaListTagDecl); | 
 |   Context->VaListTagTy = VaListTagType; | 
 |  | 
 |   // } __va_list_tag; | 
 |   TypedefDecl *VaListTagTypedefDecl = | 
 |       Context->buildImplicitTypedef(VaListTagType, "__va_list_tag"); | 
 |  | 
 |   QualType VaListTagTypedefType = | 
 |     Context->getTypedefType(VaListTagTypedefDecl); | 
 |  | 
 |   // typedef __va_list_tag __builtin_va_list[1]; | 
 |   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1); | 
 |   QualType VaListTagArrayType | 
 |     = Context->getConstantArrayType(VaListTagTypedefType, | 
 |                                     Size, ArrayType::Normal, 0); | 
 |   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list"); | 
 | } | 
 |  | 
 | static TypedefDecl * | 
 | CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) { | 
 |   // typedef struct __va_list_tag { | 
 |   RecordDecl *VaListTagDecl; | 
 |   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag"); | 
 |   VaListTagDecl->startDefinition(); | 
 |  | 
 |   const size_t NumFields = 4; | 
 |   QualType FieldTypes[NumFields]; | 
 |   const char *FieldNames[NumFields]; | 
 |  | 
 |   //   unsigned gp_offset; | 
 |   FieldTypes[0] = Context->UnsignedIntTy; | 
 |   FieldNames[0] = "gp_offset"; | 
 |  | 
 |   //   unsigned fp_offset; | 
 |   FieldTypes[1] = Context->UnsignedIntTy; | 
 |   FieldNames[1] = "fp_offset"; | 
 |  | 
 |   //   void* overflow_arg_area; | 
 |   FieldTypes[2] = Context->getPointerType(Context->VoidTy); | 
 |   FieldNames[2] = "overflow_arg_area"; | 
 |  | 
 |   //   void* reg_save_area; | 
 |   FieldTypes[3] = Context->getPointerType(Context->VoidTy); | 
 |   FieldNames[3] = "reg_save_area"; | 
 |  | 
 |   // Create fields | 
 |   for (unsigned i = 0; i < NumFields; ++i) { | 
 |     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), | 
 |                                          VaListTagDecl, | 
 |                                          SourceLocation(), | 
 |                                          SourceLocation(), | 
 |                                          &Context->Idents.get(FieldNames[i]), | 
 |                                          FieldTypes[i], /*TInfo=*/nullptr, | 
 |                                          /*BitWidth=*/nullptr, | 
 |                                          /*Mutable=*/false, | 
 |                                          ICIS_NoInit); | 
 |     Field->setAccess(AS_public); | 
 |     VaListTagDecl->addDecl(Field); | 
 |   } | 
 |   VaListTagDecl->completeDefinition(); | 
 |   QualType VaListTagType = Context->getRecordType(VaListTagDecl); | 
 |   Context->VaListTagTy = VaListTagType; | 
 |  | 
 |   // } __va_list_tag; | 
 |   TypedefDecl *VaListTagTypedefDecl = | 
 |       Context->buildImplicitTypedef(VaListTagType, "__va_list_tag"); | 
 |  | 
 |   QualType VaListTagTypedefType = | 
 |     Context->getTypedefType(VaListTagTypedefDecl); | 
 |  | 
 |   // typedef __va_list_tag __builtin_va_list[1]; | 
 |   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1); | 
 |   QualType VaListTagArrayType | 
 |     = Context->getConstantArrayType(VaListTagTypedefType, | 
 |                                       Size, ArrayType::Normal,0); | 
 |   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list"); | 
 | } | 
 |  | 
 | static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) { | 
 |   // typedef int __builtin_va_list[4]; | 
 |   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4); | 
 |   QualType IntArrayType | 
 |     = Context->getConstantArrayType(Context->IntTy, | 
 | 				    Size, ArrayType::Normal, 0); | 
 |   return Context->buildImplicitTypedef(IntArrayType, "__builtin_va_list"); | 
 | } | 
 |  | 
 | static TypedefDecl * | 
 | CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) { | 
 |   // struct __va_list | 
 |   RecordDecl *VaListDecl = Context->buildImplicitRecord("__va_list"); | 
 |   if (Context->getLangOpts().CPlusPlus) { | 
 |     // namespace std { struct __va_list { | 
 |     NamespaceDecl *NS; | 
 |     NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context), | 
 |                                Context->getTranslationUnitDecl(), | 
 |                                /*Inline*/false, SourceLocation(), | 
 |                                SourceLocation(), &Context->Idents.get("std"), | 
 |                                /*PrevDecl*/ nullptr); | 
 |     NS->setImplicit(); | 
 |     VaListDecl->setDeclContext(NS); | 
 |   } | 
 |  | 
 |   VaListDecl->startDefinition(); | 
 |  | 
 |   // void * __ap; | 
 |   FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), | 
 |                                        VaListDecl, | 
 |                                        SourceLocation(), | 
 |                                        SourceLocation(), | 
 |                                        &Context->Idents.get("__ap"), | 
 |                                        Context->getPointerType(Context->VoidTy), | 
 |                                        /*TInfo=*/nullptr, | 
 |                                        /*BitWidth=*/nullptr, | 
 |                                        /*Mutable=*/false, | 
 |                                        ICIS_NoInit); | 
 |   Field->setAccess(AS_public); | 
 |   VaListDecl->addDecl(Field); | 
 |  | 
 |   // }; | 
 |   VaListDecl->completeDefinition(); | 
 |  | 
 |   // typedef struct __va_list __builtin_va_list; | 
 |   QualType T = Context->getRecordType(VaListDecl); | 
 |   return Context->buildImplicitTypedef(T, "__builtin_va_list"); | 
 | } | 
 |  | 
 | static TypedefDecl * | 
 | CreateSystemZBuiltinVaListDecl(const ASTContext *Context) { | 
 |   // typedef struct __va_list_tag { | 
 |   RecordDecl *VaListTagDecl; | 
 |   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag"); | 
 |   VaListTagDecl->startDefinition(); | 
 |  | 
 |   const size_t NumFields = 4; | 
 |   QualType FieldTypes[NumFields]; | 
 |   const char *FieldNames[NumFields]; | 
 |  | 
 |   //   long __gpr; | 
 |   FieldTypes[0] = Context->LongTy; | 
 |   FieldNames[0] = "__gpr"; | 
 |  | 
 |   //   long __fpr; | 
 |   FieldTypes[1] = Context->LongTy; | 
 |   FieldNames[1] = "__fpr"; | 
 |  | 
 |   //   void *__overflow_arg_area; | 
 |   FieldTypes[2] = Context->getPointerType(Context->VoidTy); | 
 |   FieldNames[2] = "__overflow_arg_area"; | 
 |  | 
 |   //   void *__reg_save_area; | 
 |   FieldTypes[3] = Context->getPointerType(Context->VoidTy); | 
 |   FieldNames[3] = "__reg_save_area"; | 
 |  | 
 |   // Create fields | 
 |   for (unsigned i = 0; i < NumFields; ++i) { | 
 |     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), | 
 |                                          VaListTagDecl, | 
 |                                          SourceLocation(), | 
 |                                          SourceLocation(), | 
 |                                          &Context->Idents.get(FieldNames[i]), | 
 |                                          FieldTypes[i], /*TInfo=*/nullptr, | 
 |                                          /*BitWidth=*/nullptr, | 
 |                                          /*Mutable=*/false, | 
 |                                          ICIS_NoInit); | 
 |     Field->setAccess(AS_public); | 
 |     VaListTagDecl->addDecl(Field); | 
 |   } | 
 |   VaListTagDecl->completeDefinition(); | 
 |   QualType VaListTagType = Context->getRecordType(VaListTagDecl); | 
 |   Context->VaListTagTy = VaListTagType; | 
 |  | 
 |   // } __va_list_tag; | 
 |   TypedefDecl *VaListTagTypedefDecl = | 
 |       Context->buildImplicitTypedef(VaListTagType, "__va_list_tag"); | 
 |   QualType VaListTagTypedefType = | 
 |     Context->getTypedefType(VaListTagTypedefDecl); | 
 |  | 
 |   // typedef __va_list_tag __builtin_va_list[1]; | 
 |   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1); | 
 |   QualType VaListTagArrayType | 
 |     = Context->getConstantArrayType(VaListTagTypedefType, | 
 |                                       Size, ArrayType::Normal,0); | 
 |  | 
 |   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list"); | 
 | } | 
 |  | 
 | static TypedefDecl *CreateVaListDecl(const ASTContext *Context, | 
 |                                      TargetInfo::BuiltinVaListKind Kind) { | 
 |   switch (Kind) { | 
 |   case TargetInfo::CharPtrBuiltinVaList: | 
 |     return CreateCharPtrBuiltinVaListDecl(Context); | 
 |   case TargetInfo::VoidPtrBuiltinVaList: | 
 |     return CreateVoidPtrBuiltinVaListDecl(Context); | 
 |   case TargetInfo::AArch64ABIBuiltinVaList: | 
 |     return CreateAArch64ABIBuiltinVaListDecl(Context); | 
 |   case TargetInfo::PowerABIBuiltinVaList: | 
 |     return CreatePowerABIBuiltinVaListDecl(Context); | 
 |   case TargetInfo::X86_64ABIBuiltinVaList: | 
 |     return CreateX86_64ABIBuiltinVaListDecl(Context); | 
 |   case TargetInfo::PNaClABIBuiltinVaList: | 
 |     return CreatePNaClABIBuiltinVaListDecl(Context); | 
 |   case TargetInfo::AAPCSABIBuiltinVaList: | 
 |     return CreateAAPCSABIBuiltinVaListDecl(Context); | 
 |   case TargetInfo::SystemZBuiltinVaList: | 
 |     return CreateSystemZBuiltinVaListDecl(Context); | 
 |   } | 
 |  | 
 |   llvm_unreachable("Unhandled __builtin_va_list type kind"); | 
 | } | 
 |  | 
 | TypedefDecl *ASTContext::getBuiltinVaListDecl() const { | 
 |   if (!BuiltinVaListDecl) { | 
 |     BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind()); | 
 |     assert(BuiltinVaListDecl->isImplicit()); | 
 |   } | 
 |  | 
 |   return BuiltinVaListDecl; | 
 | } | 
 |  | 
 | QualType ASTContext::getVaListTagType() const { | 
 |   // Force the creation of VaListTagTy by building the __builtin_va_list | 
 |   // declaration. | 
 |   if (VaListTagTy.isNull()) | 
 |     (void) getBuiltinVaListDecl(); | 
 |  | 
 |   return VaListTagTy; | 
 | } | 
 |  | 
 | void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) { | 
 |   assert(ObjCConstantStringType.isNull() && | 
 |          "'NSConstantString' type already set!"); | 
 |  | 
 |   ObjCConstantStringType = getObjCInterfaceType(Decl); | 
 | } | 
 |  | 
 | /// \brief Retrieve the template name that corresponds to a non-empty | 
 | /// lookup. | 
 | TemplateName | 
 | ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin, | 
 |                                       UnresolvedSetIterator End) const { | 
 |   unsigned size = End - Begin; | 
 |   assert(size > 1 && "set is not overloaded!"); | 
 |  | 
 |   void *memory = Allocate(sizeof(OverloadedTemplateStorage) + | 
 |                           size * sizeof(FunctionTemplateDecl*)); | 
 |   OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size); | 
 |  | 
 |   NamedDecl **Storage = OT->getStorage(); | 
 |   for (UnresolvedSetIterator I = Begin; I != End; ++I) { | 
 |     NamedDecl *D = *I; | 
 |     assert(isa<FunctionTemplateDecl>(D) || | 
 |            (isa<UsingShadowDecl>(D) && | 
 |             isa<FunctionTemplateDecl>(D->getUnderlyingDecl()))); | 
 |     *Storage++ = D; | 
 |   } | 
 |  | 
 |   return TemplateName(OT); | 
 | } | 
 |  | 
 | /// \brief Retrieve the template name that represents a qualified | 
 | /// template name such as \c std::vector. | 
 | TemplateName | 
 | ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS, | 
 |                                      bool TemplateKeyword, | 
 |                                      TemplateDecl *Template) const { | 
 |   assert(NNS && "Missing nested-name-specifier in qualified template name"); | 
 |    | 
 |   // FIXME: Canonicalization? | 
 |   llvm::FoldingSetNodeID ID; | 
 |   QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template); | 
 |  | 
 |   void *InsertPos = nullptr; | 
 |   QualifiedTemplateName *QTN = | 
 |     QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos); | 
 |   if (!QTN) { | 
 |     QTN = new (*this, llvm::alignOf<QualifiedTemplateName>()) | 
 |         QualifiedTemplateName(NNS, TemplateKeyword, Template); | 
 |     QualifiedTemplateNames.InsertNode(QTN, InsertPos); | 
 |   } | 
 |  | 
 |   return TemplateName(QTN); | 
 | } | 
 |  | 
 | /// \brief Retrieve the template name that represents a dependent | 
 | /// template name such as \c MetaFun::template apply. | 
 | TemplateName | 
 | ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS, | 
 |                                      const IdentifierInfo *Name) const { | 
 |   assert((!NNS || NNS->isDependent()) && | 
 |          "Nested name specifier must be dependent"); | 
 |  | 
 |   llvm::FoldingSetNodeID ID; | 
 |   DependentTemplateName::Profile(ID, NNS, Name); | 
 |  | 
 |   void *InsertPos = nullptr; | 
 |   DependentTemplateName *QTN = | 
 |     DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); | 
 |  | 
 |   if (QTN) | 
