| //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements semantic analysis for declarations. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Sema.h" |
| #include "clang/AST/APValue.h" |
| #include "clang/AST/ASTConsumer.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/Attr.h" |
| #include "clang/AST/Builtins.h" |
| #include "clang/AST/Decl.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/Type.h" |
| #include "clang/Parse/DeclSpec.h" |
| #include "clang/Parse/Scope.h" |
| #include "clang/Basic/LangOptions.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "clang/Basic/SourceManager.h" |
| // FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's) |
| #include "clang/Lex/Preprocessor.h" |
| #include "clang/Lex/HeaderSearch.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/DenseSet.h" |
| using namespace clang; |
| |
| Sema::DeclTy *Sema::isTypeName(const IdentifierInfo &II, Scope *S) { |
| Decl *IIDecl = LookupDecl(&II, Decl::IDNS_Ordinary, S, false); |
| |
| if (IIDecl && (isa<TypedefDecl>(IIDecl) || |
| isa<ObjCInterfaceDecl>(IIDecl) || |
| isa<TagDecl>(IIDecl))) |
| return IIDecl; |
| return 0; |
| } |
| |
| DeclContext *Sema::getDCParent(DeclContext *DC) { |
| // If CurContext is a ObjC method, getParent() will return NULL. |
| if (isa<ObjCMethodDecl>(DC)) |
| return Context.getTranslationUnitDecl(); |
| |
| // A C++ inline method is parsed *after* the topmost class it was declared in |
| // is fully parsed (it's "complete"). |
| // The parsing of a C++ inline method happens at the declaration context of |
| // the topmost (non-nested) class it is declared in. |
| if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) { |
| assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record."); |
| DC = MD->getParent(); |
| while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getParent())) |
| DC = RD; |
| |
| // Return the declaration context of the topmost class the inline method is |
| // declared in. |
| return DC; |
| } |
| |
| return DC->getParent(); |
| } |
| |
| void Sema::PushDeclContext(DeclContext *DC) { |
| assert(getDCParent(DC) == CurContext && |
| "The next DeclContext should be directly contained in the current one."); |
| CurContext = DC; |
| } |
| |
| void Sema::PopDeclContext() { |
| assert(CurContext && "DeclContext imbalance!"); |
| CurContext = getDCParent(CurContext); |
| } |
| |
| /// Add this decl to the scope shadowed decl chains. |
| void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) { |
| S->AddDecl(D); |
| |
| // C++ [basic.scope]p4: |
| // -- exactly one declaration shall declare a class name or |
| // enumeration name that is not a typedef name and the other |
| // declarations shall all refer to the same object or |
| // enumerator, or all refer to functions and function templates; |
| // in this case the class name or enumeration name is hidden. |
| if (TagDecl *TD = dyn_cast<TagDecl>(D)) { |
| // We are pushing the name of a tag (enum or class). |
| IdentifierResolver::ctx_iterator |
| CIT = IdResolver.ctx_begin(TD->getIdentifier(), TD->getDeclContext()); |
| if (CIT != IdResolver.ctx_end(TD->getIdentifier()) && |
| IdResolver.isDeclInScope(*CIT, TD->getDeclContext(), S)) { |
| // There is already a declaration with the same name in the same |
| // scope. It must be found before we find the new declaration, |
| // so swap the order on the shadowed declaration chain. |
| |
| IdResolver.AddShadowedDecl(TD, *CIT); |
| return; |
| } |
| } |
| |
| IdResolver.AddDecl(D); |
| } |
| |
| void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) { |
| if (S->decl_empty()) return; |
| assert((S->getFlags() & Scope::DeclScope) &&"Scope shouldn't contain decls!"); |
| |
| for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end(); |
| I != E; ++I) { |
| Decl *TmpD = static_cast<Decl*>(*I); |
| assert(TmpD && "This decl didn't get pushed??"); |
| |
| if (isa<CXXFieldDecl>(TmpD)) continue; |
| |
| assert(isa<ScopedDecl>(TmpD) && "Decl isn't ScopedDecl?"); |
| ScopedDecl *D = cast<ScopedDecl>(TmpD); |
| |
| IdentifierInfo *II = D->getIdentifier(); |
| if (!II) continue; |
| |
| // We only want to remove the decls from the identifier decl chains for local |
| // scopes, when inside a function/method. |
| if (S->getFnParent() != 0) |
| IdResolver.RemoveDecl(D); |
| |
| // Chain this decl to the containing DeclContext. |
| D->setNext(CurContext->getDeclChain()); |
| CurContext->setDeclChain(D); |
| } |
| } |
| |
| /// getObjCInterfaceDecl - Look up a for a class declaration in the scope. |
| /// return 0 if one not found. |
| ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) { |
| // The third "scope" argument is 0 since we aren't enabling lazy built-in |
| // creation from this context. |
| Decl *IDecl = LookupDecl(Id, Decl::IDNS_Ordinary, 0, false); |
| |
| return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl); |
| } |
| |
| /// LookupDecl - Look up the inner-most declaration in the specified |
| /// namespace. |
| Decl *Sema::LookupDecl(const IdentifierInfo *II, unsigned NSI, |
| Scope *S, bool enableLazyBuiltinCreation) { |
| if (II == 0) return 0; |
| unsigned NS = NSI; |
| if (getLangOptions().CPlusPlus && (NS & Decl::IDNS_Ordinary)) |
| NS |= Decl::IDNS_Tag; |
| |
| // Scan up the scope chain looking for a decl that matches this identifier |
| // that is in the appropriate namespace. This search should not take long, as |
| // shadowing of names is uncommon, and deep shadowing is extremely uncommon. |
| for (IdentifierResolver::iterator |
| I = IdResolver.begin(II, CurContext), E = IdResolver.end(II); I != E; ++I) |
| if ((*I)->getIdentifierNamespace() & NS) |
| return *I; |
| |
| // If we didn't find a use of this identifier, and if the identifier |
| // corresponds to a compiler builtin, create the decl object for the builtin |
| // now, injecting it into translation unit scope, and return it. |
| if (NS & Decl::IDNS_Ordinary) { |
| if (enableLazyBuiltinCreation) { |
| // If this is a builtin on this (or all) targets, create the decl. |
| if (unsigned BuiltinID = II->getBuiltinID()) |
| return LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID, S); |
| } |
| if (getLangOptions().ObjC1) { |
| // @interface and @compatibility_alias introduce typedef-like names. |
| // Unlike typedef's, they can only be introduced at file-scope (and are |
| // therefore not scoped decls). They can, however, be shadowed by |
| // other names in IDNS_Ordinary. |
| ObjCInterfaceDeclsTy::iterator IDI = ObjCInterfaceDecls.find(II); |
| if (IDI != ObjCInterfaceDecls.end()) |
| return IDI->second; |
| ObjCAliasTy::iterator I = ObjCAliasDecls.find(II); |
| if (I != ObjCAliasDecls.end()) |
| return I->second->getClassInterface(); |
| } |
| } |
| return 0; |
| } |
| |
| void Sema::InitBuiltinVaListType() { |
| if (!Context.getBuiltinVaListType().isNull()) |
| return; |
| |
| IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list"); |
| Decl *VaDecl = LookupDecl(VaIdent, Decl::IDNS_Ordinary, TUScope); |
| TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl); |
| Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef)); |
| } |
| |
| /// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope. |
| /// lazily create a decl for it. |
| ScopedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid, |
| Scope *S) { |
| Builtin::ID BID = (Builtin::ID)bid; |
| |
| if (BID == Builtin::BI__builtin_va_start || |
| BID == Builtin::BI__builtin_va_copy || |
| BID == Builtin::BI__builtin_va_end || |
| BID == Builtin::BI__builtin_stdarg_start) |
| InitBuiltinVaListType(); |
| |
| QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context); |
| FunctionDecl *New = FunctionDecl::Create(Context, |
| Context.getTranslationUnitDecl(), |
| SourceLocation(), II, R, |
| FunctionDecl::Extern, false, 0); |
| |
| // Create Decl objects for each parameter, adding them to the |
| // FunctionDecl. |
| if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) { |
| llvm::SmallVector<ParmVarDecl*, 16> Params; |
| for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) |
| Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0, |
| FT->getArgType(i), VarDecl::None, 0, |
| 0)); |
| New->setParams(&Params[0], Params.size()); |
| } |
| |
| |
| |
| // TUScope is the translation-unit scope to insert this function into. |
| PushOnScopeChains(New, TUScope); |
| return New; |
| } |
| |
| /// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name |
| /// and scope as a previous declaration 'Old'. Figure out how to resolve this |
| /// situation, merging decls or emitting diagnostics as appropriate. |
| /// |
| TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) { |
| // Verify the old decl was also a typedef. |
| TypedefDecl *Old = dyn_cast<TypedefDecl>(OldD); |
| if (!Old) { |
| Diag(New->getLocation(), diag::err_redefinition_different_kind, |
| New->getName()); |
| Diag(OldD->getLocation(), diag::err_previous_definition); |
| return New; |
| } |
| |
| // Allow multiple definitions for ObjC built-in typedefs. |
| // FIXME: Verify the underlying types are equivalent! |
| if (getLangOptions().ObjC1 && isBuiltinObjCType(New)) |
| return Old; |
| |
| if (getLangOptions().Microsoft) return New; |
| |
| // Redeclaration of a type is a constraint violation (6.7.2.3p1). |
| // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if |
| // *either* declaration is in a system header. The code below implements |
| // this adhoc compatibility rule. FIXME: The following code will not |
| // work properly when compiling ".i" files (containing preprocessed output). |
| SourceManager &SrcMgr = Context.getSourceManager(); |
| HeaderSearch &HdrInfo = PP.getHeaderSearchInfo(); |
| const FileEntry *OldDeclFile = SrcMgr.getFileEntryForLoc(Old->getLocation()); |
| if (OldDeclFile) { |
| DirectoryLookup::DirType OldDirType = HdrInfo.getFileDirFlavor(OldDeclFile); |
| // Allow reclarations in both SystemHeaderDir and ExternCSystemHeaderDir. |
| if (OldDirType != DirectoryLookup::NormalHeaderDir) |
| return New; |
| } |
| const FileEntry *NewDeclFile = SrcMgr.getFileEntryForLoc(New->getLocation()); |
| if (NewDeclFile) { |
| DirectoryLookup::DirType NewDirType = HdrInfo.getFileDirFlavor(NewDeclFile); |
| // Allow reclarations in both SystemHeaderDir and ExternCSystemHeaderDir. |
| if (NewDirType != DirectoryLookup::NormalHeaderDir) |
| return New; |
| } |
| |
| Diag(New->getLocation(), diag::err_redefinition, New->getName()); |
| Diag(Old->getLocation(), diag::err_previous_definition); |
| return New; |
| } |
| |
| /// DeclhasAttr - returns true if decl Declaration already has the target |
| /// attribute. |
| static bool DeclHasAttr(const Decl *decl, const Attr *target) { |
| for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext()) |
| if (attr->getKind() == target->getKind()) |
| return true; |
