blob: b9a7676e62cdae05bdb7e0052f2553054cbb5934 [file] [log] [blame]
//==- UninitializedValuesV2.cpp - Find Uninitialized Values -----*- C++ --*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements uninitialized values analysis for source-level CFGs.
//
//===----------------------------------------------------------------------===//
#include <utility>
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "clang/AST/Decl.h"
#include "clang/Analysis/CFG.h"
#include "clang/Analysis/AnalysisContext.h"
#include "clang/Analysis/Visitors/CFGRecStmtDeclVisitor.h"
#include "clang/Analysis/Analyses/UninitializedValuesV2.h"
#include "clang/Analysis/Support/SaveAndRestore.h"
using namespace clang;
static bool isTrackedVar(const VarDecl *vd, const DeclContext *dc) {
return vd->isLocalVarDecl() && !vd->hasGlobalStorage() &&
vd->getType()->isScalarType() &&
vd->getDeclContext() == dc;
}
//------------------------------------------------------------------------====//
// DeclToBit: a mapping from Decls we track to bitvector indices.
//====------------------------------------------------------------------------//
namespace {
class DeclToBit {
llvm::DenseMap<const VarDecl *, unsigned> map;
public:
DeclToBit() {}
/// Compute the actual mapping from declarations to bits.
void computeMap(const DeclContext &dc);
/// Return the number of declarations in the map.
unsigned size() const { return map.size(); }
/// Returns the bit vector index for a given declaration.
llvm::Optional<unsigned> getBitVectorIndex(const VarDecl *d);
};
}
void DeclToBit::computeMap(const DeclContext &dc) {
unsigned count = 0;
DeclContext::specific_decl_iterator<VarDecl> I(dc.decls_begin()),
E(dc.decls_end());
for ( ; I != E; ++I) {
const VarDecl *vd = *I;
if (isTrackedVar(vd, &dc))
map[vd] = count++;
}
}
llvm::Optional<unsigned> DeclToBit::getBitVectorIndex(const VarDecl *d) {
llvm::DenseMap<const VarDecl *, unsigned>::iterator I = map.find(d);
if (I == map.end())
return llvm::Optional<unsigned>();
return I->second;
}
//------------------------------------------------------------------------====//
// CFGBlockValues: dataflow values for CFG blocks.
//====------------------------------------------------------------------------//
typedef std::pair<llvm::BitVector *, llvm::BitVector *> BVPair;
namespace {
class CFGBlockValues {
const CFG &cfg;
BVPair *vals;
llvm::BitVector scratch;
DeclToBit declToBit;
llvm::BitVector &lazyCreate(llvm::BitVector *&bv);
public:
CFGBlockValues(const CFG &cfg);
~CFGBlockValues();
void computeSetOfDeclarations(const DeclContext &dc);
llvm::BitVector &getBitVector(const CFGBlock *block,
const CFGBlock *dstBlock);
BVPair &getBitVectors(const CFGBlock *block);
BVPair getPredBitVectors(const CFGBlock *block);
void mergeIntoScratch(llvm::BitVector const &source, bool isFirst);
bool updateBitVectorWithScratch(const CFGBlock *block);
bool updateBitVectors(const CFGBlock *block, const BVPair &newVals);
bool hasNoDeclarations() const {
return declToBit.size() == 0;
}
void resetScratch();
llvm::BitVector &getScratch() { return scratch; }
llvm::BitVector::reference operator[](const VarDecl *vd);
};
}
CFGBlockValues::CFGBlockValues(const CFG &c) : cfg(c), vals(0) {
unsigned n = cfg.getNumBlockIDs();
if (!n)
return;
vals = new std::pair<llvm::BitVector*, llvm::BitVector*>[n];
memset(vals, 0, sizeof(*vals) * n);
}
CFGBlockValues::~CFGBlockValues() {
unsigned n = cfg.getNumBlockIDs();
if (n == 0)
return;
for (unsigned i = 0; i < n; ++i) {
delete vals[i].first;
delete vals[i].second;
}
delete [] vals;
}
void CFGBlockValues::computeSetOfDeclarations(const DeclContext &dc) {
declToBit.computeMap(dc);
scratch.resize(declToBit.size());
}
llvm::BitVector &CFGBlockValues::lazyCreate(llvm::BitVector *&bv) {
if (!bv)
bv = new llvm::BitVector(declToBit.size());
return *bv;
}
/// This function pattern matches for a '&&' or '||' that appears at
/// the beginning of a CFGBlock that also (1) has a terminator and
/// (2) has no other elements. If such an expression is found, it is returned.