 |     return TemplateName(QTN); | 
 |  | 
 |   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); | 
 |   if (CanonNNS == NNS) { | 
 |     QTN = new (*this, llvm::alignOf<DependentTemplateName>()) | 
 |         DependentTemplateName(NNS, Name); | 
 |   } else { | 
 |     TemplateName Canon = getDependentTemplateName(CanonNNS, Name); | 
 |     QTN = new (*this, llvm::alignOf<DependentTemplateName>()) | 
 |         DependentTemplateName(NNS, Name, Canon); | 
 |     DependentTemplateName *CheckQTN = | 
 |       DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); | 
 |     assert(!CheckQTN && "Dependent type name canonicalization broken"); | 
 |     (void)CheckQTN; | 
 |   } | 
 |  | 
 |   DependentTemplateNames.InsertNode(QTN, InsertPos); | 
 |   return TemplateName(QTN); | 
 | } | 
 |  | 
 | /// \brief Retrieve the template name that represents a dependent | 
 | /// template name such as \c MetaFun::template operator+. | 
 | TemplateName  | 
 | ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS, | 
 |                                      OverloadedOperatorKind Operator) const { | 
 |   assert((!NNS || NNS->isDependent()) && | 
 |          "Nested name specifier must be dependent"); | 
 |    | 
 |   llvm::FoldingSetNodeID ID; | 
 |   DependentTemplateName::Profile(ID, NNS, Operator); | 
 |  | 
 |   void *InsertPos = nullptr; | 
 |   DependentTemplateName *QTN | 
 |     = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); | 
 |    | 
 |   if (QTN) | 
 |     return TemplateName(QTN); | 
 |    | 
 |   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); | 
 |   if (CanonNNS == NNS) { | 
 |     QTN = new (*this, llvm::alignOf<DependentTemplateName>()) | 
 |         DependentTemplateName(NNS, Operator); | 
 |   } else { | 
 |     TemplateName Canon = getDependentTemplateName(CanonNNS, Operator); | 
 |     QTN = new (*this, llvm::alignOf<DependentTemplateName>()) | 
 |         DependentTemplateName(NNS, Operator, Canon); | 
 |      | 
 |     DependentTemplateName *CheckQTN | 
 |       = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); | 
 |     assert(!CheckQTN && "Dependent template name canonicalization broken"); | 
 |     (void)CheckQTN; | 
 |   } | 
 |    | 
 |   DependentTemplateNames.InsertNode(QTN, InsertPos); | 
 |   return TemplateName(QTN); | 
 | } | 
 |  | 
 | TemplateName  | 
 | ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param, | 
 |                                          TemplateName replacement) const { | 
 |   llvm::FoldingSetNodeID ID; | 
 |   SubstTemplateTemplateParmStorage::Profile(ID, param, replacement); | 
 |  | 
 |   void *insertPos = nullptr; | 
 |   SubstTemplateTemplateParmStorage *subst | 
 |     = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos); | 
 |    | 
 |   if (!subst) { | 
 |     subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement); | 
 |     SubstTemplateTemplateParms.InsertNode(subst, insertPos); | 
 |   } | 
 |  | 
 |   return TemplateName(subst); | 
 | } | 
 |  | 
 | TemplateName  | 
 | ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param, | 
 |                                        const TemplateArgument &ArgPack) const { | 
 |   ASTContext &Self = const_cast<ASTContext &>(*this); | 
 |   llvm::FoldingSetNodeID ID; | 
 |   SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack); | 
 |  | 
 |   void *InsertPos = nullptr; | 
 |   SubstTemplateTemplateParmPackStorage *Subst | 
 |     = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos); | 
 |    | 
 |   if (!Subst) { | 
 |     Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,  | 
 |                                                            ArgPack.pack_size(), | 
 |                                                          ArgPack.pack_begin()); | 
 |     SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos); | 
 |   } | 
 |  | 
 |   return TemplateName(Subst); | 
 | } | 
 |  | 
 | /// getFromTargetType - Given one of the integer types provided by | 
 | /// TargetInfo, produce the corresponding type. The unsigned @p Type | 
 | /// is actually a value of type @c TargetInfo::IntType. | 
 | CanQualType ASTContext::getFromTargetType(unsigned Type) const { | 
 |   switch (Type) { | 
 |   case TargetInfo::NoInt: return CanQualType(); | 
 |   case TargetInfo::SignedChar: return SignedCharTy; | 
 |   case TargetInfo::UnsignedChar: return UnsignedCharTy; | 
 |   case TargetInfo::SignedShort: return ShortTy; | 
 |   case TargetInfo::UnsignedShort: return UnsignedShortTy; | 
 |   case TargetInfo::SignedInt: return IntTy; | 
 |   case TargetInfo::UnsignedInt: return UnsignedIntTy; | 
 |   case TargetInfo::SignedLong: return LongTy; | 
 |   case TargetInfo::UnsignedLong: return UnsignedLongTy; | 
 |   case TargetInfo::SignedLongLong: return LongLongTy; | 
 |   case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy; | 
 |   } | 
 |  | 
 |   llvm_unreachable("Unhandled TargetInfo::IntType value"); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                        Type Predicates. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's | 
 | /// garbage collection attribute. | 
 | /// | 
 | Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const { | 
 |   if (getLangOpts().getGC() == LangOptions::NonGC) | 
 |     return Qualifiers::GCNone; | 
 |  | 
 |   assert(getLangOpts().ObjC1); | 
 |   Qualifiers::GC GCAttrs = Ty.getObjCGCAttr(); | 
 |  | 
 |   // Default behaviour under objective-C's gc is for ObjC pointers | 
 |   // (or pointers to them) be treated as though they were declared | 
 |   // as __strong. | 
 |   if (GCAttrs == Qualifiers::GCNone) { | 
 |     if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) | 
 |       return Qualifiers::Strong; | 
 |     else if (Ty->isPointerType()) | 
 |       return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType()); | 
 |   } else { | 
 |     // It's not valid to set GC attributes on anything that isn't a | 
 |     // pointer. | 
 | #ifndef NDEBUG | 
 |     QualType CT = Ty->getCanonicalTypeInternal(); | 
 |     while (const ArrayType *AT = dyn_cast<ArrayType>(CT)) | 
 |       CT = AT->getElementType(); | 
 |     assert(CT->isAnyPointerType() || CT->isBlockPointerType()); | 
 | #endif | 
 |   } | 
 |   return GCAttrs; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                        Type Compatibility Testing | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// areCompatVectorTypes - Return true if the two specified vector types are | 
 | /// compatible. | 
 | static bool areCompatVectorTypes(const VectorType *LHS, | 
 |                                  const VectorType *RHS) { | 
 |   assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified()); | 
 |   return LHS->getElementType() == RHS->getElementType() && | 
 |          LHS->getNumElements() == RHS->getNumElements(); | 
 | } | 
 |  | 
 | bool ASTContext::areCompatibleVectorTypes(QualType FirstVec, | 
 |                                           QualType SecondVec) { | 
 |   assert(FirstVec->isVectorType() && "FirstVec should be a vector type"); | 
 |   assert(SecondVec->isVectorType() && "SecondVec should be a vector type"); | 
 |  | 
 |   if (hasSameUnqualifiedType(FirstVec, SecondVec)) | 
 |     return true; | 
 |  | 
 |   // Treat Neon vector types and most AltiVec vector types as if they are the | 
 |   // equivalent GCC vector types. | 
 |   const VectorType *First = FirstVec->getAs<VectorType>(); | 
 |   const VectorType *Second = SecondVec->getAs<VectorType>(); | 
 |   if (First->getNumElements() == Second->getNumElements() && | 
 |       hasSameType(First->getElementType(), Second->getElementType()) && | 
 |       First->getVectorKind() != VectorType::AltiVecPixel && | 
 |       First->getVectorKind() != VectorType::AltiVecBool && | 
 |       Second->getVectorKind() != VectorType::AltiVecPixel && | 
 |       Second->getVectorKind() != VectorType::AltiVecBool) | 
 |     return true; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the | 
 | /// inheritance hierarchy of 'rProto'. | 
 | bool | 
 | ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto, | 
 |                                            ObjCProtocolDecl *rProto) const { | 
 |   if (declaresSameEntity(lProto, rProto)) | 
 |     return true; | 
 |   for (auto *PI : rProto->protocols()) | 
 |     if (ProtocolCompatibleWithProtocol(lProto, PI)) | 
 |       return true; | 
 |   return false; | 
 | } | 
 |  | 
 | /// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and | 
 | /// Class<pr1, ...>. | 
 | bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,  | 
 |                                                       QualType rhs) { | 
 |   const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>(); | 
 |   const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>(); | 
 |   assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible"); | 
 |    | 
 |   for (auto *lhsProto : lhsQID->quals()) { | 
 |     bool match = false; | 
 |     for (auto *rhsProto : rhsOPT->quals()) { | 
 |       if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) { | 
 |         match = true; | 
 |         break; | 
 |       } | 
 |     } | 
 |     if (!match) | 
 |       return false; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | /// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an | 
 | /// ObjCQualifiedIDType. | 
 | bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs, | 
 |                                                    bool compare) { | 
 |   // Allow id<P..> and an 'id' or void* type in all cases. | 
 |   if (lhs->isVoidPointerType() || | 
 |       lhs->isObjCIdType() || lhs->isObjCClassType()) | 
 |     return true; | 
 |   else if (rhs->isVoidPointerType() || | 
 |            rhs->isObjCIdType() || rhs->isObjCClassType()) | 
 |     return true; | 
 |  | 
 |   if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) { | 
 |     const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>(); | 
 |  | 
 |     if (!rhsOPT) return false; | 
 |  | 
 |     if (rhsOPT->qual_empty()) { | 
 |       // If the RHS is a unqualified interface pointer "NSString*", | 
 |       // make sure we check the class hierarchy. | 
 |       if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) { | 
 |         for (auto *I : lhsQID->quals()) { | 
 |           // when comparing an id<P> on lhs with a static type on rhs, | 
 |           // see if static class implements all of id's protocols, directly or | 
 |           // through its super class and categories. | 
 |           if (!rhsID->ClassImplementsProtocol(I, true)) | 
 |             return false; | 
 |         } | 
 |       } | 
 |       // If there are no qualifiers and no interface, we have an 'id'. | 
 |       return true; | 
 |     } | 
 |     // Both the right and left sides have qualifiers. | 
 |     for (auto *lhsProto : lhsQID->quals()) { | 
 |       bool match = false; | 
 |  | 
 |       // when comparing an id<P> on lhs with a static type on rhs, | 
 |       // see if static class implements all of id's protocols, directly or | 
 |       // through its super class and categories. | 
 |       for (auto *rhsProto : rhsOPT->quals()) { | 
 |         if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) || | 
 |             (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) { | 
 |           match = true; | 
 |           break; | 
 |         } | 
 |       } | 
 |       // If the RHS is a qualified interface pointer "NSString<P>*", | 
 |       // make sure we check the class hierarchy. | 
 |       if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) { | 
 |         for (auto *I : lhsQID->quals()) { | 
 |           // when comparing an id<P> on lhs with a static type on rhs, | 
 |           // see if static class implements all of id's protocols, directly or | 
 |           // through its super class and categories. | 
 |           if (rhsID->ClassImplementsProtocol(I, true)) { | 
 |             match = true; | 
 |             break; | 
 |           } | 
 |         } | 
 |       } | 
 |       if (!match) | 
 |         return false; | 
 |     } | 
 |  | 
 |     return true; | 
 |   } | 
 |  | 
 |   const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType(); | 
 |   assert(rhsQID && "One of the LHS/RHS should be id<x>"); | 
 |  | 
 |   if (const ObjCObjectPointerType *lhsOPT = | 
 |         lhs->getAsObjCInterfacePointerType()) { | 
 |     // If both the right and left sides have qualifiers. | 
 |     for (auto *lhsProto : lhsOPT->quals()) { | 
 |       bool match = false; | 
 |  | 
 |       // when comparing an id<P> on rhs with a static type on lhs, | 
 |       // see if static class implements all of id's protocols, directly or | 