| |
| return false; |
| } |
| |
| /// MergeAttributes - append attributes from the Old decl to the New one. |
| static void MergeAttributes(Decl *New, Decl *Old) { |
| Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp; |
| |
| while (attr) { |
| tmp = attr; |
| attr = attr->getNext(); |
| |
| if (!DeclHasAttr(New, tmp)) { |
| New->addAttr(tmp); |
| } else { |
| tmp->setNext(0); |
| delete(tmp); |
| } |
| } |
| |
| Old->invalidateAttrs(); |
| } |
| |
| /// MergeFunctionDecl - We just parsed a function 'New' from |
| /// declarator D which has the same name and scope as a previous |
| /// declaration 'Old'. Figure out how to resolve this situation, |
| /// merging decls or emitting diagnostics as appropriate. |
| /// Redeclaration will be set true if thisNew is a redeclaration OldD. |
| FunctionDecl * |
| Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) { |
| Redeclaration = false; |
| // Verify the old decl was also a function. |
| FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD); |
| if (!Old) { |
| Diag(New->getLocation(), diag::err_redefinition_different_kind, |
| New->getName()); |
| Diag(OldD->getLocation(), diag::err_previous_definition); |
| return New; |
| } |
| |
| QualType OldQType = Context.getCanonicalType(Old->getType()); |
| QualType NewQType = Context.getCanonicalType(New->getType()); |
| |
| // C++ [dcl.fct]p3: |
| // All declarations for a function shall agree exactly in both the |
| // return type and the parameter-type-list. |
| if (getLangOptions().CPlusPlus && OldQType == NewQType) { |
| MergeAttributes(New, Old); |
| Redeclaration = true; |
| return MergeCXXFunctionDecl(New, Old); |
| } |
| |
| // C: Function types need to be compatible, not identical. This handles |
| // duplicate function decls like "void f(int); void f(enum X);" properly. |
| if (!getLangOptions().CPlusPlus && |
| Context.functionTypesAreCompatible(OldQType, NewQType)) { |
| MergeAttributes(New, Old); |
| Redeclaration = true; |
| return New; |
| } |
| |
| // A function that has already been declared has been redeclared or defined |
| // with a different type- show appropriate diagnostic |
| diag::kind PrevDiag; |
| if (Old->isThisDeclarationADefinition()) |
| PrevDiag = diag::err_previous_definition; |
| else if (Old->isImplicit()) |
| PrevDiag = diag::err_previous_implicit_declaration; |
| else |
| PrevDiag = diag::err_previous_declaration; |
| |
| // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope. |
| // TODO: This is totally simplistic. It should handle merging functions |
| // together etc, merging extern int X; int X; ... |
| Diag(New->getLocation(), diag::err_conflicting_types, New->getName()); |
| Diag(Old->getLocation(), PrevDiag); |
| return New; |
| } |
| |
| /// equivalentArrayTypes - Used to determine whether two array types are |
| /// equivalent. |
| /// We need to check this explicitly as an incomplete array definition is |
| /// considered a VariableArrayType, so will not match a complete array |
| /// definition that would be otherwise equivalent. |
| static bool areEquivalentArrayTypes(QualType NewQType, QualType OldQType) { |
| const ArrayType *NewAT = NewQType->getAsArrayType(); |
| const ArrayType *OldAT = OldQType->getAsArrayType(); |
| |
| if (!NewAT || !OldAT) |
| return false; |
| |
| // If either (or both) array types in incomplete we need to strip off the |
| // outer VariableArrayType. Once the outer VAT is removed the remaining |
| // types must be identical if the array types are to be considered |
| // equivalent. |
| // eg. int[][1] and int[1][1] become |
| // VAT(null, CAT(1, int)) and CAT(1, CAT(1, int)) |
| // removing the outermost VAT gives |
| // CAT(1, int) and CAT(1, int) |
| // which are equal, therefore the array types are equivalent. |
| if (NewAT->isIncompleteArrayType() || OldAT->isIncompleteArrayType()) { |
| if (NewAT->getIndexTypeQualifier() != OldAT->getIndexTypeQualifier()) |
| return false; |
| NewQType = NewAT->getElementType().getCanonicalType(); |
| OldQType = OldAT->getElementType().getCanonicalType(); |
| } |
| |
| return NewQType == OldQType; |
| } |
| |
| /// MergeVarDecl - We just parsed a variable 'New' which has the same name |
| /// and scope as a previous declaration 'Old'. Figure out how to resolve this |
| /// situation, merging decls or emitting diagnostics as appropriate. |
| /// |
| /// FIXME: Need to carefully consider tentative definition rules (C99 6.9.2p2). |
| /// For example, we incorrectly complain about i1, i4 from C99 6.9.2p4. |
| /// |
| VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) { |
| // Verify the old decl was also a variable. |
| VarDecl *Old = dyn_cast<VarDecl>(OldD); |
| if (!Old) { |
| Diag(New->getLocation(), diag::err_redefinition_different_kind, |
| New->getName()); |
| Diag(OldD->getLocation(), diag::err_previous_definition); |
| return New; |
| } |
| |
| MergeAttributes(New, Old); |
| |
| // Verify the types match. |
| QualType OldCType = Context.getCanonicalType(Old->getType()); |
| QualType NewCType = Context.getCanonicalType(New->getType()); |
| if (OldCType != NewCType && !areEquivalentArrayTypes(NewCType, OldCType)) { |
| Diag(New->getLocation(), diag::err_redefinition, New->getName()); |
| Diag(Old->getLocation(), diag::err_previous_definition); |
| return New; |
| } |
| // C99 6.2.2p4: Check if we have a static decl followed by a non-static. |
| if (New->getStorageClass() == VarDecl::Static && |
| (Old->getStorageClass() == VarDecl::None || |
| Old->getStorageClass() == VarDecl::Extern)) { |
| Diag(New->getLocation(), diag::err_static_non_static, New->getName()); |
| Diag(Old->getLocation(), diag::err_previous_definition); |
| return New; |
| } |
| // C99 6.2.2p4: Check if we have a non-static decl followed by a static. |
| if (New->getStorageClass() != VarDecl::Static && |
| Old->getStorageClass() == VarDecl::Static) { |
| Diag(New->getLocation(), diag::err_non_static_static, New->getName()); |
| Diag(Old->getLocation(), diag::err_previous_definition); |
| return New; |
| } |
| // We've verified the types match, now handle "tentative" definitions. |
| if (Old->isFileVarDecl() && New->isFileVarDecl()) { |
| // Handle C "tentative" external object definitions (C99 6.9.2). |
| bool OldIsTentative = false; |
| bool NewIsTentative = false; |
| |
| if (!Old->getInit() && |
| (Old->getStorageClass() == VarDecl::None || |
| Old->getStorageClass() == VarDecl::Static)) |
| OldIsTentative = true; |
| |
| // FIXME: this check doesn't work (since the initializer hasn't been |
| // attached yet). This check should be moved to FinalizeDeclaratorGroup. |
| // Unfortunately, by the time we get to FinializeDeclaratorGroup, we've |
| // thrown out the old decl. |
| if (!New->getInit() && |
| (New->getStorageClass() == VarDecl::None || |
| New->getStorageClass() == VarDecl::Static)) |
| ; // change to NewIsTentative = true; once the code is moved. |
| |
| if (NewIsTentative || OldIsTentative) |
| return New; |
| } |
| // Handle __private_extern__ just like extern. |
| if (Old->getStorageClass() != VarDecl::Extern && |
| Old->getStorageClass() != VarDecl::PrivateExtern && |
| New->getStorageClass() != VarDecl::Extern && |
| New->getStorageClass() != VarDecl::PrivateExtern) { |
| Diag(New->getLocation(), diag::err_redefinition, New->getName()); |
| Diag(Old->getLocation(), diag::err_previous_definition); |
| } |
| return New; |
| } |
| |
| /// CheckParmsForFunctionDef - Check that the parameters of the given |
| /// function are appropriate for the definition of a function. This |
| /// takes care of any checks that cannot be performed on the |
| /// declaration itself, e.g., that the types of each of the function |
| /// parameters are complete. |
| bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) { |
| bool HasInvalidParm = false; |
| for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) { |
| ParmVarDecl *Param = FD->getParamDecl(p); |
| |
| // C99 6.7.5.3p4: the parameters in a parameter type list in a |
| // function declarator that is part of a function definition of |
| // that function shall not have incomplete type. |
| if (Param->getType()->isIncompleteType() && |
| !Param->isInvalidDecl()) { |
| Diag(Param->getLocation(), diag::err_typecheck_decl_incomplete_type, |
| Param->getType().getAsString()); |
| Param->setInvalidDecl(); |
| HasInvalidParm = true; |
| } |
| } |
| |
| return HasInvalidParm; |
| } |
| |
| /// CreateImplicitParameter - Creates an implicit function parameter |
| /// in the scope S and with the given type. This routine is used, for |
| /// example, to create the implicit "self" parameter in an Objective-C |
| /// method. |
| ImplicitParamDecl * |
| Sema::CreateImplicitParameter(Scope *S, IdentifierInfo *Id, |
| SourceLocation IdLoc, QualType Type) { |
| ImplicitParamDecl *New = ImplicitParamDecl::Create(Context, CurContext, |
| IdLoc, Id, Type, 0); |
| if (Id) |
| PushOnScopeChains(New, S); |
| |
| return New; |
| } |
| |
| /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with |
| /// no declarator (e.g. "struct foo;") is parsed. |
| Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) { |
| // TODO: emit error on 'int;' or 'const enum foo;'. |
| // TODO: emit error on 'typedef int;' |
| // if (!DS.isMissingDeclaratorOk()) Diag(...); |
| |
| return dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep())); |
| } |
| |
| bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType) { |
| // Get the type before calling CheckSingleAssignmentConstraints(), since |
| // it can promote the expression. |
| QualType InitType = Init->getType(); |
| |
| AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init); |
| return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType, |
| InitType, Init, "initializing"); |
| } |
| |
| bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) { |
| if (const IncompleteArrayType *IAT = DeclT->getAsIncompleteArrayType()) { |
| // C99 6.7.8p14. We have an array of character type with unknown size |
| // being initialized to a string literal. |
| llvm::APSInt ConstVal(32); |
| ConstVal = strLiteral->getByteLength() + 1; |
| // Return a new array type (C99 6.7.8p22). |
| DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal, |
| ArrayType::Normal, 0); |
| } else if (const ConstantArrayType *CAT = DeclT->getAsConstantArrayType()) { |
| // C99 6.7.8p14. We have an array of character type with known size. |
| if (strLiteral->getByteLength() > (unsigned)CAT->getMaximumElements()) |
| Diag(strLiteral->getSourceRange().getBegin(), |
| diag::warn_initializer_string_for_char_array_too_long, |
| strLiteral->getSourceRange()); |
| } else { |
| assert(0 && "HandleStringLiteralInit(): Invalid array type"); |
| } |
| // Set type from "char *" to "constant array of char". |
| strLiteral->setType(DeclT); |
| // For now, we always return false (meaning success). |
