| //=== BasicValueFactory.cpp - Basic values for Path Sens analysis --*- C++ -*-// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | //  This file defines BasicValueFactory, a class that manages the lifetime | 
 | //  of APSInt objects and symbolic constraints used by GRExprEngine  | 
 | //  and related classes. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "clang/Analysis/PathSensitive/BasicValueFactory.h" | 
 | #include "clang/Analysis/PathSensitive/RValues.h" | 
 |  | 
 | using namespace clang; | 
 |  | 
 | typedef std::pair<RVal, uintptr_t> RValData; | 
 | typedef std::pair<RVal, RVal> RValPair; | 
 |  | 
 |  | 
 | namespace llvm { | 
 | template<> struct FoldingSetTrait<RValData> { | 
 |   static inline void Profile(const RValData& X, llvm::FoldingSetNodeID& ID) { | 
 |     X.first.Profile(ID); | 
 |     ID.AddPointer( (void*) X.second); | 
 |   } | 
 | }; | 
 |    | 
 | template<> struct FoldingSetTrait<RValPair> { | 
 |   static inline void Profile(const RValPair& X, llvm::FoldingSetNodeID& ID) { | 
 |     X.first.Profile(ID); | 
 |     X.second.Profile(ID); | 
 |   } | 
 | }; | 
 | } | 
 |  | 
 | typedef llvm::FoldingSet<llvm::FoldingSetNodeWrapper<RValData> > | 
 |   PersistentRValsTy; | 
 |  | 
 | typedef llvm::FoldingSet<llvm::FoldingSetNodeWrapper<RValPair> > | 
 |   PersistentRValPairsTy; | 
 |  | 
 | BasicValueFactory::~BasicValueFactory() { | 
 |   // Note that the dstor for the contents of APSIntSet will never be called, | 
 |   // so we iterate over the set and invoke the dstor for each APSInt.  This | 
 |   // frees an aux. memory allocated to represent very large constants. | 
 |   for (APSIntSetTy::iterator I=APSIntSet.begin(), E=APSIntSet.end(); I!=E; ++I) | 
 |     I->getValue().~APSInt(); | 
 |    | 
 |   delete (PersistentRValsTy*) PersistentRVals;   | 
 |   delete (PersistentRValPairsTy*) PersistentRValPairs; | 
 | } | 
 |  | 
 | const llvm::APSInt& BasicValueFactory::getValue(const llvm::APSInt& X) { | 
 |   llvm::FoldingSetNodeID ID; | 
 |   void* InsertPos; | 
 |   typedef llvm::FoldingSetNodeWrapper<llvm::APSInt> FoldNodeTy; | 
 |    | 
 |   X.Profile(ID); | 
 |   FoldNodeTy* P = APSIntSet.FindNodeOrInsertPos(ID, InsertPos); | 
 |    | 
 |   if (!P) {   | 
 |     P = (FoldNodeTy*) BPAlloc.Allocate<FoldNodeTy>(); | 
 |     new (P) FoldNodeTy(X); | 
 |     APSIntSet.InsertNode(P, InsertPos); | 
 |   } | 
 |    | 
 |   return *P; | 
 | } | 
 |  | 
 | const llvm::APSInt& BasicValueFactory::getValue(uint64_t X, unsigned BitWidth, | 
 |                                            bool isUnsigned) { | 
 |   llvm::APSInt V(BitWidth, isUnsigned); | 
 |   V = X;   | 
 |   return getValue(V); | 
 | } | 
 |  | 
 | const llvm::APSInt& BasicValueFactory::getValue(uint64_t X, QualType T) { | 
 |    | 
 |   unsigned bits = Ctx.getTypeSize(T); | 
 |   llvm::APSInt V(bits, T->isUnsignedIntegerType()); | 
 |   V = X; | 
 |   return getValue(V); | 
 | } | 
 |  | 
 | const SymIntConstraint& | 
 | BasicValueFactory::getConstraint(SymbolID sym, BinaryOperator::Opcode Op, | 
 |                             const llvm::APSInt& V) { | 
 |    | 
 |   llvm::FoldingSetNodeID ID; | 
 |   SymIntConstraint::Profile(ID, sym, Op, V); | 
 |   void* InsertPos; | 
 |    | 
 |   SymIntConstraint* C = SymIntCSet.FindNodeOrInsertPos(ID, InsertPos); | 
 |    | 
 |   if (!C) { | 
 |     C = (SymIntConstraint*) BPAlloc.Allocate<SymIntConstraint>(); | 
 |     new (C) SymIntConstraint(sym, Op, V); | 
 |     SymIntCSet.InsertNode(C, InsertPos); | 
 |   } | 
 |    | 
 |   return *C; | 
 | } | 
 |  | 
 | const llvm::APSInt* | 
 | BasicValueFactory::EvaluateAPSInt(BinaryOperator::Opcode Op, | 
 |                              const llvm::APSInt& V1, const llvm::APSInt& V2) { | 
 |    | 
 |   switch (Op) { | 
 |     default: | 
 |       assert (false && "Invalid Opcode."); | 
 |        | 
 |     case BinaryOperator::Mul: | 
 |       return &getValue( V1 * V2 ); | 
 |        | 
 |     case BinaryOperator::Div: | 
 |       return &getValue( V1 / V2 ); | 
 |        | 
 |     case BinaryOperator::Rem: | 