 |       // through its super class and categories. | 
 |       // First, lhs protocols in the qualifier list must be found, direct | 
 |       // or indirect in rhs's qualifier list or it is a mismatch. | 
 |       for (auto *rhsProto : rhsQID->quals()) { | 
 |         if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) || | 
 |             (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) { | 
 |           match = true; | 
 |           break; | 
 |         } | 
 |       } | 
 |       if (!match) | 
 |         return false; | 
 |     } | 
 |      | 
 |     // Static class's protocols, or its super class or category protocols | 
 |     // must be found, direct or indirect in rhs's qualifier list or it is a mismatch. | 
 |     if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) { | 
 |       llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols; | 
 |       CollectInheritedProtocols(lhsID, LHSInheritedProtocols); | 
 |       // This is rather dubious but matches gcc's behavior. If lhs has | 
 |       // no type qualifier and its class has no static protocol(s) | 
 |       // assume that it is mismatch. | 
 |       if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty()) | 
 |         return false; | 
 |       for (auto *lhsProto : LHSInheritedProtocols) { | 
 |         bool match = false; | 
 |         for (auto *rhsProto : rhsQID->quals()) { | 
 |           if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) || | 
 |               (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) { | 
 |             match = true; | 
 |             break; | 
 |           } | 
 |         } | 
 |         if (!match) | 
 |           return false; | 
 |       } | 
 |     } | 
 |     return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | /// canAssignObjCInterfaces - Return true if the two interface types are | 
 | /// compatible for assignment from RHS to LHS.  This handles validation of any | 
 | /// protocol qualifiers on the LHS or RHS. | 
 | /// | 
 | bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT, | 
 |                                          const ObjCObjectPointerType *RHSOPT) { | 
 |   const ObjCObjectType* LHS = LHSOPT->getObjectType(); | 
 |   const ObjCObjectType* RHS = RHSOPT->getObjectType(); | 
 |  | 
 |   // If either type represents the built-in 'id' or 'Class' types, return true. | 
 |   if (LHS->isObjCUnqualifiedIdOrClass() || | 
 |       RHS->isObjCUnqualifiedIdOrClass()) | 
 |     return true; | 
 |  | 
 |   if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId()) | 
 |     return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0), | 
 |                                              QualType(RHSOPT,0), | 
 |                                              false); | 
 |    | 
 |   if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass()) | 
 |     return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0), | 
 |                                                 QualType(RHSOPT,0)); | 
 |    | 
 |   // If we have 2 user-defined types, fall into that path. | 
 |   if (LHS->getInterface() && RHS->getInterface()) | 
 |     return canAssignObjCInterfaces(LHS, RHS); | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// canAssignObjCInterfacesInBlockPointer - This routine is specifically written | 
 | /// for providing type-safety for objective-c pointers used to pass/return  | 
 | /// arguments in block literals. When passed as arguments, passing 'A*' where | 
 | /// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is | 
 | /// not OK. For the return type, the opposite is not OK. | 
 | bool ASTContext::canAssignObjCInterfacesInBlockPointer( | 
 |                                          const ObjCObjectPointerType *LHSOPT, | 
 |                                          const ObjCObjectPointerType *RHSOPT, | 
 |                                          bool BlockReturnType) { | 
 |   if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType()) | 
 |     return true; | 
 |    | 
 |   if (LHSOPT->isObjCBuiltinType()) { | 
 |     return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType(); | 
 |   } | 
 |    | 
 |   if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType()) | 
 |     return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0), | 
 |                                              QualType(RHSOPT,0), | 
 |                                              false); | 
 |    | 
 |   const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType(); | 
 |   const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType(); | 
 |   if (LHS && RHS)  { // We have 2 user-defined types. | 
 |     if (LHS != RHS) { | 
 |       if (LHS->getDecl()->isSuperClassOf(RHS->getDecl())) | 
 |         return BlockReturnType; | 
 |       if (RHS->getDecl()->isSuperClassOf(LHS->getDecl())) | 
 |         return !BlockReturnType; | 
 |     } | 
 |     else | 
 |       return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | /// getIntersectionOfProtocols - This routine finds the intersection of set | 
 | /// of protocols inherited from two distinct objective-c pointer objects. | 
 | /// It is used to build composite qualifier list of the composite type of | 
 | /// the conditional expression involving two objective-c pointer objects. | 
 | static  | 
 | void getIntersectionOfProtocols(ASTContext &Context, | 
 |                                 const ObjCObjectPointerType *LHSOPT, | 
 |                                 const ObjCObjectPointerType *RHSOPT, | 
 |       SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) { | 
 |    | 
 |   const ObjCObjectType* LHS = LHSOPT->getObjectType(); | 
 |   const ObjCObjectType* RHS = RHSOPT->getObjectType(); | 
 |   assert(LHS->getInterface() && "LHS must have an interface base"); | 
 |   assert(RHS->getInterface() && "RHS must have an interface base"); | 
 |    | 
 |   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet; | 
 |   unsigned LHSNumProtocols = LHS->getNumProtocols(); | 
 |   if (LHSNumProtocols > 0) | 
 |     InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end()); | 
 |   else { | 
 |     llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols; | 
 |     Context.CollectInheritedProtocols(LHS->getInterface(), | 
 |                                       LHSInheritedProtocols); | 
 |     InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),  | 
 |                                 LHSInheritedProtocols.end()); | 
 |   } | 
 |    | 
 |   unsigned RHSNumProtocols = RHS->getNumProtocols(); | 
 |   if (RHSNumProtocols > 0) { | 
 |     ObjCProtocolDecl **RHSProtocols = | 
 |       const_cast<ObjCProtocolDecl **>(RHS->qual_begin()); | 
 |     for (unsigned i = 0; i < RHSNumProtocols; ++i) | 
 |       if (InheritedProtocolSet.count(RHSProtocols[i])) | 
 |         IntersectionOfProtocols.push_back(RHSProtocols[i]); | 
 |   } else { | 
 |     llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols; | 
 |     Context.CollectInheritedProtocols(RHS->getInterface(), | 
 |                                       RHSInheritedProtocols); | 
 |     for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =  | 
 |          RHSInheritedProtocols.begin(), | 
 |          E = RHSInheritedProtocols.end(); I != E; ++I)  | 
 |       if (InheritedProtocolSet.count((*I))) | 
 |         IntersectionOfProtocols.push_back((*I)); | 
 |   } | 
 | } | 
 |  | 
 | /// areCommonBaseCompatible - Returns common base class of the two classes if | 
 | /// one found. Note that this is O'2 algorithm. But it will be called as the | 
 | /// last type comparison in a ?-exp of ObjC pointer types before a  | 
 | /// warning is issued. So, its invokation is extremely rare. | 
 | QualType ASTContext::areCommonBaseCompatible( | 
 |                                           const ObjCObjectPointerType *Lptr, | 
 |                                           const ObjCObjectPointerType *Rptr) { | 
 |   const ObjCObjectType *LHS = Lptr->getObjectType(); | 
 |   const ObjCObjectType *RHS = Rptr->getObjectType(); | 
 |   const ObjCInterfaceDecl* LDecl = LHS->getInterface(); | 
 |   const ObjCInterfaceDecl* RDecl = RHS->getInterface(); | 
 |   if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl))) | 
 |     return QualType(); | 
 |    | 
 |   do { | 
 |     LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl)); | 
 |     if (canAssignObjCInterfaces(LHS, RHS)) { | 
 |       SmallVector<ObjCProtocolDecl *, 8> Protocols; | 
 |       getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols); | 
 |  | 
 |       QualType Result = QualType(LHS, 0); | 
 |       if (!Protocols.empty()) | 
 |         Result = getObjCObjectType(Result, Protocols.data(), Protocols.size()); | 
 |       Result = getObjCObjectPointerType(Result); | 
 |       return Result; | 
 |     } | 
 |   } while ((LDecl = LDecl->getSuperClass())); | 
 |      | 
 |   return QualType(); | 
 | } | 
 |  | 
 | bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS, | 
 |                                          const ObjCObjectType *RHS) { | 
 |   assert(LHS->getInterface() && "LHS is not an interface type"); | 
 |   assert(RHS->getInterface() && "RHS is not an interface type"); | 
 |  | 
 |   // Verify that the base decls are compatible: the RHS must be a subclass of | 
 |   // the LHS. | 
 |   if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface())) | 
 |     return false; | 
 |  | 
 |   // RHS must have a superset of the protocols in the LHS.  If the LHS is not | 
 |   // protocol qualified at all, then we are good. | 
 |   if (LHS->getNumProtocols() == 0) | 
 |     return true; | 
 |  | 
 |   // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,  | 
 |   // more detailed analysis is required. | 
 |   if (RHS->getNumProtocols() == 0) { | 
 |     // OK, if LHS is a superclass of RHS *and* | 
 |     // this superclass is assignment compatible with LHS. | 
 |     // false otherwise. | 
 |     bool IsSuperClass =  | 
 |       LHS->getInterface()->isSuperClassOf(RHS->getInterface()); | 
 |     if (IsSuperClass) { | 
 |       // OK if conversion of LHS to SuperClass results in narrowing of types | 
 |       // ; i.e., SuperClass may implement at least one of the protocols | 
 |       // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok. | 
 |       // But not SuperObj<P1,P2,P3> = lhs<P1,P2>. | 
 |       llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols; | 
 |       CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols); | 
 |       // If super class has no protocols, it is not a match. | 
 |       if (SuperClassInheritedProtocols.empty()) | 
 |         return false; | 
 |        | 
 |       for (const auto *LHSProto : LHS->quals()) { | 
 |         bool SuperImplementsProtocol = false;         | 
 |         for (auto *SuperClassProto : SuperClassInheritedProtocols) { | 
 |           if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) { | 
 |             SuperImplementsProtocol = true; | 
 |             break; | 
 |           } | 
 |         } | 
 |         if (!SuperImplementsProtocol) | 
 |           return false; | 
 |       } | 
 |       return true; | 
 |     } | 
 |     return false; | 
 |   } | 
 |  | 
 |   for (const auto *LHSPI : LHS->quals()) { | 
 |     bool RHSImplementsProtocol = false; | 
 |  | 
 |     // If the RHS doesn't implement the protocol on the left, the types | 
 |     // are incompatible. | 
 |     for (auto *RHSPI : RHS->quals()) { | 
 |       if (RHSPI->lookupProtocolNamed(LHSPI->getIdentifier())) { | 
 |         RHSImplementsProtocol = true; | 
 |         break; | 
 |       } | 
 |     } | 
 |     // FIXME: For better diagnostics, consider passing back the protocol name. | 
 |     if (!RHSImplementsProtocol) | 
 |       return false; | 
 |   } | 
 |   // The RHS implements all protocols listed on the LHS. | 
 |   return true; | 
 | } | 
 |  | 
 | bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) { | 
 |   // get the "pointed to" types | 
 |   const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>(); | 
 |   const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>(); | 
 |  | 
 |   if (!LHSOPT || !RHSOPT) | 
 |     return false; | 
 |  | 
 |   return canAssignObjCInterfaces(LHSOPT, RHSOPT) || | 
 |          canAssignObjCInterfaces(RHSOPT, LHSOPT); | 
 | } | 
 |  | 
 | bool ASTContext::canBindObjCObjectType(QualType To, QualType From) { | 
 |   return canAssignObjCInterfaces( | 
 |                 getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(), | 
 |                 getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>()); | 
 | } | 
 |  | 