| return false; |
| } |
| |
| StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) { |
| const ArrayType *AT = DeclType->getAsArrayType(); |
| if (AT && AT->getElementType()->isCharType()) { |
| return dyn_cast<StringLiteral>(Init); |
| } |
| return 0; |
| } |
| |
| bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType) { |
| // C99 6.7.8p3: The type of the entity to be initialized shall be an array |
| // of unknown size ("[]") or an object type that is not a variable array type. |
| if (const VariableArrayType *VAT = DeclType->getAsVariableArrayType()) |
| return Diag(VAT->getSizeExpr()->getLocStart(), |
| diag::err_variable_object_no_init, |
| VAT->getSizeExpr()->getSourceRange()); |
| |
| InitListExpr *InitList = dyn_cast<InitListExpr>(Init); |
| if (!InitList) { |
| // FIXME: Handle wide strings |
| if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType)) |
| return CheckStringLiteralInit(strLiteral, DeclType); |
| |
| if (DeclType->isArrayType()) |
| return Diag(Init->getLocStart(), |
| diag::err_array_init_list_required, |
| Init->getSourceRange()); |
| |
| return CheckSingleInitializer(Init, DeclType); |
| } |
| |
| InitListChecker CheckInitList(this, InitList, DeclType); |
| return CheckInitList.HadError(); |
| } |
| |
| Sema::DeclTy * |
| Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl) { |
| ScopedDecl *LastDeclarator = dyn_cast_or_null<ScopedDecl>((Decl *)lastDecl); |
| IdentifierInfo *II = D.getIdentifier(); |
| |
| // All of these full declarators require an identifier. If it doesn't have |
| // one, the ParsedFreeStandingDeclSpec action should be used. |
| if (II == 0) { |
| Diag(D.getDeclSpec().getSourceRange().getBegin(), |
| diag::err_declarator_need_ident, |
| D.getDeclSpec().getSourceRange(), D.getSourceRange()); |
| return 0; |
| } |
| |
| // The scope passed in may not be a decl scope. Zip up the scope tree until |
| // we find one that is. |
| while ((S->getFlags() & Scope::DeclScope) == 0) |
| S = S->getParent(); |
| |
| // See if this is a redefinition of a variable in the same scope. |
| Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S); |
| ScopedDecl *New; |
| bool InvalidDecl = false; |
| |
| // In C++, the previous declaration we find might be a tag type |
| // (class or enum). In this case, the new declaration will hide the |
| // tag type. |
| if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag) |
| PrevDecl = 0; |
| |
| QualType R = GetTypeForDeclarator(D, S); |
| assert(!R.isNull() && "GetTypeForDeclarator() returned null type"); |
| |
| if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { |
| // Check that there are no default arguments (C++ only). |
| if (getLangOptions().CPlusPlus) |
| CheckExtraCXXDefaultArguments(D); |
| |
| TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator); |
| if (!NewTD) return 0; |
| |
| // Handle attributes prior to checking for duplicates in MergeVarDecl |
| ProcessDeclAttributes(NewTD, D); |
| // Merge the decl with the existing one if appropriate. If the decl is |
| // in an outer scope, it isn't the same thing. |
| if (PrevDecl && IdResolver.isDeclInScope(PrevDecl, CurContext, S)) { |
| NewTD = MergeTypeDefDecl(NewTD, PrevDecl); |
| if (NewTD == 0) return 0; |
| } |
| New = NewTD; |
| if (S->getFnParent() == 0) { |
| // C99 6.7.7p2: If a typedef name specifies a variably modified type |
| // then it shall have block scope. |
| if (NewTD->getUnderlyingType()->isVariablyModifiedType()) { |
| // FIXME: Diagnostic needs to be fixed. |
| Diag(D.getIdentifierLoc(), diag::err_typecheck_illegal_vla); |
| InvalidDecl = true; |
| } |
| } |
| } else if (R.getTypePtr()->isFunctionType()) { |
| FunctionDecl::StorageClass SC = FunctionDecl::None; |
| switch (D.getDeclSpec().getStorageClassSpec()) { |
| default: assert(0 && "Unknown storage class!"); |
| case DeclSpec::SCS_auto: |
| case DeclSpec::SCS_register: |
| Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func, |
| R.getAsString()); |
| InvalidDecl = true; |
| break; |
| case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break; |
| case DeclSpec::SCS_extern: SC = FunctionDecl::Extern; break; |
| case DeclSpec::SCS_static: SC = FunctionDecl::Static; break; |
| case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break; |
| } |
| |
| bool isInline = D.getDeclSpec().isInlineSpecified(); |
| FunctionDecl *NewFD; |
| if (D.getContext() == Declarator::MemberContext) { |
| // This is a C++ method declaration. |
| NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(CurContext), |
| D.getIdentifierLoc(), II, R, |
| (SC == FunctionDecl::Static), isInline, |
| LastDeclarator); |
| } else { |
| NewFD = FunctionDecl::Create(Context, CurContext, |
| D.getIdentifierLoc(), |
| II, R, SC, isInline, |
| LastDeclarator); |
| } |
| // Handle attributes. |
| ProcessDeclAttributes(NewFD, D); |
| |
| // Copy the parameter declarations from the declarator D to |
| // the function declaration NewFD, if they are available. |
| if (D.getNumTypeObjects() > 0 && |
| D.getTypeObject(0).Fun.hasPrototype) { |
| DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; |
| |
| // Create Decl objects for each parameter, adding them to the |
| // FunctionDecl. |
| llvm::SmallVector<ParmVarDecl*, 16> Params; |
| |
| // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs |
| // function that takes no arguments, not a function that takes a |
| // single void argument. |
| // We let through "const void" here because Sema::GetTypeForDeclarator |
| // already checks for that case. |
| if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 && |
| FTI.ArgInfo[0].Param && |
| ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) { |
| // empty arg list, don't push any params. |
| ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param; |
| |
| // In C++, the empty parameter-type-list must be spelled "void"; a |
| // typedef of void is not permitted. |
| if (getLangOptions().CPlusPlus && |
| Param->getType().getUnqualifiedType() != Context.VoidTy) { |
| Diag(Param->getLocation(), diag::ext_param_typedef_of_void); |
| } |
| |
| } else { |
| for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) |
| Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param); |
| } |
| |
| NewFD->setParams(&Params[0], Params.size()); |
| } |
| |
| // Merge the decl with the existing one if appropriate. Since C functions |
| // are in a flat namespace, make sure we consider decls in outer scopes. |
| if (PrevDecl && |
| (!getLangOptions().CPlusPlus || |
| IdResolver.isDeclInScope(PrevDecl, CurContext, S)) ) { |
| bool Redeclaration = false; |
| NewFD = MergeFunctionDecl(NewFD, PrevDecl, Redeclaration); |
| if (NewFD == 0) return 0; |
| if (Redeclaration) { |
| NewFD->setPreviousDeclaration(cast<FunctionDecl>(PrevDecl)); |
| } |
| } |
| New = NewFD; |
| |
| // In C++, check default arguments now that we have merged decls. |
| if (getLangOptions().CPlusPlus) |
| CheckCXXDefaultArguments(NewFD); |
| } else { |
| // Check that there are no default arguments (C++ only). |
| if (getLangOptions().CPlusPlus) |
| CheckExtraCXXDefaultArguments(D); |
| |
| if (R.getTypePtr()->isObjCInterfaceType()) { |
| Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object, |
| D.getIdentifier()->getName()); |
| InvalidDecl = true; |
| } |
| |
| VarDecl *NewVD; |
| VarDecl::StorageClass SC; |
| switch (D.getDeclSpec().getStorageClassSpec()) { |
| default: assert(0 && "Unknown storage class!"); |
| case DeclSpec::SCS_unspecified: SC = VarDecl::None; break; |
| case DeclSpec::SCS_extern: SC = VarDecl::Extern; break; |
| case DeclSpec::SCS_static: SC = VarDecl::Static; break; |
| case DeclSpec::SCS_auto: SC = VarDecl::Auto; break; |
| case DeclSpec::SCS_register: SC = VarDecl::Register; break; |
| case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break; |
| } |
| if (D.getContext() == Declarator::MemberContext) { |
| assert(SC == VarDecl::Static && "Invalid storage class for member!"); |
| // This is a static data member for a C++ class. |
| NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(CurContext), |
| D.getIdentifierLoc(), II, |
| R, LastDeclarator); |
| } else { |
| if (S->getFnParent() == 0) { |
| // C99 6.9p2: The storage-class specifiers auto and register shall not |
| // appear in the declaration specifiers in an external declaration. |
| if (SC == VarDecl::Auto || SC == VarDecl::Register) { |
| Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope, |
| R.getAsString()); |
| InvalidDecl = true; |
| } |
| NewVD = VarDecl::Create(Context, CurContext, D.getIdentifierLoc(), |
| II, R, SC, LastDeclarator); |
| } else { |
| NewVD = VarDecl::Create(Context, CurContext, D.getIdentifierLoc(), |
| II, R, SC, LastDeclarator); |
| } |
| } |
| // Handle attributes prior to checking for duplicates in MergeVarDecl |
| ProcessDeclAttributes(NewVD, D); |
| |
| // Emit an error if an address space was applied to decl with local storage. |
| // This includes arrays of objects with address space qualifiers, but not |
| // automatic variables that point to other address spaces. |
| // ISO/IEC TR 18037 S5.1.2 |
| if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) { |
| Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl); |
| InvalidDecl = true; |
| } |
| // Merge the decl with the existing one if appropriate. If the decl is |
| // in an outer scope, it isn't the same thing. |
| if (PrevDecl && IdResolver.isDeclInScope(PrevDecl, CurContext, S)) { |
| NewVD = MergeVarDecl(NewVD, PrevDecl); |
| if (NewVD == 0) return 0; |
| } |
| New = NewVD; |
| } |
| |
| // If this has an identifier, add it to the scope stack. |
| if (II) |
| PushOnScopeChains(New, S); |
| // If any semantic error occurred, mark the decl as invalid. |
| if (D.getInvalidType() || InvalidDecl) |
| New->setInvalidDecl(); |
| |
| return New; |
| } |
| |
| bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) { |
| switch (Init->getStmtClass()) { |
| default: |
| Diag(Init->getExprLoc(), |
| diag::err_init_element_not_constant, Init->getSourceRange()); |
| return true; |
| case Expr::ParenExprClass: { |
| const ParenExpr* PE = cast<ParenExpr>(Init); |
| return CheckAddressConstantExpressionLValue(PE->getSubExpr()); |
| } |
| case Expr::CompoundLiteralExprClass: |
| return cast<CompoundLiteralExpr>(Init)->isFileScope(); |
| case Expr::DeclRefExprClass: { |
| const Decl *D = cast<DeclRefExpr>(Init)->getDecl(); |
| if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { |
| if (VD->hasGlobalStorage()) |
| return false; |
| Diag(Init->getExprLoc(), |
| diag::err_init_element_not_constant, Init->getSourceRange()); |
| return true; |
| } |
| if (isa<FunctionDecl>(D)) |
| return false; |
| Diag(Init->getExprLoc(), |
| diag::err_init_element_not_constant, Init->getSourceRange()); |
| return true; |
| } |
| case Expr::MemberExprClass: { |