static BinaryOperator *getLogicalOperatorInChain(const CFGBlock *block) {
if (block->empty())
return 0;
CFGStmt cstmt = block->front().getAs<CFGStmt>();
BinaryOperator *b = llvm::dyn_cast_or_null<BinaryOperator>(cstmt.getStmt());
if (!b || !b->isLogicalOp() || block->getTerminatorCondition() != b)
return 0;
return b;
}
llvm::BitVector &CFGBlockValues::getBitVector(const CFGBlock *block,
const CFGBlock *dstBlock) {
unsigned idx = block->getBlockID();
if (dstBlock && block->succ_size() == 2 && block->pred_size() == 2) {
assert(block->getTerminator());
if (getLogicalOperatorInChain(block)) {
if (*block->succ_begin() == dstBlock)
return lazyCreate(vals[idx].first);
assert(*(block->succ_begin()+1) == dstBlock);
return lazyCreate(vals[idx].second);
}
}
assert(vals[idx].second == 0);
return lazyCreate(vals[idx].first);
}
BVPair &CFGBlockValues::getBitVectors(const clang::CFGBlock *block) {
unsigned idx = block->getBlockID();
lazyCreate(vals[idx].first);
lazyCreate(vals[idx].second);
return vals[idx];
}
BVPair CFGBlockValues::getPredBitVectors(const clang::CFGBlock *block) {
assert(block->pred_size() == 2);
CFGBlock::const_pred_iterator itr = block->pred_begin();
llvm::BitVector &bvA = getBitVector(*itr, block);
++itr;
return BVPair(&bvA, &getBitVector(*itr, block));
}
void CFGBlockValues::mergeIntoScratch(llvm::BitVector const &source,
bool isFirst) {
if (isFirst)
scratch = source;
else
scratch |= source;
}
bool CFGBlockValues::updateBitVectorWithScratch(const CFGBlock *block) {
llvm::BitVector &dst = getBitVector(block, 0);
bool changed = (dst != scratch);
if (changed)
dst = scratch;
return changed;
}
bool CFGBlockValues::updateBitVectors(const CFGBlock *block,
const BVPair &newVals) {
BVPair &vals = getBitVectors(block);
bool changed = *newVals.first != *vals.first ||
*newVals.second != *vals.second;
*vals.first = *newVals.first;
*vals.second = *newVals.second;
return changed;
}
void CFGBlockValues::resetScratch() {
scratch.reset();
}
llvm::BitVector::reference CFGBlockValues::operator[](const VarDecl *vd) {
const llvm::Optional<unsigned> &idx = declToBit.getBitVectorIndex(vd);
assert(idx.hasValue());
return scratch[idx.getValue()];
}
//------------------------------------------------------------------------====//
// Worklist: worklist for dataflow analysis.
//====------------------------------------------------------------------------//
namespace {
class DataflowWorklist {
llvm::SmallVector<const CFGBlock *, 20> worklist;
llvm::BitVector enqueuedBlocks;
public:
DataflowWorklist(const CFG &cfg) : enqueuedBlocks(cfg.getNumBlockIDs()) {}
void enqueue(const CFGBlock *block);
void enqueueSuccessors(const CFGBlock *block);
const CFGBlock *dequeue();
};
}
void DataflowWorklist::enqueue(const CFGBlock *block) {
if (!block)
return;
unsigned idx = block->getBlockID();
if (enqueuedBlocks[idx])
return;
worklist.push_back(block);
enqueuedBlocks[idx] = true;
}
void DataflowWorklist::enqueueSuccessors(const clang::CFGBlock *block) {
for (CFGBlock::const_succ_iterator I = block->succ_begin(),
E = block->succ_end(); I != E; ++I) {
enqueue(*I);
}
}
const CFGBlock *DataflowWorklist::dequeue() {
if (worklist.empty())
return 0;
const CFGBlock *b = worklist.back();
worklist.pop_back();
enqueuedBlocks[b->getBlockID()] = false;
return b;
}
//------------------------------------------------------------------------====//
// Transfer function for uninitialized values analysis.