 | /// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible, | 
 | /// both shall have the identically qualified version of a compatible type. | 
 | /// C99 6.2.7p1: Two types have compatible types if their types are the | 
 | /// same. See 6.7.[2,3,5] for additional rules. | 
 | bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS, | 
 |                                     bool CompareUnqualified) { | 
 |   if (getLangOpts().CPlusPlus) | 
 |     return hasSameType(LHS, RHS); | 
 |    | 
 |   return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull(); | 
 | } | 
 |  | 
 | bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) { | 
 |   return typesAreCompatible(LHS, RHS); | 
 | } | 
 |  | 
 | bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) { | 
 |   return !mergeTypes(LHS, RHS, true).isNull(); | 
 | } | 
 |  | 
 | /// mergeTransparentUnionType - if T is a transparent union type and a member | 
 | /// of T is compatible with SubType, return the merged type, else return | 
 | /// QualType() | 
 | QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType, | 
 |                                                bool OfBlockPointer, | 
 |                                                bool Unqualified) { | 
 |   if (const RecordType *UT = T->getAsUnionType()) { | 
 |     RecordDecl *UD = UT->getDecl(); | 
 |     if (UD->hasAttr<TransparentUnionAttr>()) { | 
 |       for (const auto *I : UD->fields()) { | 
 |         QualType ET = I->getType().getUnqualifiedType(); | 
 |         QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified); | 
 |         if (!MT.isNull()) | 
 |           return MT; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   return QualType(); | 
 | } | 
 |  | 
 | /// mergeFunctionParameterTypes - merge two types which appear as function | 
 | /// parameter types | 
 | QualType ASTContext::mergeFunctionParameterTypes(QualType lhs, QualType rhs, | 
 |                                                  bool OfBlockPointer, | 
 |                                                  bool Unqualified) { | 
 |   // GNU extension: two types are compatible if they appear as a function | 
 |   // argument, one of the types is a transparent union type and the other | 
 |   // type is compatible with a union member | 
 |   QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer, | 
 |                                               Unqualified); | 
 |   if (!lmerge.isNull()) | 
 |     return lmerge; | 
 |  | 
 |   QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer, | 
 |                                               Unqualified); | 
 |   if (!rmerge.isNull()) | 
 |     return rmerge; | 
 |  | 
 |   return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified); | 
 | } | 
 |  | 
 | QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,  | 
 |                                         bool OfBlockPointer, | 
 |                                         bool Unqualified) { | 
 |   const FunctionType *lbase = lhs->getAs<FunctionType>(); | 
 |   const FunctionType *rbase = rhs->getAs<FunctionType>(); | 
 |   const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase); | 
 |   const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase); | 
 |   bool allLTypes = true; | 
 |   bool allRTypes = true; | 
 |  | 
 |   // Check return type | 
 |   QualType retType; | 
 |   if (OfBlockPointer) { | 
 |     QualType RHS = rbase->getReturnType(); | 
 |     QualType LHS = lbase->getReturnType(); | 
 |     bool UnqualifiedResult = Unqualified; | 
 |     if (!UnqualifiedResult) | 
 |       UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers()); | 
 |     retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true); | 
 |   } | 
 |   else | 
 |     retType = mergeTypes(lbase->getReturnType(), rbase->getReturnType(), false, | 
 |                          Unqualified); | 
 |   if (retType.isNull()) return QualType(); | 
 |    | 
 |   if (Unqualified) | 
 |     retType = retType.getUnqualifiedType(); | 
 |  | 
 |   CanQualType LRetType = getCanonicalType(lbase->getReturnType()); | 
 |   CanQualType RRetType = getCanonicalType(rbase->getReturnType()); | 
 |   if (Unqualified) { | 
 |     LRetType = LRetType.getUnqualifiedType(); | 
 |     RRetType = RRetType.getUnqualifiedType(); | 
 |   } | 
 |    | 
 |   if (getCanonicalType(retType) != LRetType) | 
 |     allLTypes = false; | 
 |   if (getCanonicalType(retType) != RRetType) | 
 |     allRTypes = false; | 
 |  | 
 |   // FIXME: double check this | 
 |   // FIXME: should we error if lbase->getRegParmAttr() != 0 && | 
 |   //                           rbase->getRegParmAttr() != 0 && | 
 |   //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()? | 
 |   FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo(); | 
 |   FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo(); | 
 |  | 
 |   // Compatible functions must have compatible calling conventions | 
 |   if (lbaseInfo.getCC() != rbaseInfo.getCC()) | 
 |     return QualType(); | 
 |  | 
 |   // Regparm is part of the calling convention. | 
 |   if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm()) | 
 |     return QualType(); | 
 |   if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm()) | 
 |     return QualType(); | 
 |  | 
 |   if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult()) | 
 |     return QualType(); | 
 |  | 
 |   // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'. | 
 |   bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn(); | 
 |  | 
 |   if (lbaseInfo.getNoReturn() != NoReturn) | 
 |     allLTypes = false; | 
 |   if (rbaseInfo.getNoReturn() != NoReturn) | 
 |     allRTypes = false; | 
 |  | 
 |   FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn); | 
 |  | 
 |   if (lproto && rproto) { // two C99 style function prototypes | 
 |     assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() && | 
 |            "C++ shouldn't be here"); | 
 |     // Compatible functions must have the same number of parameters | 
 |     if (lproto->getNumParams() != rproto->getNumParams()) | 
 |       return QualType(); | 
 |  | 
 |     // Variadic and non-variadic functions aren't compatible | 
 |     if (lproto->isVariadic() != rproto->isVariadic()) | 
 |       return QualType(); | 
 |  | 
 |     if (lproto->getTypeQuals() != rproto->getTypeQuals()) | 
 |       return QualType(); | 
 |  | 
 |     if (LangOpts.ObjCAutoRefCount && | 
 |         !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto)) | 
 |       return QualType(); | 
 |  | 
 |     // Check parameter type compatibility | 
 |     SmallVector<QualType, 10> types; | 
 |     for (unsigned i = 0, n = lproto->getNumParams(); i < n; i++) { | 
 |       QualType lParamType = lproto->getParamType(i).getUnqualifiedType(); | 
 |       QualType rParamType = rproto->getParamType(i).getUnqualifiedType(); | 
 |       QualType paramType = mergeFunctionParameterTypes( | 
 |           lParamType, rParamType, OfBlockPointer, Unqualified); | 
 |       if (paramType.isNull()) | 
 |         return QualType(); | 
 |  | 
 |       if (Unqualified) | 
 |         paramType = paramType.getUnqualifiedType(); | 
 |  | 
 |       types.push_back(paramType); | 
 |       if (Unqualified) { | 
 |         lParamType = lParamType.getUnqualifiedType(); | 
 |         rParamType = rParamType.getUnqualifiedType(); | 
 |       } | 
 |  | 
 |       if (getCanonicalType(paramType) != getCanonicalType(lParamType)) | 
 |         allLTypes = false; | 
 |       if (getCanonicalType(paramType) != getCanonicalType(rParamType)) | 
 |         allRTypes = false; | 
 |     } | 
 |        | 
 |     if (allLTypes) return lhs; | 
 |     if (allRTypes) return rhs; | 
 |  | 
 |     FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo(); | 
 |     EPI.ExtInfo = einfo; | 
 |     return getFunctionType(retType, types, EPI); | 
 |   } | 
 |  | 
 |   if (lproto) allRTypes = false; | 
 |   if (rproto) allLTypes = false; | 
 |  | 
 |   const FunctionProtoType *proto = lproto ? lproto : rproto; | 
 |   if (proto) { | 
 |     assert(!proto->hasExceptionSpec() && "C++ shouldn't be here"); | 
 |     if (proto->isVariadic()) return QualType(); | 
 |     // Check that the types are compatible with the types that | 
 |     // would result from default argument promotions (C99 6.7.5.3p15). | 
 |     // The only types actually affected are promotable integer | 
 |     // types and floats, which would be passed as a different | 
 |     // type depending on whether the prototype is visible. | 
 |     for (unsigned i = 0, n = proto->getNumParams(); i < n; ++i) { | 
 |       QualType paramTy = proto->getParamType(i); | 
 |  | 
 |       // Look at the converted type of enum types, since that is the type used | 
 |       // to pass enum values. | 
 |       if (const EnumType *Enum = paramTy->getAs<EnumType>()) { | 
 |         paramTy = Enum->getDecl()->getIntegerType(); | 
 |         if (paramTy.isNull()) | 
 |           return QualType(); | 
 |       } | 
 |  | 
 |       if (paramTy->isPromotableIntegerType() || | 
 |           getCanonicalType(paramTy).getUnqualifiedType() == FloatTy) | 
 |         return QualType(); | 
 |     } | 
 |  | 
 |     if (allLTypes) return lhs; | 
 |     if (allRTypes) return rhs; | 
 |  | 
 |     FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo(); | 
 |     EPI.ExtInfo = einfo; | 
 |     return getFunctionType(retType, proto->getParamTypes(), EPI); | 
 |   } | 
 |  | 
 |   if (allLTypes) return lhs; | 
 |   if (allRTypes) return rhs; | 
 |   return getFunctionNoProtoType(retType, einfo); | 
 | } | 
 |  | 
 | /// Given that we have an enum type and a non-enum type, try to merge them. | 
 | static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET, | 
 |                                      QualType other, bool isBlockReturnType) { | 
 |   // C99 6.7.2.2p4: Each enumerated type shall be compatible with char, | 
 |   // a signed integer type, or an unsigned integer type. | 
 |   // Compatibility is based on the underlying type, not the promotion | 
 |   // type. | 
 |   QualType underlyingType = ET->getDecl()->getIntegerType(); | 
 |   if (underlyingType.isNull()) return QualType(); | 
 |   if (Context.hasSameType(underlyingType, other)) | 
 |     return other; | 
 |  | 
 |   // In block return types, we're more permissive and accept any | 
 |   // integral type of the same size. | 
 |   if (isBlockReturnType && other->isIntegerType() && | 
 |       Context.getTypeSize(underlyingType) == Context.getTypeSize(other)) | 
 |     return other; | 
 |  | 
 |   return QualType(); | 
 | } | 
 |  | 
 | QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,  | 
 |                                 bool OfBlockPointer, | 
 |                                 bool Unqualified, bool BlockReturnType) { | 
 |   // C++ [expr]: If an expression initially has the type "reference to T", the | 
 |   // type is adjusted to "T" prior to any further analysis, the expression | 
 |   // designates the object or function denoted by the reference, and the | 
 |   // expression is an lvalue unless the reference is an rvalue reference and | 
 |   // the expression is a function call (possibly inside parentheses). | 
 |   assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?"); | 
 |   assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?"); | 
 |  | 
 |   if (Unqualified) { | 
 |     LHS = LHS.getUnqualifiedType(); | 
 |     RHS = RHS.getUnqualifiedType(); | 
 |   } | 
 |    | 
 |   QualType LHSCan = getCanonicalType(LHS), | 
 |            RHSCan = getCanonicalType(RHS); | 
 |  | 
 |   // If two types are identical, they are compatible. | 
 |   if (LHSCan == RHSCan) | 
 |     return LHS; | 
 |  | 
 |   // If the qualifiers are different, the types aren't compatible... mostly. | 
 |   Qualifiers LQuals = LHSCan.getLocalQualifiers(); | 
 |   Qualifiers RQuals = RHSCan.getLocalQualifiers(); | 
 |   if (LQuals != RQuals) { | 
 |     // If any of these qualifiers are different, we have a type | 
 |     // mismatch. | 
 |     if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() || | 
 |         LQuals.getAddressSpace() != RQuals.getAddressSpace() || | 
 |         LQuals.getObjCLifetime() != RQuals.getObjCLifetime()) | 
 |       return QualType(); | 
 |  | 
 |     // Exactly one GC qualifier difference is allowed: __strong is | 
 |     // okay if the other type has no GC qualifier but is an Objective | 
 |     // C object pointer (i.e. implicitly strong by default).  We fix | 
 |     // this by pretending that the unqualified type was actually | 
 |     // qualified __strong. | 
 |     Qualifiers::GC GC_L = LQuals.getObjCGCAttr(); | 