| const MemberExpr *M = cast<MemberExpr>(Init); |
| if (M->isArrow()) |
| return CheckAddressConstantExpression(M->getBase()); |
| return CheckAddressConstantExpressionLValue(M->getBase()); |
| } |
| case Expr::ArraySubscriptExprClass: { |
| // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)? |
| const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init); |
| return CheckAddressConstantExpression(ASE->getBase()) || |
| CheckArithmeticConstantExpression(ASE->getIdx()); |
| } |
| case Expr::StringLiteralClass: |
| case Expr::PreDefinedExprClass: |
| return false; |
| case Expr::UnaryOperatorClass: { |
| const UnaryOperator *Exp = cast<UnaryOperator>(Init); |
| |
| // C99 6.6p9 |
| if (Exp->getOpcode() == UnaryOperator::Deref) |
| return CheckAddressConstantExpression(Exp->getSubExpr()); |
| |
| Diag(Init->getExprLoc(), |
| diag::err_init_element_not_constant, Init->getSourceRange()); |
| return true; |
| } |
| } |
| } |
| |
| bool Sema::CheckAddressConstantExpression(const Expr* Init) { |
| switch (Init->getStmtClass()) { |
| default: |
| Diag(Init->getExprLoc(), |
| diag::err_init_element_not_constant, Init->getSourceRange()); |
| return true; |
| case Expr::ParenExprClass: { |
| const ParenExpr* PE = cast<ParenExpr>(Init); |
| return CheckAddressConstantExpression(PE->getSubExpr()); |
| } |
| case Expr::StringLiteralClass: |
| case Expr::ObjCStringLiteralClass: |
| return false; |
| case Expr::CallExprClass: { |
| const CallExpr *CE = cast<CallExpr>(Init); |
| if (CE->isBuiltinConstantExpr()) |
| return false; |
| Diag(Init->getExprLoc(), |
| diag::err_init_element_not_constant, Init->getSourceRange()); |
| return true; |
| } |
| case Expr::UnaryOperatorClass: { |
| const UnaryOperator *Exp = cast<UnaryOperator>(Init); |
| |
| // C99 6.6p9 |
| if (Exp->getOpcode() == UnaryOperator::AddrOf) |
| return CheckAddressConstantExpressionLValue(Exp->getSubExpr()); |
| |
| if (Exp->getOpcode() == UnaryOperator::Extension) |
| return CheckAddressConstantExpression(Exp->getSubExpr()); |
| |
| Diag(Init->getExprLoc(), |
| diag::err_init_element_not_constant, Init->getSourceRange()); |
| return true; |
| } |
| case Expr::BinaryOperatorClass: { |
| // FIXME: Should we pedwarn for expressions like "a + 1 + 2"? |
| const BinaryOperator *Exp = cast<BinaryOperator>(Init); |
| |
| Expr *PExp = Exp->getLHS(); |
| Expr *IExp = Exp->getRHS(); |
| if (IExp->getType()->isPointerType()) |
| std::swap(PExp, IExp); |
| |
| // FIXME: Should we pedwarn if IExp isn't an integer constant expression? |
| return CheckAddressConstantExpression(PExp) || |
| CheckArithmeticConstantExpression(IExp); |
| } |
| case Expr::ImplicitCastExprClass: { |
| const Expr* SubExpr = cast<ImplicitCastExpr>(Init)->getSubExpr(); |
| |
| // Check for implicit promotion |
| if (SubExpr->getType()->isFunctionType() || |
| SubExpr->getType()->isArrayType()) |
| return CheckAddressConstantExpressionLValue(SubExpr); |
| |
| // Check for pointer->pointer cast |
| if (SubExpr->getType()->isPointerType()) |
| return CheckAddressConstantExpression(SubExpr); |
| |
| if (SubExpr->getType()->isArithmeticType()) |
| return CheckArithmeticConstantExpression(SubExpr); |
| |
| Diag(Init->getExprLoc(), |
| diag::err_init_element_not_constant, Init->getSourceRange()); |
| return true; |
| } |
| case Expr::CastExprClass: { |
| const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr(); |
| |
| // Check for pointer->pointer cast |
| if (SubExpr->getType()->isPointerType()) |
| return CheckAddressConstantExpression(SubExpr); |
| |
| // FIXME: Should we pedwarn for (int*)(0+0)? |
| if (SubExpr->getType()->isArithmeticType()) |
| return CheckArithmeticConstantExpression(SubExpr); |
| |
| Diag(Init->getExprLoc(), |
| diag::err_init_element_not_constant, Init->getSourceRange()); |
| return true; |
| } |
| case Expr::ConditionalOperatorClass: { |
| // FIXME: Should we pedwarn here? |
| const ConditionalOperator *Exp = cast<ConditionalOperator>(Init); |
| if (!Exp->getCond()->getType()->isArithmeticType()) { |
| Diag(Init->getExprLoc(), |
| diag::err_init_element_not_constant, Init->getSourceRange()); |
| return true; |
| } |
| if (CheckArithmeticConstantExpression(Exp->getCond())) |
| return true; |
| if (Exp->getLHS() && |
| CheckAddressConstantExpression(Exp->getLHS())) |
| return true; |
| return CheckAddressConstantExpression(Exp->getRHS()); |
| } |
| case Expr::AddrLabelExprClass: |
| return false; |
| } |
| } |
| |
| static const Expr* FindExpressionBaseAddress(const Expr* E); |
| |
| static const Expr* FindExpressionBaseAddressLValue(const Expr* E) { |
| switch (E->getStmtClass()) { |
| default: |
| return E; |
| case Expr::ParenExprClass: { |
| const ParenExpr* PE = cast<ParenExpr>(E); |
| return FindExpressionBaseAddressLValue(PE->getSubExpr()); |
| } |
| case Expr::MemberExprClass: { |
| const MemberExpr *M = cast<MemberExpr>(E); |
| if (M->isArrow()) |
| return FindExpressionBaseAddress(M->getBase()); |
| return FindExpressionBaseAddressLValue(M->getBase()); |
| } |
| case Expr::ArraySubscriptExprClass: { |
| const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E); |
| return FindExpressionBaseAddress(ASE->getBase()); |
| } |
| case Expr::UnaryOperatorClass: { |
| const UnaryOperator *Exp = cast<UnaryOperator>(E); |
| |
| if (Exp->getOpcode() == UnaryOperator::Deref) |
| return FindExpressionBaseAddress(Exp->getSubExpr()); |
| |
| return E; |
| } |
| } |
| } |
| |
| static const Expr* FindExpressionBaseAddress(const Expr* E) { |
| switch (E->getStmtClass()) { |
| default: |
| return E; |
| case Expr::ParenExprClass: { |
| const ParenExpr* PE = cast<ParenExpr>(E); |
| return FindExpressionBaseAddress(PE->getSubExpr()); |
| } |
| case Expr::UnaryOperatorClass: { |
| const UnaryOperator *Exp = cast<UnaryOperator>(E); |
| |
| // C99 6.6p9 |
| if (Exp->getOpcode() == UnaryOperator::AddrOf) |
| return FindExpressionBaseAddressLValue(Exp->getSubExpr()); |
| |
| if (Exp->getOpcode() == UnaryOperator::Extension) |
| return FindExpressionBaseAddress(Exp->getSubExpr()); |
| |
| return E; |
| } |
| case Expr::BinaryOperatorClass: { |
| const BinaryOperator *Exp = cast<BinaryOperator>(E); |
| |
| Expr *PExp = Exp->getLHS(); |
| Expr *IExp = Exp->getRHS(); |
| if (IExp->getType()->isPointerType()) |
| std::swap(PExp, IExp); |
| |
| return FindExpressionBaseAddress(PExp); |
| } |
| case Expr::ImplicitCastExprClass: { |
| const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr(); |
| |
| // Check for implicit promotion |
| if (SubExpr->getType()->isFunctionType() || |
| SubExpr->getType()->isArrayType()) |
| return FindExpressionBaseAddressLValue(SubExpr); |
| |
| // Check for pointer->pointer cast |
| if (SubExpr->getType()->isPointerType()) |
| return FindExpressionBaseAddress(SubExpr); |
| |
| // We assume that we have an arithmetic expression here; |
| // if we don't, we'll figure it out later |
| return 0; |
| } |
| case Expr::CastExprClass: { |
| const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr(); |
| |
| // Check for pointer->pointer cast |
| if (SubExpr->getType()->isPointerType()) |
| return FindExpressionBaseAddress(SubExpr); |
| |
| // We assume that we have an arithmetic expression here; |
| // if we don't, we'll figure it out later |
| return 0; |
| } |
| } |
| } |
| |
| bool Sema::CheckArithmeticConstantExpression(const Expr* Init) { |
| switch (Init->getStmtClass()) { |
| default: |
| Diag(Init->getExprLoc(), |
| diag::err_init_element_not_constant, Init->getSourceRange()); |
| return true; |
| case Expr::ParenExprClass: { |
| const ParenExpr* PE = cast<ParenExpr>(Init); |
| return CheckArithmeticConstantExpression(PE->getSubExpr()); |
| } |
| case Expr::FloatingLiteralClass: |
| case Expr::IntegerLiteralClass: |
| case Expr::CharacterLiteralClass: |
| case Expr::ImaginaryLiteralClass: |
| case Expr::TypesCompatibleExprClass: |
| case Expr::CXXBoolLiteralExprClass: |
| return false; |
| case Expr::CallExprClass: { |
| const CallExpr *CE = cast<CallExpr>(Init); |
| if (CE->isBuiltinConstantExpr()) |
| return false; |
| Diag(Init->getExprLoc(), |
| diag::err_init_element_not_constant, Init->getSourceRange()); |
| return true; |
| } |
| case Expr::DeclRefExprClass: { |
| const Decl *D = cast<DeclRefExpr>(Init)->getDecl(); |
| if (isa<EnumConstantDecl>(D)) |
| return false; |
| Diag(Init->getExprLoc(), |
| diag::err_init_element_not_constant, Init->getSourceRange()); |
| return true; |
| } |
| case Expr::CompoundLiteralExprClass: |
| // Allow "(vector type){2,4}"; normal C constraints don't allow this, |
| // but vectors are allowed to be magic. |
| if (Init->getType()->isVectorType()) |
| return false; |
| Diag(Init->getExprLoc(), |
| diag::err_init_element_not_constant, Init->getSourceRange()); |
| return true; |
| case Expr::UnaryOperatorClass: { |
| const UnaryOperator *Exp = cast<UnaryOperator>(Init); |
| |
| switch (Exp->getOpcode()) { |
| // Address, indirect, pre/post inc/dec, etc are not valid constant exprs. |
| // See C99 6.6p3. |
| default: |
| Diag(Init->getExprLoc(), |
| diag::err_init_element_not_constant, Init->getSourceRange()); |
| return true; |
| case UnaryOperator::SizeOf: |
| case UnaryOperator::AlignOf: |
| case UnaryOperator::OffsetOf: |
| // sizeof(E) is a constantexpr if and only if E is not evaluted. |
| // See C99 6.5.3.4p2 and 6.6p3. |
| if (Exp->getSubExpr()->getType()->isConstantSizeType()) |
| return false; |
| Diag(Init->getExprLoc(), |
| diag::err_init_element_not_constant, Init->getSourceRange()); |
| return true; |
| case UnaryOperator::Extension: |
| case UnaryOperator::LNot: |
| case UnaryOperator::Plus: |
| case UnaryOperator::Minus: |
| case UnaryOperator::Not: |
| return CheckArithmeticConstantExpression(Exp->getSubExpr()); |
| } |
| } |
| case Expr::SizeOfAlignOfTypeExprClass: { |
| const SizeOfAlignOfTypeExpr *Exp = cast<SizeOfAlignOfTypeExpr>(Init); |
| // Special check for void types, which are allowed as an extension |
| if (Exp->getArgumentType()->isVoidType()) |
| return false; |
| // alignof always evaluates to a constant. |
| // FIXME: is sizeof(int[3.0]) a constant expression? |
| if (Exp->isSizeOf() && !Exp->getArgumentType()->isConstantSizeType()) { |
| Diag(Init->getExprLoc(), |
| diag::err_init_element_not_constant, Init->getSourceRange()); |
| return true; |
| } |
| return false; |
| } |
| case Expr::BinaryOperatorClass: { |
| const BinaryOperator *Exp = cast<BinaryOperator>(Init); |
| |
| if (Exp->getLHS()->getType()->isArithmeticType() && |
| Exp->getRHS()->getType()->isArithmeticType()) { |
| return CheckArithmeticConstantExpression(Exp->getLHS()) || |
| CheckArithmeticConstantExpression(Exp->getRHS()); |
| } |
| |
| if (Exp->getLHS()->getType()->isPointerType() && |
| Exp->getRHS()->getType()->isPointerType()) { |
| const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS()); |