//====------------------------------------------------------------------------//
static const bool Initialized = false;
static const bool Uninitialized = true;
namespace {
class FindVarResult {
const VarDecl *vd;
const DeclRefExpr *dr;
public:
FindVarResult(VarDecl *vd, DeclRefExpr *dr) : vd(vd), dr(dr) {}
const DeclRefExpr *getDeclRefExpr() const { return dr; }
const VarDecl *getDecl() const { return vd; }
};
class TransferFunctions : public CFGRecStmtVisitor<TransferFunctions> {
CFGBlockValues &vals;
const CFG &cfg;
AnalysisContext &ac;
UninitVariablesHandler *handler;
const DeclRefExpr *currentDR;
const Expr *currentVoidCast;
const bool flagBlockUses;
public:
TransferFunctions(CFGBlockValues &vals, const CFG &cfg,
AnalysisContext &ac,
UninitVariablesHandler *handler,
bool flagBlockUses)
: vals(vals), cfg(cfg), ac(ac), handler(handler), currentDR(0),
currentVoidCast(0), flagBlockUses(flagBlockUses) {}
const CFG &getCFG() { return cfg; }
void reportUninit(const DeclRefExpr *ex, const VarDecl *vd);
void VisitBlockExpr(BlockExpr *be);
void VisitDeclStmt(DeclStmt *ds);
void VisitDeclRefExpr(DeclRefExpr *dr);
void VisitUnaryOperator(UnaryOperator *uo);
void VisitBinaryOperator(BinaryOperator *bo);
void VisitCastExpr(CastExpr *ce);
void VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *se);
void BlockStmt_VisitObjCForCollectionStmt(ObjCForCollectionStmt *fs);
bool isTrackedVar(const VarDecl *vd) {
return ::isTrackedVar(vd, cast<DeclContext>(ac.getDecl()));
}
FindVarResult findBlockVarDecl(Expr *ex);
};
}
void TransferFunctions::reportUninit(const DeclRefExpr *ex,
const VarDecl *vd) {
if (handler) handler->handleUseOfUninitVariable(ex, vd);
}
FindVarResult TransferFunctions::findBlockVarDecl(Expr* ex) {
if (DeclRefExpr* dr = dyn_cast<DeclRefExpr>(ex->IgnoreParenCasts()))
if (VarDecl *vd = dyn_cast<VarDecl>(dr->getDecl()))
if (isTrackedVar(vd))
return FindVarResult(vd, dr);
return FindVarResult(0, 0);
}
void TransferFunctions::BlockStmt_VisitObjCForCollectionStmt(
ObjCForCollectionStmt *fs) {
Visit(fs->getCollection());
// This represents an initialization of the 'element' value.
Stmt *element = fs->getElement();
const VarDecl* vd = 0;
if (DeclStmt* ds = dyn_cast<DeclStmt>(element)) {
vd = cast<VarDecl>(ds->getSingleDecl());
if (!isTrackedVar(vd))
vd = 0;
}
else {
// Initialize the value of the reference variable.