 |     Qualifiers::GC GC_R = RQuals.getObjCGCAttr(); | 
 |     assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements"); | 
 |  | 
 |     if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak) | 
 |       return QualType(); | 
 |  | 
 |     if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) { | 
 |       return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong)); | 
 |     } | 
 |     if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) { | 
 |       return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS); | 
 |     } | 
 |     return QualType(); | 
 |   } | 
 |  | 
 |   // Okay, qualifiers are equal. | 
 |  | 
 |   Type::TypeClass LHSClass = LHSCan->getTypeClass(); | 
 |   Type::TypeClass RHSClass = RHSCan->getTypeClass(); | 
 |  | 
 |   // We want to consider the two function types to be the same for these | 
 |   // comparisons, just force one to the other. | 
 |   if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto; | 
 |   if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto; | 
 |  | 
 |   // Same as above for arrays | 
 |   if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray) | 
 |     LHSClass = Type::ConstantArray; | 
 |   if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray) | 
 |     RHSClass = Type::ConstantArray; | 
 |  | 
 |   // ObjCInterfaces are just specialized ObjCObjects. | 
 |   if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject; | 
 |   if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject; | 
 |  | 
 |   // Canonicalize ExtVector -> Vector. | 
 |   if (LHSClass == Type::ExtVector) LHSClass = Type::Vector; | 
 |   if (RHSClass == Type::ExtVector) RHSClass = Type::Vector; | 
 |  | 
 |   // If the canonical type classes don't match. | 
 |   if (LHSClass != RHSClass) { | 
 |     // Note that we only have special rules for turning block enum | 
 |     // returns into block int returns, not vice-versa. | 
 |     if (const EnumType* ETy = LHS->getAs<EnumType>()) { | 
 |       return mergeEnumWithInteger(*this, ETy, RHS, false); | 
 |     } | 
 |     if (const EnumType* ETy = RHS->getAs<EnumType>()) { | 
 |       return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType); | 
 |     } | 
 |     // allow block pointer type to match an 'id' type. | 
 |     if (OfBlockPointer && !BlockReturnType) { | 
 |        if (LHS->isObjCIdType() && RHS->isBlockPointerType()) | 
 |          return LHS; | 
 |       if (RHS->isObjCIdType() && LHS->isBlockPointerType()) | 
 |         return RHS; | 
 |     } | 
 |      | 
 |     return QualType(); | 
 |   } | 
 |  | 
 |   // The canonical type classes match. | 
 |   switch (LHSClass) { | 
 | #define TYPE(Class, Base) | 
 | #define ABSTRACT_TYPE(Class, Base) | 
 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: | 
 | #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: | 
 | #define DEPENDENT_TYPE(Class, Base) case Type::Class: | 
 | #include "clang/AST/TypeNodes.def" | 
 |     llvm_unreachable("Non-canonical and dependent types shouldn't get here"); | 
 |  | 
 |   case Type::Auto: | 
 |   case Type::LValueReference: | 
 |   case Type::RValueReference: | 
 |   case Type::MemberPointer: | 
 |     llvm_unreachable("C++ should never be in mergeTypes"); | 
 |  | 
 |   case Type::ObjCInterface: | 
 |   case Type::IncompleteArray: | 
 |   case Type::VariableArray: | 
 |   case Type::FunctionProto: | 
 |   case Type::ExtVector: | 
 |     llvm_unreachable("Types are eliminated above"); | 
 |  | 
 |   case Type::Pointer: | 
 |   { | 
 |     // Merge two pointer types, while trying to preserve typedef info | 
 |     QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType(); | 
 |     QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType(); | 
 |     if (Unqualified) { | 
 |       LHSPointee = LHSPointee.getUnqualifiedType(); | 
 |       RHSPointee = RHSPointee.getUnqualifiedType(); | 
 |     } | 
 |     QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,  | 
 |                                      Unqualified); | 
 |     if (ResultType.isNull()) return QualType(); | 
 |     if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType)) | 
 |       return LHS; | 
 |     if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType)) | 
 |       return RHS; | 
 |     return getPointerType(ResultType); | 
 |   } | 
 |   case Type::BlockPointer: | 
 |   { | 
 |     // Merge two block pointer types, while trying to preserve typedef info | 
 |     QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType(); | 
 |     QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType(); | 
 |     if (Unqualified) { | 
 |       LHSPointee = LHSPointee.getUnqualifiedType(); | 
 |       RHSPointee = RHSPointee.getUnqualifiedType(); | 
 |     } | 
 |     QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer, | 
 |                                      Unqualified); | 
 |     if (ResultType.isNull()) return QualType(); | 
 |     if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType)) | 
 |       return LHS; | 
 |     if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType)) | 
 |       return RHS; | 
 |     return getBlockPointerType(ResultType); | 
 |   } | 
 |   case Type::Atomic: | 
 |   { | 
 |     // Merge two pointer types, while trying to preserve typedef info | 
 |     QualType LHSValue = LHS->getAs<AtomicType>()->getValueType(); | 
 |     QualType RHSValue = RHS->getAs<AtomicType>()->getValueType(); | 
 |     if (Unqualified) { | 
 |       LHSValue = LHSValue.getUnqualifiedType(); | 
 |       RHSValue = RHSValue.getUnqualifiedType(); | 
 |     } | 
 |     QualType ResultType = mergeTypes(LHSValue, RHSValue, false,  | 
 |                                      Unqualified); | 
 |     if (ResultType.isNull()) return QualType(); | 
 |     if (getCanonicalType(LHSValue) == getCanonicalType(ResultType)) | 
 |       return LHS; | 
 |     if (getCanonicalType(RHSValue) == getCanonicalType(ResultType)) | 
 |       return RHS; | 
 |     return getAtomicType(ResultType); | 
 |   } | 
 |   case Type::ConstantArray: | 
 |   { | 
 |     const ConstantArrayType* LCAT = getAsConstantArrayType(LHS); | 
 |     const ConstantArrayType* RCAT = getAsConstantArrayType(RHS); | 
 |     if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize()) | 
 |       return QualType(); | 
 |  | 
 |     QualType LHSElem = getAsArrayType(LHS)->getElementType(); | 
 |     QualType RHSElem = getAsArrayType(RHS)->getElementType(); | 
 |     if (Unqualified) { | 
 |       LHSElem = LHSElem.getUnqualifiedType(); | 
 |       RHSElem = RHSElem.getUnqualifiedType(); | 
 |     } | 
 |      | 
 |     QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified); | 
 |     if (ResultType.isNull()) return QualType(); | 
 |     if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType)) | 
 |       return LHS; | 
 |     if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType)) | 
 |       return RHS; | 
 |     if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(), | 
 |                                           ArrayType::ArraySizeModifier(), 0); | 
 |     if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(), | 
 |                                           ArrayType::ArraySizeModifier(), 0); | 
 |     const VariableArrayType* LVAT = getAsVariableArrayType(LHS); | 
 |     const VariableArrayType* RVAT = getAsVariableArrayType(RHS); | 
 |     if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType)) | 
 |       return LHS; | 
 |     if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType)) | 
 |       return RHS; | 
 |     if (LVAT) { | 
 |       // FIXME: This isn't correct! But tricky to implement because | 
 |       // the array's size has to be the size of LHS, but the type | 
 |       // has to be different. | 
 |       return LHS; | 
 |     } | 
 |     if (RVAT) { | 
 |       // FIXME: This isn't correct! But tricky to implement because | 
 |       // the array's size has to be the size of RHS, but the type | 
 |       // has to be different. | 
 |       return RHS; | 
 |     } | 
 |     if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS; | 
 |     if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS; | 
 |     return getIncompleteArrayType(ResultType, | 
 |                                   ArrayType::ArraySizeModifier(), 0); | 
 |   } | 
 |   case Type::FunctionNoProto: | 
 |     return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified); | 
 |   case Type::Record: | 
 |   case Type::Enum: | 
 |     return QualType(); | 
 |   case Type::Builtin: | 
 |     // Only exactly equal builtin types are compatible, which is tested above. | 
 |     return QualType(); | 
 |   case Type::Complex: | 
 |     // Distinct complex types are incompatible. | 
 |     return QualType(); | 
 |   case Type::Vector: | 
 |     // FIXME: The merged type should be an ExtVector! | 
 |     if (areCompatVectorTypes(LHSCan->getAs<VectorType>(), | 
 |                              RHSCan->getAs<VectorType>())) | 
 |       return LHS; | 
 |     return QualType(); | 
 |   case Type::ObjCObject: { | 
 |     // Check if the types are assignment compatible. | 
 |     // FIXME: This should be type compatibility, e.g. whether | 
 |     // "LHS x; RHS x;" at global scope is legal. | 
 |     const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>(); | 
 |     const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>(); | 
 |     if (canAssignObjCInterfaces(LHSIface, RHSIface)) | 
 |       return LHS; | 
 |  | 
 |     return QualType(); | 
 |   } | 
 |   case Type::ObjCObjectPointer: { | 
 |     if (OfBlockPointer) { | 
 |       if (canAssignObjCInterfacesInBlockPointer( | 
 |                                           LHS->getAs<ObjCObjectPointerType>(), | 
 |                                           RHS->getAs<ObjCObjectPointerType>(), | 
 |                                           BlockReturnType)) | 
 |         return LHS; | 
 |       return QualType(); | 
 |     } | 
 |     if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(), | 
 |                                 RHS->getAs<ObjCObjectPointerType>())) | 
 |       return LHS; | 
 |  | 
 |     return QualType(); | 
 |   } | 
 |   } | 
 |  | 
 |   llvm_unreachable("Invalid Type::Class!"); | 
 | } | 
 |  | 
 | bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs( | 
 |                    const FunctionProtoType *FromFunctionType, | 
 |                    const FunctionProtoType *ToFunctionType) { | 
 |   if (FromFunctionType->hasAnyConsumedParams() != | 
 |       ToFunctionType->hasAnyConsumedParams()) | 
 |     return false; | 
 |   FunctionProtoType::ExtProtoInfo FromEPI =  | 
 |     FromFunctionType->getExtProtoInfo(); | 
 |   FunctionProtoType::ExtProtoInfo ToEPI =  | 
 |     ToFunctionType->getExtProtoInfo(); | 
 |   if (FromEPI.ConsumedParameters && ToEPI.ConsumedParameters) | 
 |     for (unsigned i = 0, n = FromFunctionType->getNumParams(); i != n; ++i) { | 
 |       if (FromEPI.ConsumedParameters[i] != ToEPI.ConsumedParameters[i]) | 
 |         return false; | 
 |     } | 
 |   return true; | 
 | } | 
 |  | 
 | /// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and | 
 | /// 'RHS' attributes and returns the merged version; including for function | 
 | /// return types. | 
 | QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) { | 
 |   QualType LHSCan = getCanonicalType(LHS), | 
 |   RHSCan = getCanonicalType(RHS); | 
 |   // If two types are identical, they are compatible. | 
 |   if (LHSCan == RHSCan) | 
 |     return LHS; | 
 |   if (RHSCan->isFunctionType()) { | 
 |     if (!LHSCan->isFunctionType()) | 
 |       return QualType(); | 
 |     QualType OldReturnType = | 
 |         cast<FunctionType>(RHSCan.getTypePtr())->getReturnType(); | 
 |     QualType NewReturnType = | 
 |         cast<FunctionType>(LHSCan.getTypePtr())->getReturnType(); | 
 |     QualType ResReturnType =  | 
 |       mergeObjCGCQualifiers(NewReturnType, OldReturnType); | 
 |     if (ResReturnType.isNull()) | 
 |       return QualType(); | 
 |     if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) { | 
 |       // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo(); | 
 |       // In either case, use OldReturnType to build the new function type. | 
 |       const FunctionType *F = LHS->getAs<FunctionType>(); | 
 |       if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) { | 
 |         FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); | 
 |         EPI.ExtInfo = getFunctionExtInfo(LHS); | 
 |         QualType ResultType = | 
 |             getFunctionType(OldReturnType, FPT->getParamTypes(), EPI); | 
 |         return ResultType; | 