| const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS()); |
| |
| // Only allow a null (constant integer) base; we could |
| // allow some additional cases if necessary, but this |
| // is sufficient to cover offsetof-like constructs. |
| if (!LHSBase && !RHSBase) { |
| return CheckAddressConstantExpression(Exp->getLHS()) || |
| CheckAddressConstantExpression(Exp->getRHS()); |
| } |
| } |
| |
| Diag(Init->getExprLoc(), |
| diag::err_init_element_not_constant, Init->getSourceRange()); |
| return true; |
| } |
| case Expr::ImplicitCastExprClass: |
| case Expr::CastExprClass: { |
| const Expr *SubExpr; |
| if (const CastExpr *C = dyn_cast<CastExpr>(Init)) { |
| SubExpr = C->getSubExpr(); |
| } else { |
| SubExpr = cast<ImplicitCastExpr>(Init)->getSubExpr(); |
| } |
| |
| if (SubExpr->getType()->isArithmeticType()) |
| return CheckArithmeticConstantExpression(SubExpr); |
| |
| Diag(Init->getExprLoc(), |
| diag::err_init_element_not_constant, Init->getSourceRange()); |
| return true; |
| } |
| case Expr::ConditionalOperatorClass: { |
| const ConditionalOperator *Exp = cast<ConditionalOperator>(Init); |
| if (CheckArithmeticConstantExpression(Exp->getCond())) |
| return true; |
| if (Exp->getLHS() && |
| CheckArithmeticConstantExpression(Exp->getLHS())) |
| return true; |
| return CheckArithmeticConstantExpression(Exp->getRHS()); |
| } |
| } |
| } |
| |
| bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) { |
| Init = Init->IgnoreParens(); |
| |
| // Look through CXXDefaultArgExprs; they have no meaning in this context. |
| if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init)) |
| return CheckForConstantInitializer(DAE->getExpr(), DclT); |
| |
| if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init)) |
| return CheckForConstantInitializer(e->getInitializer(), DclT); |
| |
| if (Init->getType()->isReferenceType()) { |
| // FIXME: Work out how the heck reference types work |
| return false; |
| #if 0 |
| // A reference is constant if the address of the expression |
| // is constant |
| // We look through initlists here to simplify |
| // CheckAddressConstantExpressionLValue. |
| if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) { |
| assert(Exp->getNumInits() > 0 && |
| "Refernce initializer cannot be empty"); |
| Init = Exp->getInit(0); |
| } |
| return CheckAddressConstantExpressionLValue(Init); |
| #endif |
| } |
| |
| if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) { |
| unsigned numInits = Exp->getNumInits(); |
| for (unsigned i = 0; i < numInits; i++) { |
| // FIXME: Need to get the type of the declaration for C++, |
| // because it could be a reference? |
| if (CheckForConstantInitializer(Exp->getInit(i), |
| Exp->getInit(i)->getType())) |
| return true; |
| } |
| return false; |
| } |
| |
| if (Init->isNullPointerConstant(Context)) |
| return false; |
| if (Init->getType()->isArithmeticType()) { |
| QualType InitTy = Init->getType().getCanonicalType().getUnqualifiedType(); |
| if (InitTy == Context.BoolTy) { |
| // Special handling for pointers implicitly cast to bool; |
| // (e.g. "_Bool rr = &rr;"). This is only legal at the top level. |
| if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) { |
| Expr* SubE = ICE->getSubExpr(); |
| if (SubE->getType()->isPointerType() || |
| SubE->getType()->isArrayType() || |
| SubE->getType()->isFunctionType()) { |
| return CheckAddressConstantExpression(Init); |
| } |
| } |
| } else if (InitTy->isIntegralType()) { |
| Expr* SubE = 0; |
| if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) |
| SubE = ICE->getSubExpr(); |
| else if (CastExpr* CE = dyn_cast<CastExpr>(Init)) |
| SubE = CE->getSubExpr(); |
| // Special check for pointer cast to int; we allow as an extension |
| // an address constant cast to an integer if the integer |
| // is of an appropriate width (this sort of code is apparently used |
| // in some places). |
| // FIXME: Add pedwarn? |
| // FIXME: Don't allow bitfields here! Need the FieldDecl for that. |
| if (SubE && (SubE->getType()->isPointerType() || |
| SubE->getType()->isArrayType() || |
| SubE->getType()->isFunctionType())) { |
| unsigned IntWidth = Context.getTypeSize(Init->getType()); |
| unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy); |
| if (IntWidth >= PointerWidth) |
| return CheckAddressConstantExpression(Init); |
| } |
| } |
| |
| return CheckArithmeticConstantExpression(Init); |
| } |
| |
| if (Init->getType()->isPointerType()) |
| return CheckAddressConstantExpression(Init); |
| |
| // An array type at the top level that isn't an init-list must |
| // be a string literal |
| if (Init->getType()->isArrayType()) |
| return false; |
| |
| Diag(Init->getExprLoc(), diag::err_init_element_not_constant, |
| Init->getSourceRange()); |
| return true; |
| } |
| |
| void Sema::AddInitializerToDecl(DeclTy *dcl, ExprTy *init) { |
| Decl *RealDecl = static_cast<Decl *>(dcl); |
| Expr *Init = static_cast<Expr *>(init); |
| assert(Init && "missing initializer"); |
| |
| // If there is no declaration, there was an error parsing it. Just ignore |
| // the initializer. |
| if (RealDecl == 0) { |
| delete Init; |
| return; |
| } |
| |
| VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl); |
| if (!VDecl) { |
| Diag(dyn_cast<ScopedDecl>(RealDecl)->getLocation(), |
| diag::err_illegal_initializer); |
| RealDecl->setInvalidDecl(); |
| return; |
| } |
| // Get the decls type and save a reference for later, since |
| // CheckInitializerTypes may change it. |
| QualType DclT = VDecl->getType(), SavT = DclT; |
| if (VDecl->isBlockVarDecl()) { |
| VarDecl::StorageClass SC = VDecl->getStorageClass(); |
| if (SC == VarDecl::Extern) { // C99 6.7.8p5 |
| Diag(VDecl->getLocation(), diag::err_block_extern_cant_init); |
| VDecl->setInvalidDecl(); |
| } else if (!VDecl->isInvalidDecl()) { |
| if (CheckInitializerTypes(Init, DclT)) |
| VDecl->setInvalidDecl(); |
| if (SC == VarDecl::Static) // C99 6.7.8p4. |
| CheckForConstantInitializer(Init, DclT); |
| } |
| } else if (VDecl->isFileVarDecl()) { |
| if (VDecl->getStorageClass() == VarDecl::Extern) |
| Diag(VDecl->getLocation(), diag::warn_extern_init); |
| if (!VDecl->isInvalidDecl()) |
| if (CheckInitializerTypes(Init, DclT)) |
| VDecl->setInvalidDecl(); |
| |
| // C99 6.7.8p4. All file scoped initializers need to be constant. |
| CheckForConstantInitializer(Init, DclT); |
| } |
| // If the type changed, it means we had an incomplete type that was |
| // completed by the initializer. For example: |
| // int ary[] = { 1, 3, 5 }; |
| // "ary" transitions from a VariableArrayType to a ConstantArrayType. |
| if (!VDecl->isInvalidDecl() && (DclT != SavT)) { |
| VDecl->setType(DclT); |
| Init->setType(DclT); |
| } |
| |
| // Attach the initializer to the decl. |
| VDecl->setInit(Init); |
| return; |
| } |
| |
| /// The declarators are chained together backwards, reverse the list. |
| Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) { |
| // Often we have single declarators, handle them quickly. |
| Decl *GroupDecl = static_cast<Decl*>(group); |
| if (GroupDecl == 0) |
| return 0; |
| |
| ScopedDecl *Group = dyn_cast<ScopedDecl>(GroupDecl); |
| ScopedDecl *NewGroup = 0; |
| if (Group->getNextDeclarator() == 0) |
| NewGroup = Group; |
| else { // reverse the list. |
| while (Group) { |
| ScopedDecl *Next = Group->getNextDeclarator(); |
| Group->setNextDeclarator(NewGroup); |
| NewGroup = Group; |
| Group = Next; |
| } |
| } |
| // Perform semantic analysis that depends on having fully processed both |
| // the declarator and initializer. |
| for (ScopedDecl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) { |
| VarDecl *IDecl = dyn_cast<VarDecl>(ID); |
| if (!IDecl) |
| continue; |
| QualType T = IDecl->getType(); |
| |
| // C99 6.7.5.2p2: If an identifier is declared to be an object with |
| // static storage duration, it shall not have a variable length array. |
| if ((IDecl->isFileVarDecl() || IDecl->isBlockVarDecl()) && |
| IDecl->getStorageClass() == VarDecl::Static) { |
| if (T->getAsVariableArrayType()) { |
| Diag(IDecl->getLocation(), diag::err_typecheck_illegal_vla); |
| IDecl->setInvalidDecl(); |
| } |
| } |
| // Block scope. C99 6.7p7: If an identifier for an object is declared with |
| // no linkage (C99 6.2.2p6), the type for the object shall be complete... |
| if (IDecl->isBlockVarDecl() && |
| IDecl->getStorageClass() != VarDecl::Extern) { |
| if (T->isIncompleteType() && !IDecl->isInvalidDecl()) { |
| Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type, |
| T.getAsString()); |
| IDecl->setInvalidDecl(); |
| } |
| } |
| // File scope. C99 6.9.2p2: A declaration of an identifier for and |
| // object that has file scope without an initializer, and without a |
| // storage-class specifier or with the storage-class specifier "static", |
| // constitutes a tentative definition. Note: A tentative definition with |
| // external linkage is valid (C99 6.2.2p5). |
| if (IDecl && !IDecl->getInit() && |
| (IDecl->getStorageClass() == VarDecl::Static || |
| IDecl->getStorageClass() == VarDecl::None)) { |
| if (T->isIncompleteArrayType()) { |
| // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete |
| // array to be completed. Don't issue a diagnostic. |
| } else if (T->isIncompleteType() && !IDecl->isInvalidDecl()) { |
| // C99 6.9.2p3: If the declaration of an identifier for an object is |
| // a tentative definition and has internal linkage (C99 6.2.2p3), the |
| // declared type shall not be an incomplete type. |
| Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type, |
| T.getAsString()); |
| IDecl->setInvalidDecl(); |
| } |
| } |
| } |
| return NewGroup; |
| } |
| |
| /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator() |
| /// to introduce parameters into function prototype scope. |
| Sema::DeclTy * |
| Sema::ActOnParamDeclarator(Scope *S, Declarator &D) { |
| const DeclSpec &DS = D.getDeclSpec(); |
| |
| // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'. |
| if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified && |
| DS.getStorageClassSpec() != DeclSpec::SCS_register) { |
| Diag(DS.getStorageClassSpecLoc(), |
| diag::err_invalid_storage_class_in_func_decl); |
| D.getMutableDeclSpec().ClearStorageClassSpecs(); |
| } |
| if (DS.isThreadSpecified()) { |
| Diag(DS.getThreadSpecLoc(), |
| diag::err_invalid_storage_class_in_func_decl); |
| D.getMutableDeclSpec().ClearStorageClassSpecs(); |
| } |
| |
| // Check that there are no default arguments inside the type of this |
| // parameter (C++ only). |
| if (getLangOptions().CPlusPlus) |
| CheckExtraCXXDefaultArguments(D); |
| |
| // In this context, we *do not* check D.getInvalidType(). If the declarator |
| // type was invalid, GetTypeForDeclarator() still returns a "valid" type, |
| // though it will not reflect the user specified type. |
| QualType parmDeclType = GetTypeForDeclarator(D, S); |