const FindVarResult &res = findBlockVarDecl(cast<Expr>(element));
vd = res.getDecl();
if (!vd) {
Visit(element);
return;
}
}
if (vd)
vals[vd] = Initialized;
}
void TransferFunctions::VisitBlockExpr(BlockExpr *be) {
if (!flagBlockUses || !handler)
return;
AnalysisContext::referenced_decls_iterator i, e;
llvm::tie(i, e) = ac.getReferencedBlockVars(be->getBlockDecl());
for ( ; i != e; ++i) {
const VarDecl *vd = *i;
if (vd->getAttr<BlocksAttr>() || !vd->hasLocalStorage() ||
!isTrackedVar(vd))
continue;
if (vals[vd] == Uninitialized)
handler->handleUseOfUninitVariable(be, vd);
}
}
void TransferFunctions::VisitDeclStmt(DeclStmt *ds) {
for (DeclStmt::decl_iterator DI = ds->decl_begin(), DE = ds->decl_end();
DI != DE; ++DI) {
if (VarDecl *vd = dyn_cast<VarDecl>(*DI)) {
if (isTrackedVar(vd)) {
vals[vd] = Uninitialized;
if (Stmt *init = vd->getInit()) {
Visit(init);
vals[vd] = Initialized;
}
}
else if (Stmt *init = vd->getInit()) {
Visit(init);
}
}
}
}
void TransferFunctions::VisitDeclRefExpr(DeclRefExpr *dr) {
// We assume that DeclRefExprs wrapped in an lvalue-to-rvalue cast
// cannot be block-level expressions. Therefore, we determine if
// a DeclRefExpr is involved in a "load" by comparing it to the current
// DeclRefExpr found when analyzing the last lvalue-to-rvalue CastExpr.
// If a DeclRefExpr is not involved in a load, we are essentially computing
// its address, either for assignment to a reference or via the '&' operator.
// In such cases, treat the variable as being initialized, since this
// analysis isn't powerful enough to do alias tracking.
if (dr != currentDR)
if (const VarDecl *vd = dyn_cast<VarDecl>(dr->getDecl()))
if (isTrackedVar(vd))
vals[vd] = Initialized;
}
void TransferFunctions::VisitBinaryOperator(clang::BinaryOperator *bo) {
if (bo->isAssignmentOp()) {
const FindVarResult &res = findBlockVarDecl(bo->getLHS());
if (const VarDecl* vd = res.getDecl()) {
// We assume that DeclRefExprs wrapped in a BinaryOperator "assignment"
// cannot be block-level expressions. Therefore, we determine if
// a DeclRefExpr is involved in a "load" by comparing it to the current
// DeclRefExpr found when analyzing the last lvalue-to-rvalue CastExpr.
SaveAndRestore<const DeclRefExpr*> lastDR(currentDR,
res.getDeclRefExpr());
Visit(bo->getRHS());
Visit(bo->getLHS());
llvm::BitVector::reference bit = vals[vd];
if (bit == Uninitialized) {
if (bo->getOpcode() != BO_Assign)
reportUninit(res.getDeclRefExpr(), vd);
bit = Initialized;
}
return;
}
}
Visit(bo->getRHS());
Visit(bo->getLHS());
}
void TransferFunctions::VisitUnaryOperator(clang::UnaryOperator *uo) {
switch (uo->getOpcode()) {
case clang::UO_PostDec:
case clang::UO_PostInc:
case clang::UO_PreDec:
case clang::UO_PreInc: {
const FindVarResult &res = findBlockVarDecl(uo->getSubExpr());
if (const VarDecl *vd = res.getDecl()) {
// We assume that DeclRefExprs wrapped in a unary operator ++/--
// cannot be block-level expressions. Therefore, we determine if
// a DeclRefExpr is involved in a "load" by comparing it to the current
// DeclRefExpr found when analyzing the last lvalue-to-rvalue CastExpr.
SaveAndRestore<const DeclRefExpr*> lastDR(currentDR,
res.getDeclRefExpr());
Visit(uo->getSubExpr());
llvm::BitVector::reference bit = vals[vd];
if (bit == Uninitialized) {
reportUninit(res.getDeclRefExpr(), vd);
bit = Initialized;
}
return;
}
break;
}
default:
break;
}
Visit(uo->getSubExpr());
}
void TransferFunctions::VisitCastExpr(clang::CastExpr *ce) {
if (ce->getCastKind() == CK_LValueToRValue) {
const FindVarResult &res = findBlockVarDecl(ce->getSubExpr());
if (const VarDecl *vd = res.getDecl()) {
// We assume that DeclRefExprs wrapped in an lvalue-to-rvalue cast
// cannot be block-level expressions. Therefore, we determine if
// a DeclRefExpr is involved in a "load" by comparing it to the current
// DeclRefExpr found when analyzing the last lvalue-to-rvalue CastExpr.