 |       } | 
 |     } | 
 |     return QualType(); | 
 |   } | 
 |    | 
 |   // If the qualifiers are different, the types can still be merged. | 
 |   Qualifiers LQuals = LHSCan.getLocalQualifiers(); | 
 |   Qualifiers RQuals = RHSCan.getLocalQualifiers(); | 
 |   if (LQuals != RQuals) { | 
 |     // If any of these qualifiers are different, we have a type mismatch. | 
 |     if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() || | 
 |         LQuals.getAddressSpace() != RQuals.getAddressSpace()) | 
 |       return QualType(); | 
 |      | 
 |     // Exactly one GC qualifier difference is allowed: __strong is | 
 |     // okay if the other type has no GC qualifier but is an Objective | 
 |     // C object pointer (i.e. implicitly strong by default).  We fix | 
 |     // this by pretending that the unqualified type was actually | 
 |     // qualified __strong. | 
 |     Qualifiers::GC GC_L = LQuals.getObjCGCAttr(); | 
 |     Qualifiers::GC GC_R = RQuals.getObjCGCAttr(); | 
 |     assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements"); | 
 |      | 
 |     if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak) | 
 |       return QualType(); | 
 |      | 
 |     if (GC_L == Qualifiers::Strong) | 
 |       return LHS; | 
 |     if (GC_R == Qualifiers::Strong) | 
 |       return RHS; | 
 |     return QualType(); | 
 |   } | 
 |    | 
 |   if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) { | 
 |     QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType(); | 
 |     QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType(); | 
 |     QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT); | 
 |     if (ResQT == LHSBaseQT) | 
 |       return LHS; | 
 |     if (ResQT == RHSBaseQT) | 
 |       return RHS; | 
 |   } | 
 |   return QualType(); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                         Integer Predicates | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | unsigned ASTContext::getIntWidth(QualType T) const { | 
 |   if (const EnumType *ET = T->getAs<EnumType>()) | 
 |     T = ET->getDecl()->getIntegerType(); | 
 |   if (T->isBooleanType()) | 
 |     return 1; | 
 |   // For builtin types, just use the standard type sizing method | 
 |   return (unsigned)getTypeSize(T); | 
 | } | 
 |  | 
 | QualType ASTContext::getCorrespondingUnsignedType(QualType T) const { | 
 |   assert(T->hasSignedIntegerRepresentation() && "Unexpected type"); | 
 |    | 
 |   // Turn <4 x signed int> -> <4 x unsigned int> | 
 |   if (const VectorType *VTy = T->getAs<VectorType>()) | 
 |     return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()), | 
 |                          VTy->getNumElements(), VTy->getVectorKind()); | 
 |  | 
 |   // For enums, we return the unsigned version of the base type. | 
 |   if (const EnumType *ETy = T->getAs<EnumType>()) | 
 |     T = ETy->getDecl()->getIntegerType(); | 
 |    | 
 |   const BuiltinType *BTy = T->getAs<BuiltinType>(); | 
 |   assert(BTy && "Unexpected signed integer type"); | 
 |   switch (BTy->getKind()) { | 
 |   case BuiltinType::Char_S: | 
 |   case BuiltinType::SChar: | 
 |     return UnsignedCharTy; | 
 |   case BuiltinType::Short: | 
 |     return UnsignedShortTy; | 
 |   case BuiltinType::Int: | 
 |     return UnsignedIntTy; | 
 |   case BuiltinType::Long: | 
 |     return UnsignedLongTy; | 
 |   case BuiltinType::LongLong: | 
 |     return UnsignedLongLongTy; | 
 |   case BuiltinType::Int128: | 
 |     return UnsignedInt128Ty; | 
 |   default: | 
 |     llvm_unreachable("Unexpected signed integer type"); | 
 |   } | 
 | } | 
 |  | 
 | ASTMutationListener::~ASTMutationListener() { } | 
 |  | 
 | void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD, | 
 |                                             QualType ReturnType) {} | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                          Builtin Type Computation | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the | 
 | /// pointer over the consumed characters.  This returns the resultant type.  If | 
 | /// AllowTypeModifiers is false then modifier like * are not parsed, just basic | 
 | /// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of | 
 | /// a vector of "i*". | 
 | /// | 
 | /// RequiresICE is filled in on return to indicate whether the value is required | 
 | /// to be an Integer Constant Expression. | 
 | static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context, | 
 |                                   ASTContext::GetBuiltinTypeError &Error, | 
 |                                   bool &RequiresICE, | 
 |                                   bool AllowTypeModifiers) { | 
 |   // Modifiers. | 
 |   int HowLong = 0; | 
 |   bool Signed = false, Unsigned = false; | 
 |   RequiresICE = false; | 
 |    | 
 |   // Read the prefixed modifiers first. | 
 |   bool Done = false; | 
 |   while (!Done) { | 
 |     switch (*Str++) { | 
 |     default: Done = true; --Str; break; | 
 |     case 'I': | 
 |       RequiresICE = true; | 
 |       break; | 
 |     case 'S': | 
 |       assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!"); | 
 |       assert(!Signed && "Can't use 'S' modifier multiple times!"); | 
 |       Signed = true; | 
 |       break; | 
 |     case 'U': | 
 |       assert(!Signed && "Can't use both 'S' and 'U' modifiers!"); | 
 |       assert(!Unsigned && "Can't use 'S' modifier multiple times!"); | 
 |       Unsigned = true; | 
 |       break; | 
 |     case 'L': | 
 |       assert(HowLong <= 2 && "Can't have LLLL modifier"); | 
 |       ++HowLong; | 
 |       break; | 
 |     case 'W': | 
 |       // This modifier represents int64 type. | 
 |       assert(HowLong == 0 && "Can't use both 'L' and 'W' modifiers!"); | 
 |       switch (Context.getTargetInfo().getInt64Type()) { | 
 |       default: | 
 |         llvm_unreachable("Unexpected integer type"); | 
 |       case TargetInfo::SignedLong: | 
 |         HowLong = 1; | 
 |         break; | 
 |       case TargetInfo::SignedLongLong: | 
 |         HowLong = 2; | 
 |         break; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   QualType Type; | 
 |  | 
 |   // Read the base type. | 
 |   switch (*Str++) { | 
 |   default: llvm_unreachable("Unknown builtin type letter!"); | 
 |   case 'v': | 
 |     assert(HowLong == 0 && !Signed && !Unsigned && | 
 |            "Bad modifiers used with 'v'!"); | 
 |     Type = Context.VoidTy; | 
 |     break; | 
 |   case 'h': | 
 |     assert(HowLong == 0 && !Signed && !Unsigned && | 
 |            "Bad modifiers used with 'f'!"); | 
 |     Type = Context.HalfTy; | 
 |     break; | 
 |   case 'f': | 
 |     assert(HowLong == 0 && !Signed && !Unsigned && | 
 |            "Bad modifiers used with 'f'!"); | 
 |     Type = Context.FloatTy; | 
 |     break; | 
 |   case 'd': | 
 |     assert(HowLong < 2 && !Signed && !Unsigned && | 
 |            "Bad modifiers used with 'd'!"); | 
 |     if (HowLong) | 
 |       Type = Context.LongDoubleTy; | 
 |     else | 
 |       Type = Context.DoubleTy; | 
 |     break; | 
 |   case 's': | 
 |     assert(HowLong == 0 && "Bad modifiers used with 's'!"); | 
 |     if (Unsigned) | 
 |       Type = Context.UnsignedShortTy; | 
 |     else | 
 |       Type = Context.ShortTy; | 
 |     break; | 
 |   case 'i': | 
 |     if (HowLong == 3) | 
 |       Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty; | 
 |     else if (HowLong == 2) | 
 |       Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy; | 
 |     else if (HowLong == 1) | 
 |       Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy; | 
 |     else | 
 |       Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy; | 
 |     break; | 
 |   case 'c': | 
 |     assert(HowLong == 0 && "Bad modifiers used with 'c'!"); | 
 |     if (Signed) | 
 |       Type = Context.SignedCharTy; | 
 |     else if (Unsigned) | 
 |       Type = Context.UnsignedCharTy; | 
 |     else | 
 |       Type = Context.CharTy; | 
 |     break; | 
 |   case 'b': // boolean | 
 |     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!"); | 
 |     Type = Context.BoolTy; | 
 |     break; | 
 |   case 'z':  // size_t. | 
 |     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!"); | 
 |     Type = Context.getSizeType(); | 
 |     break; | 
 |   case 'F': | 
 |     Type = Context.getCFConstantStringType(); | 
 |     break; | 
 |   case 'G': | 
 |     Type = Context.getObjCIdType(); | 
 |     break; | 
 |   case 'H': | 
 |     Type = Context.getObjCSelType(); | 
 |     break; | 
 |   case 'M': | 
 |     Type = Context.getObjCSuperType(); | 
 |     break; | 
 |   case 'a': | 
 |     Type = Context.getBuiltinVaListType(); | 
 |     assert(!Type.isNull() && "builtin va list type not initialized!"); | 
 |     break; | 
 |   case 'A': | 
 |     // This is a "reference" to a va_list; however, what exactly | 
 |     // this means depends on how va_list is defined. There are two | 
 |     // different kinds of va_list: ones passed by value, and ones | 
 |     // passed by reference.  An example of a by-value va_list is | 
 |     // x86, where va_list is a char*. An example of by-ref va_list | 
 |     // is x86-64, where va_list is a __va_list_tag[1]. For x86, | 
 |     // we want this argument to be a char*&; for x86-64, we want | 
 |     // it to be a __va_list_tag*. | 
 |     Type = Context.getBuiltinVaListType(); | 
 |     assert(!Type.isNull() && "builtin va list type not initialized!"); | 
 |     if (Type->isArrayType()) | 
 |       Type = Context.getArrayDecayedType(Type); | 
 |     else | 
 |       Type = Context.getLValueReferenceType(Type); | 
 |     break; | 
 |   case 'V': { | 
 |     char *End; | 
 |     unsigned NumElements = strtoul(Str, &End, 10); | 
 |     assert(End != Str && "Missing vector size"); | 
 |     Str = End; | 
 |  | 
 |     QualType ElementType = DecodeTypeFromStr(Str, Context, Error,  | 
 |                                              RequiresICE, false); | 
 |     assert(!RequiresICE && "Can't require vector ICE"); | 
 |      | 
 |     // TODO: No way to make AltiVec vectors in builtins yet. | 
 |     Type = Context.getVectorType(ElementType, NumElements, | 
 |                                  VectorType::GenericVector); | 
 |     break; | 
 |   } | 
 |   case 'E': { | 
 |     char *End; | 
 |      | 
 |     unsigned NumElements = strtoul(Str, &End, 10); | 
 |     assert(End != Str && "Missing vector size"); | 
 |      | 
 |     Str = End; | 
 |      | 
 |     QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE, | 
 |                                              false); | 
 |     Type = Context.getExtVectorType(ElementType, NumElements); | 
 |     break;     | 
 |   } | 
 |   case 'X': { | 
 |     QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE, | 
 |                                              false); | 
 |     assert(!RequiresICE && "Can't require complex ICE"); | 
 |     Type = Context.getComplexType(ElementType); | 
 |     break; | 
 |   }   | 
 |   case 'Y' : { | 
 |     Type = Context.getPointerDiffType(); | 
 |     break; | 
 |   } | 
 |   case 'P': | 
 |     Type = Context.getFILEType(); | 
 |     if (Type.isNull()) { | 
 |       Error = ASTContext::GE_Missing_stdio; | 
 |       return QualType(); | 
 |     } | 
 |     break; | 
 |   case 'J': | 
 |     if (Signed) | 
 |       Type = Context.getsigjmp_bufType(); | 
 |     else | 
 |       Type = Context.getjmp_bufType(); | 
 |  | 
 |     if (Type.isNull()) { | 
 |       Error = ASTContext::GE_Missing_setjmp; | 
 |       return QualType(); | 
 |     } | 
 |     break; | 
 |   case 'K': | 
 |     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!"); | 
 |     Type = Context.getucontext_tType(); | 
 |  | 
 |     if (Type.isNull()) { | 
 |       Error = ASTContext::GE_Missing_ucontext; | 
 |       return QualType(); | 
 |     } | 
 |     break; | 
 |   case 'p': | 
 |     Type = Context.getProcessIDType(); | 
 |     break; | 
 |   } | 
 |  | 
 |   // If there are modifiers and if we're allowed to parse them, go for it. | 
 |   Done = !AllowTypeModifiers; | 
 |   while (!Done) { | 
 |     switch (char c = *Str++) { | 
 |     default: Done = true; --Str; break; | 
 |     case '*': | 
 |     case '&': { | 
 |       // Both pointers and references can have their pointee types | 
 |       // qualified with an address space. | 
 |       char *End; | 
 |       unsigned AddrSpace = strtoul(Str, &End, 10); | 
 |       if (End != Str && AddrSpace != 0) { | 
 |         Type = Context.getAddrSpaceQualType(Type, AddrSpace); | 
 |         Str = End; | 
 |       } | 
 |       if (c == '*') | 
 |         Type = Context.getPointerType(Type); | 
 |       else | 