| |
| assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type"); |
| |
| // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope. |
| // Can this happen for params? We already checked that they don't conflict |
| // among each other. Here they can only shadow globals, which is ok. |
| IdentifierInfo *II = D.getIdentifier(); |
| if (Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S)) { |
| if (S->isDeclScope(PrevDecl)) { |
| Diag(D.getIdentifierLoc(), diag::err_param_redefinition, |
| dyn_cast<NamedDecl>(PrevDecl)->getName()); |
| |
| // Recover by removing the name |
| II = 0; |
| D.SetIdentifier(0, D.getIdentifierLoc()); |
| } |
| } |
| |
| // Perform the default function/array conversion (C99 6.7.5.3p[7,8]). |
| // Doing the promotion here has a win and a loss. The win is the type for |
| // both Decl's and DeclRefExpr's will match (a convenient invariant for the |
| // code generator). The loss is the orginal type isn't preserved. For example: |
| // |
| // void func(int parmvardecl[5]) { // convert "int [5]" to "int *" |
| // int blockvardecl[5]; |
| // sizeof(parmvardecl); // size == 4 |
| // sizeof(blockvardecl); // size == 20 |
| // } |
| // |
| // For expressions, all implicit conversions are captured using the |
| // ImplicitCastExpr AST node (we have no such mechanism for Decl's). |
| // |
| // FIXME: If a source translation tool needs to see the original type, then |
| // we need to consider storing both types (in ParmVarDecl)... |
| // |
| if (parmDeclType->isArrayType()) { |
| // int x[restrict 4] -> int *restrict |
| parmDeclType = Context.getArrayDecayedType(parmDeclType); |
| } else if (parmDeclType->isFunctionType()) |
| parmDeclType = Context.getPointerType(parmDeclType); |
| |
| ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext, |
| D.getIdentifierLoc(), II, |
| parmDeclType, VarDecl::None, |
| 0, 0); |
| |
| if (D.getInvalidType()) |
| New->setInvalidDecl(); |
| |
| if (II) |
| PushOnScopeChains(New, S); |
| |
| ProcessDeclAttributes(New, D); |
| return New; |
| |
| } |
| |
| Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) { |
| assert(getCurFunctionDecl() == 0 && "Function parsing confused"); |
| assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function && |
| "Not a function declarator!"); |
| DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; |
| |
| // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared' |
| // for a K&R function. |
| if (!FTI.hasPrototype) { |
| for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) { |
| if (FTI.ArgInfo[i].Param == 0) { |
| Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared, |
| FTI.ArgInfo[i].Ident->getName()); |
| // Implicitly declare the argument as type 'int' for lack of a better |
| // type. |
| DeclSpec DS; |
| const char* PrevSpec; // unused |
| DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc, |
| PrevSpec); |
| Declarator ParamD(DS, Declarator::KNRTypeListContext); |
| ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc); |
| FTI.ArgInfo[i].Param = ActOnParamDeclarator(FnBodyScope, ParamD); |
| } |
| } |
| |
| // Since this is a function definition, act as though we have information |
| // about the arguments. |
| if (FTI.NumArgs) |
| FTI.hasPrototype = true; |
| } else { |
| // FIXME: Diagnose arguments without names in C. |
| } |
| |
| Scope *GlobalScope = FnBodyScope->getParent(); |
| |
| // See if this is a redefinition. |
| Decl *PrevDcl = LookupDecl(D.getIdentifier(), Decl::IDNS_Ordinary, |
| GlobalScope); |
| if (PrevDcl && IdResolver.isDeclInScope(PrevDcl, CurContext)) { |
| if (FunctionDecl *FD = dyn_cast<FunctionDecl>(PrevDcl)) { |
| const FunctionDecl *Definition; |
| if (FD->getBody(Definition)) { |
| Diag(D.getIdentifierLoc(), diag::err_redefinition, |
| D.getIdentifier()->getName()); |
| Diag(Definition->getLocation(), diag::err_previous_definition); |
| } |
| } |
| } |
| |
| return ActOnStartOfFunctionDef(FnBodyScope, |
| ActOnDeclarator(GlobalScope, D, 0)); |
| } |
| |
| Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) { |
| Decl *decl = static_cast<Decl*>(D); |
| FunctionDecl *FD = cast<FunctionDecl>(decl); |
| PushDeclContext(FD); |
| |
| // Check the validity of our function parameters |
| CheckParmsForFunctionDef(FD); |
| |
| // Introduce our parameters into the function scope |
| for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) { |
| ParmVarDecl *Param = FD->getParamDecl(p); |
| // If this has an identifier, add it to the scope stack. |
| if (Param->getIdentifier()) |
| PushOnScopeChains(Param, FnBodyScope); |
| } |
| |
| return FD; |
| } |
| |
| Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtTy *Body) { |
| Decl *dcl = static_cast<Decl *>(D); |
| if (FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) { |
| FD->setBody((Stmt*)Body); |
| assert(FD == getCurFunctionDecl() && "Function parsing confused"); |
| } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(dcl)) { |
| MD->setBody((Stmt*)Body); |
| } |
| PopDeclContext(); |
| // Verify and clean out per-function state. |
| |
| // Check goto/label use. |
| for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator |
| I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) { |
| // Verify that we have no forward references left. If so, there was a goto |
| // or address of a label taken, but no definition of it. Label fwd |
| // definitions are indicated with a null substmt. |
| if (I->second->getSubStmt() == 0) { |
| LabelStmt *L = I->second; |
| // Emit error. |
| Diag(L->getIdentLoc(), diag::err_undeclared_label_use, L->getName()); |
| |
| // At this point, we have gotos that use the bogus label. Stitch it into |
| // the function body so that they aren't leaked and that the AST is well |
| // formed. |
| if (Body) { |
| L->setSubStmt(new NullStmt(L->getIdentLoc())); |
| cast<CompoundStmt>((Stmt*)Body)->push_back(L); |
| } else { |
| // The whole function wasn't parsed correctly, just delete this. |
| delete L; |
| } |
| } |
| } |
| LabelMap.clear(); |
| |
| return D; |
| } |
| |
| /// ImplicitlyDefineFunction - An undeclared identifier was used in a function |
| /// call, forming a call to an implicitly defined function (per C99 6.5.1p2). |
| ScopedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc, |
| IdentifierInfo &II, Scope *S) { |
| // Extension in C99. Legal in C90, but warn about it. |
| if (getLangOptions().C99) |
| Diag(Loc, diag::ext_implicit_function_decl, II.getName()); |
| else |
| Diag(Loc, diag::warn_implicit_function_decl, II.getName()); |
| |
| // FIXME: handle stuff like: |
| // void foo() { extern float X(); } |
| // void bar() { X(); } <-- implicit decl for X in another scope. |
| |
| // Set a Declarator for the implicit definition: int foo(); |
| const char *Dummy; |
| DeclSpec DS; |
| bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy); |
| Error = Error; // Silence warning. |
| assert(!Error && "Error setting up implicit decl!"); |
| Declarator D(DS, Declarator::BlockContext); |
| D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, Loc)); |
| D.SetIdentifier(&II, Loc); |
| |
| // Insert this function into translation-unit scope. |
| |
| DeclContext *PrevDC = CurContext; |
| CurContext = Context.getTranslationUnitDecl(); |
| |
| FunctionDecl *FD = |
| dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0))); |
| FD->setImplicit(); |
| |
| CurContext = PrevDC; |
| |
| return FD; |
| } |
| |
| |
| TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T, |
| ScopedDecl *LastDeclarator) { |
| assert(D.getIdentifier() && "Wrong callback for declspec without declarator"); |
| assert(!T.isNull() && "GetTypeForDeclarator() returned null type"); |
| |
| // Scope manipulation handled by caller. |
| TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext, |
| D.getIdentifierLoc(), |
| D.getIdentifier(), |
| T, LastDeclarator); |
| if (D.getInvalidType()) |
| NewTD->setInvalidDecl(); |
| return NewTD; |
| } |
| |
| /// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'. In the |
| /// former case, Name will be non-null. In the later case, Name will be null. |
| /// TagType indicates what kind of tag this is. TK indicates whether this is a |
| /// reference/declaration/definition of a tag. |
| Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagType, TagKind TK, |
| SourceLocation KWLoc, IdentifierInfo *Name, |
| SourceLocation NameLoc, AttributeList *Attr) { |
| // If this is a use of an existing tag, it must have a name. |
| assert((Name != 0 || TK == TK_Definition) && |
| "Nameless record must be a definition!"); |
| |
| TagDecl::TagKind Kind; |
| switch (TagType) { |
| default: assert(0 && "Unknown tag type!"); |
| case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break; |
| case DeclSpec::TST_union: Kind = TagDecl::TK_union; break; |
| case DeclSpec::TST_class: Kind = TagDecl::TK_class; break; |
| case DeclSpec::TST_enum: Kind = TagDecl::TK_enum; break; |
| } |
| |
| // If this is a named struct, check to see if there was a previous forward |
| // declaration or definition. |
| // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up. |
| if (ScopedDecl *PrevDecl = |
| dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag, S))) { |
| |
| assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) && |
| "unexpected Decl type"); |
| if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) { |
| // If this is a use of a previous tag, or if the tag is already declared |
| // in the same scope (so that the definition/declaration completes or |
| // rementions the tag), reuse the decl. |
| if (TK == TK_Reference || |
| IdResolver.isDeclInScope(PrevDecl, CurContext, S)) { |
| // Make sure that this wasn't declared as an enum and now used as a |
| // struct or something similar. |
| if (PrevTagDecl->getTagKind() != Kind) { |
| Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName()); |
| Diag(PrevDecl->getLocation(), diag::err_previous_use); |
| // Recover by making this an anonymous redefinition. |
| Name = 0; |
| PrevDecl = 0; |
| } else { |
| // If this is a use or a forward declaration, we're good. |
| if (TK != TK_Definition) |
| return PrevDecl; |
| |
| // Diagnose attempts to redefine a tag. |
| if (PrevTagDecl->isDefinition()) { |
| Diag(NameLoc, diag::err_redefinition, Name->getName()); |
| Diag(PrevDecl->getLocation(), diag::err_previous_definition); |
| // If this is a redefinition, recover by making this struct be |
| // anonymous, which will make any later references get the previous |
| // definition. |
| Name = 0; |
| } else { |
| // Okay, this is definition of a previously declared or referenced |
| // tag. Move the location of the decl to be the definition site. |
| PrevDecl->setLocation(NameLoc); |
| return PrevDecl; |
| } |
| } |
| } |
| // If we get here, this is a definition of a new struct type in a nested |