// Here we update 'currentDR' to be the one associated with this
// lvalue-to-rvalue cast. Then, when we analyze the DeclRefExpr, we
// will know that we are not computing its lvalue for other purposes
// than to perform a load.
SaveAndRestore<const DeclRefExpr*> lastDR(currentDR,
res.getDeclRefExpr());
Visit(ce->getSubExpr());
if (currentVoidCast != ce && vals[vd] == Uninitialized) {
reportUninit(res.getDeclRefExpr(), vd);
// Don't cascade warnings.
vals[vd] = Initialized;
}
return;
}
}
else if (CStyleCastExpr *cse = dyn_cast<CStyleCastExpr>(ce)) {
if (cse->getType()->isVoidType()) {
// e.g. (void) x;
SaveAndRestore<const Expr *>
lastVoidCast(currentVoidCast, cse->getSubExpr()->IgnoreParens());
Visit(cse->getSubExpr());
return;
}
}
Visit(ce->getSubExpr());
}
void TransferFunctions::VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *se) {
if (se->isSizeOf()) {
if (se->getType()->isConstantSizeType())
return;
// Handle VLAs.
Visit(se->getArgumentExpr());
}
}
//------------------------------------------------------------------------====//
// High-level "driver" logic for uninitialized values analysis.
//====------------------------------------------------------------------------//
static bool runOnBlock(const CFGBlock *block, const CFG &cfg,
AnalysisContext &ac, CFGBlockValues &vals,
UninitVariablesHandler *handler = 0,
bool flagBlockUses = false) {
if (const BinaryOperator *b = getLogicalOperatorInChain(block)) {
if (block->pred_size() == 2 && block->succ_size() == 2) {
assert(block->getTerminatorCondition() == b);
BVPair valsAB = vals.getPredBitVectors(block);
vals.mergeIntoScratch(*valsAB.first, true);
vals.mergeIntoScratch(*valsAB.second, false);
valsAB.second = &vals.getScratch();
if (b->getOpcode() == BO_LOr) {
// Ensure the invariant that 'first' corresponds to the true
// branch and 'second' to the false.
std::swap(valsAB.first, valsAB.second);
}
return vals.updateBitVectors(block, valsAB);
}
}
// Default behavior: merge in values of predecessor blocks.
vals.resetScratch();
bool isFirst = true;
for (CFGBlock::const_pred_iterator I = block->pred_begin(),
E = block->pred_end(); I != E; ++I) {
vals.mergeIntoScratch(vals.getBitVector(*I, block), isFirst);
isFirst = false;
}
// Apply the transfer function.
TransferFunctions tf(vals, cfg, ac, handler, flagBlockUses);
for (CFGBlock::const_iterator I = block->begin(), E = block->end();
I != E; ++I) {
if (const CFGStmt *cs = dyn_cast<CFGStmt>(&*I)) {
tf.BlockStmt_Visit(cs->getStmt());
}
}
return vals.updateBitVectorWithScratch(block);
}
void clang::runUninitializedVariablesAnalysis(const DeclContext &dc,
const CFG &cfg,
AnalysisContext &ac,
UninitVariablesHandler &handler) {
CFGBlockValues vals(cfg);
vals.computeSetOfDeclarations(dc);
if (vals.hasNoDeclarations())
return;
DataflowWorklist worklist(cfg);
llvm::BitVector previouslyVisited(cfg.getNumBlockIDs());
worklist.enqueueSuccessors(&cfg.getEntry());
while (const CFGBlock *block = worklist.dequeue()) {
// Did the block change?
bool changed = runOnBlock(block, cfg, ac, vals);
if (changed || !previouslyVisited[block->getBlockID()])
worklist.enqueueSuccessors(block);
previouslyVisited[block->getBlockID()] = true;
}
// Run through the blocks one more time, and report uninitialized variabes.
for (CFG::const_iterator BI = cfg.begin(), BE = cfg.end(); BI != BE; ++BI) {
runOnBlock(*BI, cfg, ac, vals, &handler, /* flagBlockUses */ true);
}
}
UninitVariablesHandler::~UninitVariablesHandler() {}