 |         Type = Context.getLValueReferenceType(Type); | 
 |       break; | 
 |     } | 
 |     // FIXME: There's no way to have a built-in with an rvalue ref arg. | 
 |     case 'C': | 
 |       Type = Type.withConst(); | 
 |       break; | 
 |     case 'D': | 
 |       Type = Context.getVolatileType(Type); | 
 |       break; | 
 |     case 'R': | 
 |       Type = Type.withRestrict(); | 
 |       break; | 
 |     } | 
 |   } | 
 |    | 
 |   assert((!RequiresICE || Type->isIntegralOrEnumerationType()) && | 
 |          "Integer constant 'I' type must be an integer");  | 
 |  | 
 |   return Type; | 
 | } | 
 |  | 
 | /// GetBuiltinType - Return the type for the specified builtin. | 
 | QualType ASTContext::GetBuiltinType(unsigned Id, | 
 |                                     GetBuiltinTypeError &Error, | 
 |                                     unsigned *IntegerConstantArgs) const { | 
 |   const char *TypeStr = BuiltinInfo.GetTypeString(Id); | 
 |  | 
 |   SmallVector<QualType, 8> ArgTypes; | 
 |  | 
 |   bool RequiresICE = false; | 
 |   Error = GE_None; | 
 |   QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error, | 
 |                                        RequiresICE, true); | 
 |   if (Error != GE_None) | 
 |     return QualType(); | 
 |    | 
 |   assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE"); | 
 |    | 
 |   while (TypeStr[0] && TypeStr[0] != '.') { | 
 |     QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true); | 
 |     if (Error != GE_None) | 
 |       return QualType(); | 
 |  | 
 |     // If this argument is required to be an IntegerConstantExpression and the | 
 |     // caller cares, fill in the bitmask we return. | 
 |     if (RequiresICE && IntegerConstantArgs) | 
 |       *IntegerConstantArgs |= 1 << ArgTypes.size(); | 
 |      | 
 |     // Do array -> pointer decay.  The builtin should use the decayed type. | 
 |     if (Ty->isArrayType()) | 
 |       Ty = getArrayDecayedType(Ty); | 
 |  | 
 |     ArgTypes.push_back(Ty); | 
 |   } | 
 |  | 
 |   assert((TypeStr[0] != '.' || TypeStr[1] == 0) && | 
 |          "'.' should only occur at end of builtin type list!"); | 
 |  | 
 |   FunctionType::ExtInfo EI(CC_C); | 
 |   if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true); | 
 |  | 
 |   bool Variadic = (TypeStr[0] == '.'); | 
 |  | 
 |   // We really shouldn't be making a no-proto type here, especially in C++. | 
 |   if (ArgTypes.empty() && Variadic) | 
 |     return getFunctionNoProtoType(ResType, EI); | 
 |  | 
 |   FunctionProtoType::ExtProtoInfo EPI; | 
 |   EPI.ExtInfo = EI; | 
 |   EPI.Variadic = Variadic; | 
 |  | 
 |   return getFunctionType(ResType, ArgTypes, EPI); | 
 | } | 
 |  | 
 | static GVALinkage basicGVALinkageForFunction(const ASTContext &Context, | 
 |                                              const FunctionDecl *FD) { | 
 |   if (!FD->isExternallyVisible()) | 
 |     return GVA_Internal; | 
 |  | 
 |   GVALinkage External = GVA_StrongExternal; | 
 |   switch (FD->getTemplateSpecializationKind()) { | 
 |   case TSK_Undeclared: | 
 |   case TSK_ExplicitSpecialization: | 
 |     External = GVA_StrongExternal; | 
 |     break; | 
 |  | 
 |   case TSK_ExplicitInstantiationDefinition: | 
 |     return GVA_StrongODR; | 
 |  | 
 |   // C++11 [temp.explicit]p10: | 
 |   //   [ Note: The intent is that an inline function that is the subject of | 
 |   //   an explicit instantiation declaration will still be implicitly | 
 |   //   instantiated when used so that the body can be considered for | 
 |   //   inlining, but that no out-of-line copy of the inline function would be | 
 |   //   generated in the translation unit. -- end note ] | 
 |   case TSK_ExplicitInstantiationDeclaration: | 
 |     return GVA_AvailableExternally; | 
 |  | 
 |   case TSK_ImplicitInstantiation: | 
 |     External = GVA_DiscardableODR; | 
 |     break; | 
 |   } | 
 |  | 
 |   if (!FD->isInlined()) | 
 |     return External; | 
 |  | 
 |   if ((!Context.getLangOpts().CPlusPlus && !Context.getLangOpts().MSVCCompat && | 
 |        !FD->hasAttr<DLLExportAttr>()) || | 
 |       FD->hasAttr<GNUInlineAttr>()) { | 
 |     // FIXME: This doesn't match gcc's behavior for dllexport inline functions. | 
 |  | 
 |     // GNU or C99 inline semantics. Determine whether this symbol should be | 
 |     // externally visible. | 
 |     if (FD->isInlineDefinitionExternallyVisible()) | 
 |       return External; | 
 |  | 
 |     // C99 inline semantics, where the symbol is not externally visible. | 
 |     return GVA_AvailableExternally; | 
 |   } | 
 |  | 
 |   // Functions specified with extern and inline in -fms-compatibility mode | 
 |   // forcibly get emitted.  While the body of the function cannot be later | 
 |   // replaced, the function definition cannot be discarded. | 
 |   if (FD->getMostRecentDecl()->isMSExternInline()) | 
 |     return GVA_StrongODR; | 
 |  | 
 |   return GVA_DiscardableODR; | 
 | } | 
 |  | 
 | static GVALinkage adjustGVALinkageForDLLAttribute(GVALinkage L, const Decl *D) { | 
 |   // See http://msdn.microsoft.com/en-us/library/xa0d9ste.aspx | 
 |   // dllexport/dllimport on inline functions. | 
 |   if (D->hasAttr<DLLImportAttr>()) { | 
 |     if (L == GVA_DiscardableODR || L == GVA_StrongODR) | 
 |       return GVA_AvailableExternally; | 
 |   } else if (D->hasAttr<DLLExportAttr>()) { | 
 |     if (L == GVA_DiscardableODR) | 
 |       return GVA_StrongODR; | 
 |   } | 
 |   return L; | 
 | } | 
 |  | 
 | GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) const { | 
 |   return adjustGVALinkageForDLLAttribute(basicGVALinkageForFunction(*this, FD), | 
 |                                          FD); | 
 | } | 
 |  | 
 | static GVALinkage basicGVALinkageForVariable(const ASTContext &Context, | 
 |                                              const VarDecl *VD) { | 
 |   if (!VD->isExternallyVisible()) | 
 |     return GVA_Internal; | 
 |  | 
 |   if (VD->isStaticLocal()) { | 
 |     GVALinkage StaticLocalLinkage = GVA_DiscardableODR; | 
 |     const DeclContext *LexicalContext = VD->getParentFunctionOrMethod(); | 
 |     while (LexicalContext && !isa<FunctionDecl>(LexicalContext)) | 
 |       LexicalContext = LexicalContext->getLexicalParent(); | 
 |  | 
 |     // Let the static local variable inherit it's linkage from the nearest | 
 |     // enclosing function. | 
 |     if (LexicalContext) | 
 |       StaticLocalLinkage = | 
 |           Context.GetGVALinkageForFunction(cast<FunctionDecl>(LexicalContext)); | 
 |  | 
 |     // GVA_StrongODR function linkage is stronger than what we need, | 
 |     // downgrade to GVA_DiscardableODR. | 
 |     // This allows us to discard the variable if we never end up needing it. | 
 |     return StaticLocalLinkage == GVA_StrongODR ? GVA_DiscardableODR | 
 |                                                : StaticLocalLinkage; | 
 |   } | 
 |  | 
 |   switch (VD->getTemplateSpecializationKind()) { | 
 |   case TSK_Undeclared: | 
 |   case TSK_ExplicitSpecialization: | 
 |     return GVA_StrongExternal; | 
 |  | 
 |   case TSK_ExplicitInstantiationDefinition: | 
 |     return GVA_StrongODR; | 
 |  | 
 |   case TSK_ExplicitInstantiationDeclaration: | 
 |     return GVA_AvailableExternally; | 
 |  | 
 |   case TSK_ImplicitInstantiation: | 
 |     return GVA_DiscardableODR; | 
 |   } | 
 |  | 
 |   llvm_unreachable("Invalid Linkage!"); | 
 | } | 
 |  | 
 | GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) { | 
 |   return adjustGVALinkageForDLLAttribute(basicGVALinkageForVariable(*this, VD), | 
 |                                          VD); | 
 | } | 
 |  | 
 | bool ASTContext::DeclMustBeEmitted(const Decl *D) { | 
 |   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { | 
 |     if (!VD->isFileVarDecl()) | 
 |       return false; | 
 |     // Global named register variables (GNU extension) are never emitted. | 
 |     if (VD->getStorageClass() == SC_Register) | 
 |       return false; | 
 |   } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { | 
 |     // We never need to emit an uninstantiated function template. | 
 |     if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate) | 
 |       return false; | 
 |   } else | 
 |     return false; | 
 |  | 
 |   // If this is a member of a class template, we do not need to emit it. | 
 |   if (D->getDeclContext()->isDependentContext()) | 
 |     return false; | 
 |  | 
 |   // Weak references don't produce any output by themselves. | 
 |   if (D->hasAttr<WeakRefAttr>()) | 
 |     return false; | 
 |  | 
 |   // Aliases and used decls are required. | 
 |   if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>()) | 
 |     return true; | 
 |  | 
 |   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { | 
 |     // Forward declarations aren't required. | 
 |     if (!FD->doesThisDeclarationHaveABody()) | 
 |       return FD->doesDeclarationForceExternallyVisibleDefinition(); | 
 |  | 
 |     // Constructors and destructors are required. | 
 |     if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>()) | 
 |       return true; | 
 |      | 
 |     // The key function for a class is required.  This rule only comes | 
 |     // into play when inline functions can be key functions, though. | 
 |     if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) { | 
 |       if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { | 
 |         const CXXRecordDecl *RD = MD->getParent(); | 
 |         if (MD->isOutOfLine() && RD->isDynamicClass()) { | 
 |           const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD); | 
 |           if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl()) | 
 |             return true; | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     GVALinkage Linkage = GetGVALinkageForFunction(FD); | 
 |  | 
 |     // static, static inline, always_inline, and extern inline functions can | 
 |     // always be deferred.  Normal inline functions can be deferred in C99/C++. | 
 |     // Implicit template instantiations can also be deferred in C++. | 
 |     if (Linkage == GVA_Internal || Linkage == GVA_AvailableExternally || | 
 |         Linkage == GVA_DiscardableODR) | 
 |       return false; | 
 |     return true; | 
 |   } | 
 |    | 
 |   const VarDecl *VD = cast<VarDecl>(D); | 
 |   assert(VD->isFileVarDecl() && "Expected file scoped var"); | 
 |  | 
 |   if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly) | 
 |     return false; | 
 |  | 
 |   // Variables that can be needed in other TUs are required. | 
 |   GVALinkage L = GetGVALinkageForVariable(VD); | 
 |   if (L != GVA_Internal && L != GVA_AvailableExternally && | 
 |       L != GVA_DiscardableODR) | 
 |     return true; | 
 |  | 
 |   // Variables that have destruction with side-effects are required. | 
 |   if (VD->getType().isDestructedType()) | 
 |     return true; | 
 |  | 
 |   // Variables that have initialization with side-effects are required. | 
 |   if (VD->getInit() && VD->getInit()->HasSideEffects(*this)) | 
 |     return true; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | CallingConv ASTContext::getDefaultCallingConvention(bool IsVariadic, | 
 |                                                     bool IsCXXMethod) const { | 
 |   // Pass through to the C++ ABI object | 
 |   if (IsCXXMethod) | 
 |     return ABI->getDefaultMethodCallConv(IsVariadic); | 
 |  | 
 |   return (LangOpts.MRTD && !IsVariadic) ? CC_X86StdCall : CC_C; | 
 | } | 
 |  | 
 | bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const { | 
 |   // Pass through to the C++ ABI object | 
 |   return ABI->isNearlyEmpty(RD); | 
 | } | 
 |  | 
 | VTableContextBase *ASTContext::getVTableContext() { | 
 |   if (!VTContext.get()) { | 
 |     if (Target->getCXXABI().isMicrosoft()) | 
 |       VTContext.reset(new MicrosoftVTableContext(*this)); | 
 |     else | 
 |       VTContext.reset(new ItaniumVTableContext(*this)); | 
 |   } | 
 |   return VTContext.get(); | 
 | } | 
 |  | 
 | MangleContext *ASTContext::createMangleContext() { | 
 |   switch (Target->getCXXABI().getKind()) { | 
 |   case TargetCXXABI::GenericAArch64: | 
 |   case TargetCXXABI::GenericItanium: | 
 |   case TargetCXXABI::GenericARM: | 
 |   case TargetCXXABI::iOS: | 
 |   case TargetCXXABI::iOS64: | 
 |     return ItaniumMangleContext::create(*this, getDiagnostics()); | 
 |   case TargetCXXABI::Microsoft: | 
 |     return MicrosoftMangleContext::create(*this, getDiagnostics()); | 
 |   } | 
 |   llvm_unreachable("Unsupported ABI"); | 
 | } | 
 |  | 
 | CXXABI::~CXXABI() {} | 
 |  | 
 | size_t ASTContext::getSideTableAllocatedMemory() const { | 
 |   return ASTRecordLayouts.getMemorySize() + | 