| // scope, e.g. "struct foo; void bar() { struct foo; }", just create a new |
| // type. |
| } else { |
| // The tag name clashes with a namespace name, issue an error and recover |
| // by making this tag be anonymous. |
| Diag(NameLoc, diag::err_redefinition_different_kind, Name->getName()); |
| Diag(PrevDecl->getLocation(), diag::err_previous_definition); |
| Name = 0; |
| } |
| } |
| |
| // If there is an identifier, use the location of the identifier as the |
| // location of the decl, otherwise use the location of the struct/union |
| // keyword. |
| SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc; |
| |
| // Otherwise, if this is the first time we've seen this tag, create the decl. |
| TagDecl *New; |
| if (Kind == TagDecl::TK_enum) { |
| // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.: |
| // enum X { A, B, C } D; D should chain to X. |
| New = EnumDecl::Create(Context, CurContext, Loc, Name, 0); |
| // If this is an undefined enum, warn. |
| if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum); |
| } else { |
| // struct/union/class |
| |
| // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.: |
| // struct X { int A; } D; D should chain to X. |
| if (getLangOptions().CPlusPlus) |
| // FIXME: Look for a way to use RecordDecl for simple structs. |
| New = CXXRecordDecl::Create(Context, Kind, CurContext, Loc, Name, 0); |
| else |
| New = RecordDecl::Create(Context, Kind, CurContext, Loc, Name, 0); |
| } |
| |
| // If this has an identifier, add it to the scope stack. |
| if (Name) { |
| // The scope passed in may not be a decl scope. Zip up the scope tree until |
| // we find one that is. |
| while ((S->getFlags() & Scope::DeclScope) == 0) |
| S = S->getParent(); |
| |
| // Add it to the decl chain. |
| PushOnScopeChains(New, S); |
| } |
| |
| if (Attr) |
| ProcessDeclAttributeList(New, Attr); |
| return New; |
| } |
| |
| /// Collect the instance variables declared in an Objective-C object. Used in |
| /// the creation of structures from objects using the @defs directive. |
| static void CollectIvars(ObjCInterfaceDecl *Class, |
| llvm::SmallVector<Sema::DeclTy*, 16> &ivars) { |
| if (Class->getSuperClass()) |
| CollectIvars(Class->getSuperClass(), ivars); |
| ivars.append(Class->ivar_begin(), Class->ivar_end()); |
| } |
| |
| /// Called whenever @defs(ClassName) is encountered in the source. Inserts the |
| /// instance variables of ClassName into Decls. |
| void Sema::ActOnDefs(Scope *S, SourceLocation DeclStart, |
| IdentifierInfo *ClassName, |
| llvm::SmallVector<DeclTy*, 16> &Decls) { |
| // Check that ClassName is a valid class |
| ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName); |
| if (!Class) { |
| Diag(DeclStart, diag::err_undef_interface, ClassName->getName()); |
| return; |
| } |
| // Collect the instance variables |
| CollectIvars(Class, Decls); |
| } |
| |
| QualType Sema::TryFixInvalidVariablyModifiedType(QualType T) { |
| // This method tries to turn a variable array into a constant |
| // array even when the size isn't an ICE. This is necessary |
| // for compatibility with code that depends on gcc's buggy |
| // constant expression folding, like struct {char x[(int)(char*)2];} |
| if (const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T)) { |
| APValue Result; |
| if (VLATy->getSizeExpr() && |
| VLATy->getSizeExpr()->tryEvaluate(Result, Context) && Result.isSInt() && |
| Result.getSInt() > llvm::APSInt(Result.getSInt().getBitWidth(), |
| Result.getSInt().isUnsigned())) { |
| return Context.getConstantArrayType(VLATy->getElementType(), |
| Result.getSInt(), |
| ArrayType::Normal, 0); |
| } |
| } |
| return QualType(); |
| } |
| |
| /// ActOnField - Each field of a struct/union/class is passed into this in order |
| /// to create a FieldDecl object for it. |
| Sema::DeclTy *Sema::ActOnField(Scope *S, |
| SourceLocation DeclStart, |
| Declarator &D, ExprTy *BitfieldWidth) { |
| IdentifierInfo *II = D.getIdentifier(); |
| Expr *BitWidth = (Expr*)BitfieldWidth; |
| SourceLocation Loc = DeclStart; |
| if (II) Loc = D.getIdentifierLoc(); |
| |
| // FIXME: Unnamed fields can be handled in various different ways, for |
| // example, unnamed unions inject all members into the struct namespace! |
| |
| |
| if (BitWidth) { |
| // TODO: Validate. |
| //printf("WARNING: BITFIELDS IGNORED!\n"); |
| |
| // 6.7.2.1p3 |
| // 6.7.2.1p4 |
| |
| } else { |
| // Not a bitfield. |
| |
| // validate II. |
| |
| } |
| |
| QualType T = GetTypeForDeclarator(D, S); |
| assert(!T.isNull() && "GetTypeForDeclarator() returned null type"); |
| bool InvalidDecl = false; |
| |
| // C99 6.7.2.1p8: A member of a structure or union may have any type other |
| // than a variably modified type. |
| if (T->isVariablyModifiedType()) { |
| QualType FixedTy = TryFixInvalidVariablyModifiedType(T); |
| if (!FixedTy.isNull()) { |
| Diag(Loc, diag::warn_illegal_constant_array_size, Loc); |
| T = FixedTy; |
| } else { |
| // FIXME: This diagnostic needs work |
| Diag(Loc, diag::err_typecheck_illegal_vla, Loc); |
| InvalidDecl = true; |
| } |
| } |
| // FIXME: Chain fielddecls together. |
| FieldDecl *NewFD; |
| |
| if (getLangOptions().CPlusPlus) { |
| // FIXME: Replace CXXFieldDecls with FieldDecls for simple structs. |
| NewFD = CXXFieldDecl::Create(Context, cast<CXXRecordDecl>(CurContext), |
| Loc, II, T, BitWidth); |
| if (II) |
| PushOnScopeChains(NewFD, S); |
| } |
| else |
| NewFD = FieldDecl::Create(Context, Loc, II, T, BitWidth); |
| |
| ProcessDeclAttributes(NewFD, D); |
| |
| if (D.getInvalidType() || InvalidDecl) |
| NewFD->setInvalidDecl(); |
| return NewFD; |
| } |
| |
| /// TranslateIvarVisibility - Translate visibility from a token ID to an |
| /// AST enum value. |
| static ObjCIvarDecl::AccessControl |
| TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) { |
| switch (ivarVisibility) { |
| case tok::objc_private: return ObjCIvarDecl::Private; |
| case tok::objc_public: return ObjCIvarDecl::Public; |
| case tok::objc_protected: return ObjCIvarDecl::Protected; |
| case tok::objc_package: return ObjCIvarDecl::Package; |
| default: assert(false && "Unknown visitibility kind"); |
| } |
| } |
| |
| /// ActOnIvar - Each ivar field of an objective-c class is passed into this |
| /// in order to create an IvarDecl object for it. |
| Sema::DeclTy *Sema::ActOnIvar(Scope *S, |
| SourceLocation DeclStart, |
| Declarator &D, ExprTy *BitfieldWidth, |
| tok::ObjCKeywordKind Visibility) { |
| IdentifierInfo *II = D.getIdentifier(); |
| Expr *BitWidth = (Expr*)BitfieldWidth; |
| SourceLocation Loc = DeclStart; |
| if (II) Loc = D.getIdentifierLoc(); |
| |
| // FIXME: Unnamed fields can be handled in various different ways, for |
| // example, unnamed unions inject all members into the struct namespace! |
| |
| |
| if (BitWidth) { |
| // TODO: Validate. |
| //printf("WARNING: BITFIELDS IGNORED!\n"); |
| |
| // 6.7.2.1p3 |
| // 6.7.2.1p4 |
| |
| } else { |
| // Not a bitfield. |
| |
| // validate II. |
| |
| } |
| |
| QualType T = GetTypeForDeclarator(D, S); |
| assert(!T.isNull() && "GetTypeForDeclarator() returned null type"); |
| bool InvalidDecl = false; |
| |
| // C99 6.7.2.1p8: A member of a structure or union may have any type other |
| // than a variably modified type. |
| if (T->isVariablyModifiedType()) { |
| // FIXME: This diagnostic needs work |
| Diag(Loc, diag::err_typecheck_illegal_vla, Loc); |
| InvalidDecl = true; |
| } |
| |
| ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T); |
| |
| ProcessDeclAttributes(NewID, D); |
| |
| if (D.getInvalidType() || InvalidDecl) |
| NewID->setInvalidDecl(); |
| // If we have visibility info, make sure the AST is set accordingly. |
| if (Visibility != tok::objc_not_keyword) |
| NewID->setAccessControl(TranslateIvarVisibility(Visibility)); |
| return NewID; |
| } |
| |
| void Sema::ActOnFields(Scope* S, |
| SourceLocation RecLoc, DeclTy *RecDecl, |
| DeclTy **Fields, unsigned NumFields, |
| SourceLocation LBrac, SourceLocation RBrac) { |
| Decl *EnclosingDecl = static_cast<Decl*>(RecDecl); |
| assert(EnclosingDecl && "missing record or interface decl"); |
| RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl); |
| |
| if (Record && Record->isDefinition()) { |
| // Diagnose code like: |
| // struct S { struct S {} X; }; |
| // We discover this when we complete the outer S. Reject and ignore the |
| // outer S. |
| Diag(Record->getLocation(), diag::err_nested_redefinition, |
| Record->getKindName()); |
| Diag(RecLoc, diag::err_previous_definition); |
| Record->setInvalidDecl(); |
| return; |
| } |
| // Verify that all the fields are okay. |
| unsigned NumNamedMembers = 0; |
| llvm::SmallVector<FieldDecl*, 32> RecFields; |
| llvm::SmallSet<const IdentifierInfo*, 32> FieldIDs; |
| |
| for (unsigned i = 0; i != NumFields; ++i) { |
| |
| FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i])); |
| assert(FD && "missing field decl"); |
| |
| // Remember all fields. |
| RecFields.push_back(FD); |
| |
| // Get the type for the field. |
| Type *FDTy = FD->getType().getTypePtr(); |
| |
| // C99 6.7.2.1p2 - A field may not be a function type. |
| if (FDTy->isFunctionType()) { |
| Diag(FD->getLocation(), diag::err_field_declared_as_function, |
| FD->getName()); |
| FD->setInvalidDecl(); |
| EnclosingDecl->setInvalidDecl(); |
| continue; |
| } |
| // C99 6.7.2.1p2 - A field may not be an incomplete type except... |
| if (FDTy->isIncompleteType()) { |
| if (!Record) { // Incomplete ivar type is always an error. |
| Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName()); |
| FD->setInvalidDecl(); |
| EnclosingDecl->setInvalidDecl(); |
| continue; |
| } |
| if (i != NumFields-1 || // ... that the last member ... |
| !Record->isStruct() || // ... of a structure ... |
| !FDTy->isArrayType()) { //... may have incomplete array type. |
| Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName()); |
| FD->setInvalidDecl(); |
| EnclosingDecl->setInvalidDecl(); |
| continue; |
| } |
| if (NumNamedMembers < 1) { //... must have more than named member ... |
| Diag(FD->getLocation(), diag::err_flexible_array_empty_struct, |
| FD->getName()); |
| FD->setInvalidDecl(); |
| EnclosingDecl->setInvalidDecl(); |
| continue; |
| } |
| // Okay, we have a legal flexible array member at the end of the struct. |
| if (Record) |
| Record->setHasFlexibleArrayMember(true); |
| } |
| /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the |
| /// field of another structure or the element of an array. |
| if (const RecordType *FDTTy = FDTy->getAsRecordType()) { |
| if (FDTTy->getDecl()->hasFlexibleArrayMember()) { |
| // If this is a member of a union, then entire union becomes "flexible". |
| if (Record && Record->isUnion()) { |
| Record->setHasFlexibleArrayMember(true); |
| } else { |
| // If this is a struct/class and this is not the last element, reject |