 |       return &getValue( V1 % V2 ); | 
 |        | 
 |     case BinaryOperator::Add: | 
 |       return &getValue( V1 + V2 ); | 
 |        | 
 |     case BinaryOperator::Sub: | 
 |       return &getValue( V1 - V2 ); | 
 |        | 
 |     case BinaryOperator::Shl: { | 
 |  | 
 |       // FIXME: This logic should probably go higher up, where we can | 
 |       // test these conditions symbolically. | 
 |        | 
 |       // FIXME: Expand these checks to include all undefined behavior. | 
 |        | 
 |       if (V2.isSigned() && V2.isNegative()) | 
 |         return NULL; | 
 |        | 
 |       uint64_t Amt = V2.getZExtValue(); | 
 |        | 
 |       if (Amt > V1.getBitWidth()) | 
 |         return NULL; | 
 |        | 
 |       return &getValue( V1.operator<<( (unsigned) Amt )); | 
 |     } | 
 |        | 
 |     case BinaryOperator::Shr: { | 
 |        | 
 |       // FIXME: This logic should probably go higher up, where we can | 
 |       // test these conditions symbolically. | 
 |        | 
 |       // FIXME: Expand these checks to include all undefined behavior. | 
 |        | 
 |       if (V2.isSigned() && V2.isNegative()) | 
 |         return NULL; | 
 |        | 
 |       uint64_t Amt = V2.getZExtValue(); | 
 |        | 
 |       if (Amt > V1.getBitWidth()) | 
 |         return NULL; | 
 |        | 
 |       return &getValue( V1.operator>>( (unsigned) Amt )); | 
 |     } | 
 |        | 
 |     case BinaryOperator::LT: | 
 |       return &getTruthValue( V1 < V2 ); | 
 |        | 
 |     case BinaryOperator::GT: | 
 |       return &getTruthValue( V1 > V2 ); | 
 |        | 
 |     case BinaryOperator::LE: | 
 |       return &getTruthValue( V1 <= V2 ); | 
 |        | 
 |     case BinaryOperator::GE: | 
 |       return &getTruthValue( V1 >= V2 ); | 
 |        | 
 |     case BinaryOperator::EQ: | 
 |       return &getTruthValue( V1 == V2 ); | 
 |        | 
 |     case BinaryOperator::NE: | 
 |       return &getTruthValue( V1 != V2 ); | 
 |        | 
 |       // Note: LAnd, LOr, Comma are handled specially by higher-level logic. | 
 |        | 
 |     case BinaryOperator::And: | 
 |       return &getValue( V1 & V2 ); | 
 |        | 
 |     case BinaryOperator::Or: | 
 |       return &getValue( V1 | V2 ); | 
 |        | 
 |     case BinaryOperator::Xor: | 
 |       return &getValue( V1 ^ V2 ); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | const std::pair<RVal, uintptr_t>& | 
 | BasicValueFactory::getPersistentRValWithData(const RVal& V, uintptr_t Data) { | 
 |    | 
 |   // Lazily create the folding set. | 
 |   if (!PersistentRVals) PersistentRVals = new PersistentRValsTy(); | 
 |      | 
 |   llvm::FoldingSetNodeID ID; | 
 |   void* InsertPos; | 
 |   V.Profile(ID); | 
 |   ID.AddPointer((void*) Data); | 
 |    | 
 |   PersistentRValsTy& Map = *((PersistentRValsTy*) PersistentRVals); | 
 |    | 
 |   typedef llvm::FoldingSetNodeWrapper<RValData> FoldNodeTy; | 
 |   FoldNodeTy* P = Map.FindNodeOrInsertPos(ID, InsertPos); | 
 |    | 
 |   if (!P) {   | 
 |     P = (FoldNodeTy*) BPAlloc.Allocate<FoldNodeTy>(); | 
 |     new (P) FoldNodeTy(std::make_pair(V, Data)); | 
 |     Map.InsertNode(P, InsertPos); | 
 |   } | 
 |  | 
 |   return P->getValue(); | 
 | } | 
 |  | 
 | const std::pair<RVal, RVal>& | 
 | BasicValueFactory::getPersistentRValPair(const RVal& V1, const RVal& V2) { | 
 |    | 
 |   // Lazily create the folding set. | 
 |   if (!PersistentRValPairs) PersistentRValPairs = new PersistentRValPairsTy(); | 
 |    | 
 |   llvm::FoldingSetNodeID ID; | 
 |   void* InsertPos; | 
 |   V1.Profile(ID); | 
 |   V2.Profile(ID); | 
 |    | 
 |   PersistentRValPairsTy& Map = *((PersistentRValPairsTy*) PersistentRValPairs); | 
 |    | 
 |   typedef llvm::FoldingSetNodeWrapper<RValPair> FoldNodeTy; | 
 |   FoldNodeTy* P = Map.FindNodeOrInsertPos(ID, InsertPos); | 
 |    | 
 |   if (!P) {   | 
 |     P = (FoldNodeTy*) BPAlloc.Allocate<FoldNodeTy>(); | 
 |     new (P) FoldNodeTy(std::make_pair(V1, V2)); | 
 |     Map.InsertNode(P, InsertPos); | 
 |   } | 
 |    | 
 |   return P->getValue(); | 
 | } | 
 |  |