 |          llvm::capacity_in_bytes(ObjCLayouts) + | 
 |          llvm::capacity_in_bytes(KeyFunctions) + | 
 |          llvm::capacity_in_bytes(ObjCImpls) + | 
 |          llvm::capacity_in_bytes(BlockVarCopyInits) + | 
 |          llvm::capacity_in_bytes(DeclAttrs) + | 
 |          llvm::capacity_in_bytes(TemplateOrInstantiation) + | 
 |          llvm::capacity_in_bytes(InstantiatedFromUsingDecl) + | 
 |          llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) + | 
 |          llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) + | 
 |          llvm::capacity_in_bytes(OverriddenMethods) + | 
 |          llvm::capacity_in_bytes(Types) + | 
 |          llvm::capacity_in_bytes(VariableArrayTypes) + | 
 |          llvm::capacity_in_bytes(ClassScopeSpecializationPattern); | 
 | } | 
 |  | 
 | /// getIntTypeForBitwidth - | 
 | /// sets integer QualTy according to specified details: | 
 | /// bitwidth, signed/unsigned. | 
 | /// Returns empty type if there is no appropriate target types. | 
 | QualType ASTContext::getIntTypeForBitwidth(unsigned DestWidth, | 
 |                                            unsigned Signed) const { | 
 |   TargetInfo::IntType Ty = getTargetInfo().getIntTypeByWidth(DestWidth, Signed); | 
 |   CanQualType QualTy = getFromTargetType(Ty); | 
 |   if (!QualTy && DestWidth == 128) | 
 |     return Signed ? Int128Ty : UnsignedInt128Ty; | 
 |   return QualTy; | 
 | } | 
 |  | 
 | /// getRealTypeForBitwidth - | 
 | /// sets floating point QualTy according to specified bitwidth. | 
 | /// Returns empty type if there is no appropriate target types. | 
 | QualType ASTContext::getRealTypeForBitwidth(unsigned DestWidth) const { | 
 |   TargetInfo::RealType Ty = getTargetInfo().getRealTypeByWidth(DestWidth); | 
 |   switch (Ty) { | 
 |   case TargetInfo::Float: | 
 |     return FloatTy; | 
 |   case TargetInfo::Double: | 
 |     return DoubleTy; | 
 |   case TargetInfo::LongDouble: | 
 |     return LongDoubleTy; | 
 |   case TargetInfo::NoFloat: | 
 |     return QualType(); | 
 |   } | 
 |  | 
 |   llvm_unreachable("Unhandled TargetInfo::RealType value"); | 
 | } | 
 |  | 
 | void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) { | 
 |   if (Number > 1) | 
 |     MangleNumbers[ND] = Number; | 
 | } | 
 |  | 
 | unsigned ASTContext::getManglingNumber(const NamedDecl *ND) const { | 
 |   llvm::DenseMap<const NamedDecl *, unsigned>::const_iterator I = | 
 |     MangleNumbers.find(ND); | 
 |   return I != MangleNumbers.end() ? I->second : 1; | 
 | } | 
 |  | 
 | void ASTContext::setStaticLocalNumber(const VarDecl *VD, unsigned Number) { | 
 |   if (Number > 1) | 
 |     StaticLocalNumbers[VD] = Number; | 
 | } | 
 |  | 
 | unsigned ASTContext::getStaticLocalNumber(const VarDecl *VD) const { | 
 |   llvm::DenseMap<const VarDecl *, unsigned>::const_iterator I = | 
 |       StaticLocalNumbers.find(VD); | 
 |   return I != StaticLocalNumbers.end() ? I->second : 1; | 
 | } | 
 |  | 
 | MangleNumberingContext & | 
 | ASTContext::getManglingNumberContext(const DeclContext *DC) { | 
 |   assert(LangOpts.CPlusPlus);  // We don't need mangling numbers for plain C. | 
 |   MangleNumberingContext *&MCtx = MangleNumberingContexts[DC]; | 
 |   if (!MCtx) | 
 |     MCtx = createMangleNumberingContext(); | 
 |   return *MCtx; | 
 | } | 
 |  | 
 | MangleNumberingContext *ASTContext::createMangleNumberingContext() const { | 
 |   return ABI->createMangleNumberingContext(); | 
 | } | 
 |  | 
 | void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) { | 
 |   ParamIndices[D] = index; | 
 | } | 
 |  | 
 | unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const { | 
 |   ParameterIndexTable::const_iterator I = ParamIndices.find(D); | 
 |   assert(I != ParamIndices.end() &&  | 
 |          "ParmIndices lacks entry set by ParmVarDecl"); | 
 |   return I->second; | 
 | } | 
 |  | 
 | APValue * | 
 | ASTContext::getMaterializedTemporaryValue(const MaterializeTemporaryExpr *E, | 
 |                                           bool MayCreate) { | 
 |   assert(E && E->getStorageDuration() == SD_Static && | 
 |          "don't need to cache the computed value for this temporary"); | 
 |   if (MayCreate) | 
 |     return &MaterializedTemporaryValues[E]; | 
 |  | 
 |   llvm::DenseMap<const MaterializeTemporaryExpr *, APValue>::iterator I = | 
 |       MaterializedTemporaryValues.find(E); | 
 |   return I == MaterializedTemporaryValues.end() ? nullptr : &I->second; | 
 | } | 
 |  | 
 | bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const { | 
 |   const llvm::Triple &T = getTargetInfo().getTriple(); | 
 |   if (!T.isOSDarwin()) | 
 |     return false; | 
 |  | 
 |   if (!(T.isiOS() && T.isOSVersionLT(7)) && | 
 |       !(T.isMacOSX() && T.isOSVersionLT(10, 9))) | 
 |     return false; | 
 |  | 
 |   QualType AtomicTy = E->getPtr()->getType()->getPointeeType(); | 
 |   CharUnits sizeChars = getTypeSizeInChars(AtomicTy); | 
 |   uint64_t Size = sizeChars.getQuantity(); | 
 |   CharUnits alignChars = getTypeAlignInChars(AtomicTy); | 
 |   unsigned Align = alignChars.getQuantity(); | 
 |   unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth(); | 
 |   return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits); | 
 | } | 
 |  | 
 | namespace { | 
 |  | 
 |   /// \brief A \c RecursiveASTVisitor that builds a map from nodes to their | 
 |   /// parents as defined by the \c RecursiveASTVisitor. | 
 |   /// | 
 |   /// Note that the relationship described here is purely in terms of AST | 
 |   /// traversal - there are other relationships (for example declaration context) | 
 |   /// in the AST that are better modeled by special matchers. | 
 |   /// | 
 |   /// FIXME: Currently only builds up the map using \c Stmt and \c Decl nodes. | 
 |   class ParentMapASTVisitor : public RecursiveASTVisitor<ParentMapASTVisitor> { | 
 |  | 
 |   public: | 
 |     /// \brief Builds and returns the translation unit's parent map. | 
 |     /// | 
 |     ///  The caller takes ownership of the returned \c ParentMap. | 
 |     static ASTContext::ParentMap *buildMap(TranslationUnitDecl &TU) { | 
 |       ParentMapASTVisitor Visitor(new ASTContext::ParentMap); | 
 |       Visitor.TraverseDecl(&TU); | 
 |       return Visitor.Parents; | 
 |     } | 
 |  | 
 |   private: | 
 |     typedef RecursiveASTVisitor<ParentMapASTVisitor> VisitorBase; | 
 |  | 
 |     ParentMapASTVisitor(ASTContext::ParentMap *Parents) : Parents(Parents) { | 
 |     } | 
 |  | 
 |     bool shouldVisitTemplateInstantiations() const { | 
 |       return true; | 
 |     } | 
 |     bool shouldVisitImplicitCode() const { | 
 |       return true; | 
 |     } | 
 |     // Disables data recursion. We intercept Traverse* methods in the RAV, which | 
 |     // are not triggered during data recursion. | 
 |     bool shouldUseDataRecursionFor(clang::Stmt *S) const { | 
 |       return false; | 
 |     } | 
 |  | 
 |     template <typename T> | 
 |     bool TraverseNode(T *Node, bool(VisitorBase:: *traverse) (T *)) { | 
 |       if (!Node) | 
 |         return true; | 
 |       if (ParentStack.size() > 0) { | 
 |         // FIXME: Currently we add the same parent multiple times, but only | 
 |         // when no memoization data is available for the type. | 
 |         // For example when we visit all subexpressions of template | 
 |         // instantiations; this is suboptimal, but benign: the only way to | 
 |         // visit those is with hasAncestor / hasParent, and those do not create | 
 |         // new matches. | 
 |         // The plan is to enable DynTypedNode to be storable in a map or hash | 
 |         // map. The main problem there is to implement hash functions / | 
 |         // comparison operators for all types that DynTypedNode supports that | 
 |         // do not have pointer identity. | 
 |         auto &NodeOrVector = (*Parents)[Node]; | 
 |         if (NodeOrVector.isNull()) { | 
 |           NodeOrVector = new ast_type_traits::DynTypedNode(ParentStack.back()); | 
 |         } else { | 
 |           if (NodeOrVector.template is<ast_type_traits::DynTypedNode *>()) { | 
 |             auto *Node = | 
 |                 NodeOrVector.template get<ast_type_traits::DynTypedNode *>(); | 
 |             auto *Vector = new ASTContext::ParentVector(1, *Node); | 
 |             NodeOrVector = Vector; | 
 |             delete Node; | 
 |           } | 
 |           assert(NodeOrVector.template is<ASTContext::ParentVector *>()); | 
 |  | 
 |           auto *Vector = | 
 |               NodeOrVector.template get<ASTContext::ParentVector *>(); | 
 |           // Skip duplicates for types that have memoization data. | 
 |           // We must check that the type has memoization data before calling | 
 |           // std::find() because DynTypedNode::operator== can't compare all | 
 |           // types. | 
 |           bool Found = ParentStack.back().getMemoizationData() && | 
 |                        std::find(Vector->begin(), Vector->end(), | 
 |                                  ParentStack.back()) != Vector->end(); | 
 |           if (!Found) | 
 |             Vector->push_back(ParentStack.back()); | 
 |         } | 
 |       } | 
 |       ParentStack.push_back(ast_type_traits::DynTypedNode::create(*Node)); | 
 |       bool Result = (this ->* traverse) (Node); | 
 |       ParentStack.pop_back(); | 
 |       return Result; | 
 |     } | 
 |  | 
 |     bool TraverseDecl(Decl *DeclNode) { | 
 |       return TraverseNode(DeclNode, &VisitorBase::TraverseDecl); | 
 |     } | 
 |  | 
 |     bool TraverseStmt(Stmt *StmtNode) { | 
 |       return TraverseNode(StmtNode, &VisitorBase::TraverseStmt); | 
 |     } | 
 |  | 
 |     ASTContext::ParentMap *Parents; | 
 |     llvm::SmallVector<ast_type_traits::DynTypedNode, 16> ParentStack; | 
 |  | 
 |     friend class RecursiveASTVisitor<ParentMapASTVisitor>; | 
 |   }; | 
 |  | 
 | } // end namespace | 
 |  | 
 | ASTContext::ParentVector | 
 | ASTContext::getParents(const ast_type_traits::DynTypedNode &Node) { | 
 |   assert(Node.getMemoizationData() && | 
 |          "Invariant broken: only nodes that support memoization may be " | 
 |          "used in the parent map."); | 
 |   if (!AllParents) { | 
 |     // We always need to run over the whole translation unit, as | 
 |     // hasAncestor can escape any subtree. | 
 |     AllParents.reset( | 
 |         ParentMapASTVisitor::buildMap(*getTranslationUnitDecl())); | 
 |   } | 
 |   ParentMap::const_iterator I = AllParents->find(Node.getMemoizationData()); | 
 |   if (I == AllParents->end()) { | 
 |     return ParentVector(); | 
 |   } | 
 |   if (I->second.is<ast_type_traits::DynTypedNode *>()) { | 
 |     return ParentVector(1, *I->second.get<ast_type_traits::DynTypedNode *>()); | 
 |   } | 
 |   const auto &Parents = *I->second.get<ParentVector *>(); | 
 |   return ParentVector(Parents.begin(), Parents.end()); | 
 | } | 
 |  | 
 | bool | 
 | ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl, | 
 |                                 const ObjCMethodDecl *MethodImpl) { | 
 |   // No point trying to match an unavailable/deprecated mothod. | 
 |   if (MethodDecl->hasAttr<UnavailableAttr>() | 
 |       || MethodDecl->hasAttr<DeprecatedAttr>()) | 
 |     return false; | 
 |   if (MethodDecl->getObjCDeclQualifier() != | 
 |       MethodImpl->getObjCDeclQualifier()) | 
 |     return false; | 
 |   if (!hasSameType(MethodDecl->getReturnType(), MethodImpl->getReturnType())) | 
 |     return false; | 
 |    | 
 |   if (MethodDecl->param_size() != MethodImpl->param_size()) | 
 |     return false; | 
 |    | 
 |   for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(), | 
 |        IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(), | 
 |        EF = MethodDecl->param_end(); | 
 |        IM != EM && IF != EF; ++IM, ++IF) { | 
 |     const ParmVarDecl *DeclVar = (*IF); | 
 |     const ParmVarDecl *ImplVar = (*IM); | 
 |     if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier()) | 
 |       return false; | 
 |     if (!hasSameType(DeclVar->getType(), ImplVar->getType())) | 
 |       return false; | 
 |   } | 
 |   return (MethodDecl->isVariadic() == MethodImpl->isVariadic()); | 
 |    | 
 | } | 
 |  | 
 | // Explicitly instantiate this in case a Redeclarable<T> is used from a TU that | 
 | // doesn't include ASTContext.h | 
 | template | 
 | clang::LazyGenerationalUpdatePtr< | 
 |     const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::ValueType | 
 | clang::LazyGenerationalUpdatePtr< | 
 |     const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::makeValue( | 
 |         const clang::ASTContext &Ctx, Decl *Value); |