| // it. Note that GCC supports variable sized arrays in the middle of |
| // structures. |
| if (i != NumFields-1) { |
| Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct, |
| FD->getName()); |
| FD->setInvalidDecl(); |
| EnclosingDecl->setInvalidDecl(); |
| continue; |
| } |
| // We support flexible arrays at the end of structs in other structs |
| // as an extension. |
| Diag(FD->getLocation(), diag::ext_flexible_array_in_struct, |
| FD->getName()); |
| if (Record) |
| Record->setHasFlexibleArrayMember(true); |
| } |
| } |
| } |
| /// A field cannot be an Objective-c object |
| if (FDTy->isObjCInterfaceType()) { |
| Diag(FD->getLocation(), diag::err_statically_allocated_object, |
| FD->getName()); |
| FD->setInvalidDecl(); |
| EnclosingDecl->setInvalidDecl(); |
| continue; |
| } |
| // Keep track of the number of named members. |
| if (IdentifierInfo *II = FD->getIdentifier()) { |
| // Detect duplicate member names. |
| if (!FieldIDs.insert(II)) { |
| Diag(FD->getLocation(), diag::err_duplicate_member, II->getName()); |
| // Find the previous decl. |
| SourceLocation PrevLoc; |
| for (unsigned i = 0, e = RecFields.size(); ; ++i) { |
| assert(i != e && "Didn't find previous def!"); |
| if (RecFields[i]->getIdentifier() == II) { |
| PrevLoc = RecFields[i]->getLocation(); |
| break; |
| } |
| } |
| Diag(PrevLoc, diag::err_previous_definition); |
| FD->setInvalidDecl(); |
| EnclosingDecl->setInvalidDecl(); |
| continue; |
| } |
| ++NumNamedMembers; |
| } |
| } |
| |
| // Okay, we successfully defined 'Record'. |
| if (Record) { |
| Record->defineBody(&RecFields[0], RecFields.size()); |
| Consumer.HandleTagDeclDefinition(Record); |
| } else { |
| ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]); |
| if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) |
| ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac); |
| else if (ObjCImplementationDecl *IMPDecl = |
| dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) { |
| assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl"); |
| IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size()); |
| CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac); |
| } |
| } |
| } |
| |
| Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl, |
| DeclTy *lastEnumConst, |
| SourceLocation IdLoc, IdentifierInfo *Id, |
| SourceLocation EqualLoc, ExprTy *val) { |
| EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl)); |
| EnumConstantDecl *LastEnumConst = |
| cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst)); |
| Expr *Val = static_cast<Expr*>(val); |
| |
| // The scope passed in may not be a decl scope. Zip up the scope tree until |
| // we find one that is. |
| while ((S->getFlags() & Scope::DeclScope) == 0) |
| S = S->getParent(); |
| |
| // Verify that there isn't already something declared with this name in this |
| // scope. |
| if (Decl *PrevDecl = LookupDecl(Id, Decl::IDNS_Ordinary, S)) { |
| if (IdResolver.isDeclInScope(PrevDecl, CurContext, S)) { |
| if (isa<EnumConstantDecl>(PrevDecl)) |
| Diag(IdLoc, diag::err_redefinition_of_enumerator, Id->getName()); |
| else |
| Diag(IdLoc, diag::err_redefinition, Id->getName()); |
| Diag(PrevDecl->getLocation(), diag::err_previous_definition); |
| delete Val; |
| return 0; |
| } |
| } |
| |
| llvm::APSInt EnumVal(32); |
| QualType EltTy; |
| if (Val) { |
| // Make sure to promote the operand type to int. |
| UsualUnaryConversions(Val); |
| |
| // C99 6.7.2.2p2: Make sure we have an integer constant expression. |
| SourceLocation ExpLoc; |
| if (!Val->isIntegerConstantExpr(EnumVal, Context, &ExpLoc)) { |
| Diag(ExpLoc, diag::err_enum_value_not_integer_constant_expr, |
| Id->getName()); |
| delete Val; |
| Val = 0; // Just forget about it. |
| } else { |
| EltTy = Val->getType(); |
| } |
| } |
| |
| if (!Val) { |
| if (LastEnumConst) { |
| // Assign the last value + 1. |
| EnumVal = LastEnumConst->getInitVal(); |
| ++EnumVal; |
| |
| // Check for overflow on increment. |
| if (EnumVal < LastEnumConst->getInitVal()) |
| Diag(IdLoc, diag::warn_enum_value_overflow); |
| |
| EltTy = LastEnumConst->getType(); |
| } else { |
| // First value, set to zero. |
| EltTy = Context.IntTy; |
| EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy))); |
| } |
| } |
| |
| EnumConstantDecl *New = |
| EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy, |
| Val, EnumVal, |
| LastEnumConst); |
| |
| // Register this decl in the current scope stack. |
| PushOnScopeChains(New, S); |
| return New; |
| } |
| |
| void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX, |
| DeclTy **Elements, unsigned NumElements) { |
| EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX)); |
| assert(!Enum->isDefinition() && "Enum redefinitions can't reach here"); |
| |
| // TODO: If the result value doesn't fit in an int, it must be a long or long |
| // long value. ISO C does not support this, but GCC does as an extension, |
| // emit a warning. |
| unsigned IntWidth = Context.Target.getIntWidth(); |
| |
| // Verify that all the values are okay, compute the size of the values, and |
| // reverse the list. |
| unsigned NumNegativeBits = 0; |
| unsigned NumPositiveBits = 0; |
| |
| // Keep track of whether all elements have type int. |
| bool AllElementsInt = true; |
| |
| EnumConstantDecl *EltList = 0; |
| for (unsigned i = 0; i != NumElements; ++i) { |
| EnumConstantDecl *ECD = |
| cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i])); |
| if (!ECD) continue; // Already issued a diagnostic. |
| |
| // If the enum value doesn't fit in an int, emit an extension warning. |
| const llvm::APSInt &InitVal = ECD->getInitVal(); |
| assert(InitVal.getBitWidth() >= IntWidth && |
| "Should have promoted value to int"); |
| if (InitVal.getBitWidth() > IntWidth) { |
| llvm::APSInt V(InitVal); |
| V.trunc(IntWidth); |
| V.extend(InitVal.getBitWidth()); |
| if (V != InitVal) |
| Diag(ECD->getLocation(), diag::ext_enum_value_not_int, |
| InitVal.toString()); |
| } |
| |
| // Keep track of the size of positive and negative values. |
| if (InitVal.isUnsigned() || InitVal.isNonNegative()) |
| NumPositiveBits = std::max(NumPositiveBits, |
| (unsigned)InitVal.getActiveBits()); |
| else |
| NumNegativeBits = std::max(NumNegativeBits, |
| (unsigned)InitVal.getMinSignedBits()); |
| |
| // Keep track of whether every enum element has type int (very commmon). |
| if (AllElementsInt) |
| AllElementsInt = ECD->getType() == Context.IntTy; |
| |
| ECD->setNextDeclarator(EltList); |
| EltList = ECD; |
| } |
| |
| // Figure out the type that should be used for this enum. |
| // FIXME: Support attribute(packed) on enums and -fshort-enums. |
| QualType BestType; |
| unsigned BestWidth; |
| |
| if (NumNegativeBits) { |
| // If there is a negative value, figure out the smallest integer type (of |
| // int/long/longlong) that fits. |
| if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) { |
| BestType = Context.IntTy; |
| BestWidth = IntWidth; |
| } else { |
| BestWidth = Context.Target.getLongWidth(); |
| |
| if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) |
| BestType = Context.LongTy; |
| else { |
| BestWidth = Context.Target.getLongLongWidth(); |
| |
| if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth) |
| Diag(Enum->getLocation(), diag::warn_enum_too_large); |
| BestType = Context.LongLongTy; |
| } |
| } |
| } else { |
| // If there is no negative value, figure out which of uint, ulong, ulonglong |
| // fits. |
| if (NumPositiveBits <= IntWidth) { |
| BestType = Context.UnsignedIntTy; |
| BestWidth = IntWidth; |
| } else if (NumPositiveBits <= |
| (BestWidth = Context.Target.getLongWidth())) { |
| BestType = Context.UnsignedLongTy; |
| } else { |
| BestWidth = Context.Target.getLongLongWidth(); |
| assert(NumPositiveBits <= BestWidth && |
| "How could an initializer get larger than ULL?"); |
| BestType = Context.UnsignedLongLongTy; |
| } |
| } |
| |
| // Loop over all of the enumerator constants, changing their types to match |
| // the type of the enum if needed. |
| for (unsigned i = 0; i != NumElements; ++i) { |
| EnumConstantDecl *ECD = |
| cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i])); |
| if (!ECD) continue; // Already issued a diagnostic. |
| |
| // Standard C says the enumerators have int type, but we allow, as an |
| // extension, the enumerators to be larger than int size. If each |
| // enumerator value fits in an int, type it as an int, otherwise type it the |
| // same as the enumerator decl itself. This means that in "enum { X = 1U }" |
| // that X has type 'int', not 'unsigned'. |
| if (ECD->getType() == Context.IntTy) { |
| // Make sure the init value is signed. |
| llvm::APSInt IV = ECD->getInitVal(); |
| IV.setIsSigned(true); |
| ECD->setInitVal(IV); |
| continue; // Already int type. |
| } |
| |
| // Determine whether the value fits into an int. |
| llvm::APSInt InitVal = ECD->getInitVal(); |
| bool FitsInInt; |
| if (InitVal.isUnsigned() || !InitVal.isNegative()) |
| FitsInInt = InitVal.getActiveBits() < IntWidth; |
| else |
| FitsInInt = InitVal.getMinSignedBits() <= IntWidth; |
| |
| // If it fits into an integer type, force it. Otherwise force it to match |
| // the enum decl type. |
| QualType NewTy; |
| unsigned NewWidth; |
| bool NewSign; |
| if (FitsInInt) { |
| NewTy = Context.IntTy; |
| NewWidth = IntWidth; |
| NewSign = true; |
| } else if (ECD->getType() == BestType) { |
| // Already the right type! |
| continue; |
| } else { |
| NewTy = BestType; |
| NewWidth = BestWidth; |
| NewSign = BestType->isSignedIntegerType(); |
| } |
| |
| // Adjust the APSInt value. |
| InitVal.extOrTrunc(NewWidth); |
| InitVal.setIsSigned(NewSign); |
| ECD->setInitVal(InitVal); |
| |
| // Adjust the Expr initializer and type. |
| ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr())); |
| ECD->setType(NewTy); |
| } |
| |
| Enum->defineElements(EltList, BestType); |
| Consumer.HandleTagDeclDefinition(Enum); |
| } |
| |
| Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc, |
| ExprTy *expr) { |
| StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr); |
| |
| return FileScopeAsmDecl::Create(Context, Loc, AsmString); |
| } |
| |
| Sema::DeclTy* Sema::ActOnLinkageSpec(SourceLocation Loc, |
| SourceLocation LBrace, |
| SourceLocation RBrace, |
| const char *Lang, |
| unsigned StrSize, |
| DeclTy *D) { |
| LinkageSpecDecl::LanguageIDs Language; |
| Decl *dcl = static_cast<Decl *>(D); |
| if (strncmp(Lang, "\"C\"", StrSize) == 0) |
| Language = LinkageSpecDecl::lang_c; |
| else if (strncmp(Lang, "\"C++\"", StrSize) == 0) |
| Language = LinkageSpecDecl::lang_cxx; |
| else { |
| Diag(Loc, diag::err_bad_language); |
| return 0; |
| } |
| |
| // FIXME: Add all the various semantics of linkage specifications |
| return LinkageSpecDecl::Create(Context, Loc, Language, dcl); |
| } |