blob: bbdf0f93d166310ed98696b0b9240275ebf85cc8 [file] [log] [blame]
Guy Benyei7f92f2d2012-12-18 14:30:41 +00001//===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Implements C++ name mangling according to the Itanium C++ ABI,
11// which is used in GCC 3.2 and newer (and many compilers that are
12// ABI-compatible with GCC):
13//
14// http://www.codesourcery.com/public/cxx-abi/abi.html
15//
16//===----------------------------------------------------------------------===//
17#include "clang/AST/Mangle.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Attr.h"
20#include "clang/AST/Decl.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/ExprObjC.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Basic/ABI.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "llvm/ADT/StringExtras.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/raw_ostream.h"
33
34#define MANGLE_CHECKER 0
35
36#if MANGLE_CHECKER
37#include <cxxabi.h>
38#endif
39
40using namespace clang;
41
42namespace {
43
44/// \brief Retrieve the declaration context that should be used when mangling
45/// the given declaration.
46static const DeclContext *getEffectiveDeclContext(const Decl *D) {
47 // The ABI assumes that lambda closure types that occur within
48 // default arguments live in the context of the function. However, due to
49 // the way in which Clang parses and creates function declarations, this is
50 // not the case: the lambda closure type ends up living in the context
51 // where the function itself resides, because the function declaration itself
52 // had not yet been created. Fix the context here.
53 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
54 if (RD->isLambda())
55 if (ParmVarDecl *ContextParam
56 = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
57 return ContextParam->getDeclContext();
58 }
59
60 return D->getDeclContext();
61}
62
63static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
64 return getEffectiveDeclContext(cast<Decl>(DC));
65}
66
67static const CXXRecordDecl *GetLocalClassDecl(const NamedDecl *ND) {
68 const DeclContext *DC = dyn_cast<DeclContext>(ND);
69 if (!DC)
70 DC = getEffectiveDeclContext(ND);
71 while (!DC->isNamespace() && !DC->isTranslationUnit()) {
72 const DeclContext *Parent = getEffectiveDeclContext(cast<Decl>(DC));
73 if (isa<FunctionDecl>(Parent))
74 return dyn_cast<CXXRecordDecl>(DC);
75 DC = Parent;
76 }
77 return 0;
78}
79
80static const FunctionDecl *getStructor(const FunctionDecl *fn) {
81 if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
82 return ftd->getTemplatedDecl();
83
84 return fn;
85}
86
87static const NamedDecl *getStructor(const NamedDecl *decl) {
88 const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
89 return (fn ? getStructor(fn) : decl);
90}
91
92static const unsigned UnknownArity = ~0U;
93
94class ItaniumMangleContext : public MangleContext {
95 llvm::DenseMap<const TagDecl *, uint64_t> AnonStructIds;
96 unsigned Discriminator;
97 llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
98
99public:
100 explicit ItaniumMangleContext(ASTContext &Context,
101 DiagnosticsEngine &Diags)
102 : MangleContext(Context, Diags) { }
103
104 uint64_t getAnonymousStructId(const TagDecl *TD) {
105 std::pair<llvm::DenseMap<const TagDecl *,
106 uint64_t>::iterator, bool> Result =
107 AnonStructIds.insert(std::make_pair(TD, AnonStructIds.size()));
108 return Result.first->second;
109 }
110
111 void startNewFunction() {
112 MangleContext::startNewFunction();
113 mangleInitDiscriminator();
114 }
115
116 /// @name Mangler Entry Points
117 /// @{
118
119 bool shouldMangleDeclName(const NamedDecl *D);
120 void mangleName(const NamedDecl *D, raw_ostream &);
121 void mangleThunk(const CXXMethodDecl *MD,
122 const ThunkInfo &Thunk,
123 raw_ostream &);
124 void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
125 const ThisAdjustment &ThisAdjustment,
126 raw_ostream &);
127 void mangleReferenceTemporary(const VarDecl *D,
128 raw_ostream &);
129 void mangleCXXVTable(const CXXRecordDecl *RD,
130 raw_ostream &);
131 void mangleCXXVTT(const CXXRecordDecl *RD,
132 raw_ostream &);
Reid Kleckner90633022013-06-19 15:20:38 +0000133 void mangleCXXVBTable(const CXXRecordDecl *Derived,
134 ArrayRef<const CXXRecordDecl *> BasePath,
135 raw_ostream &Out);
Guy Benyei7f92f2d2012-12-18 14:30:41 +0000136 void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
137 const CXXRecordDecl *Type,
138 raw_ostream &);
139 void mangleCXXRTTI(QualType T, raw_ostream &);
140 void mangleCXXRTTIName(QualType T, raw_ostream &);
141 void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
142 raw_ostream &);
143 void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
144 raw_ostream &);
145
146 void mangleItaniumGuardVariable(const VarDecl *D, raw_ostream &);
Richard Smithb80a16e2013-04-19 16:42:07 +0000147 void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &);
148 void mangleItaniumThreadLocalWrapper(const VarDecl *D, raw_ostream &);
Guy Benyei7f92f2d2012-12-18 14:30:41 +0000149
150 void mangleInitDiscriminator() {
151 Discriminator = 0;
152 }
153
154 bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
155 // Lambda closure types with external linkage (indicated by a
156 // non-zero lambda mangling number) have their own numbering scheme, so
157 // they do not need a discriminator.
158 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(ND))
159 if (RD->isLambda() && RD->getLambdaManglingNumber() > 0)
160 return false;
161
162 unsigned &discriminator = Uniquifier[ND];
163 if (!discriminator)
164 discriminator = ++Discriminator;
165 if (discriminator == 1)
166 return false;
167 disc = discriminator-2;
168 return true;
169 }
170 /// @}
171};
172
173/// CXXNameMangler - Manage the mangling of a single name.
174class CXXNameMangler {
175 ItaniumMangleContext &Context;
176 raw_ostream &Out;
177
178 /// The "structor" is the top-level declaration being mangled, if
179 /// that's not a template specialization; otherwise it's the pattern
180 /// for that specialization.
181 const NamedDecl *Structor;
182 unsigned StructorType;
183
184 /// SeqID - The next subsitution sequence number.
185 unsigned SeqID;
186
187 class FunctionTypeDepthState {
188 unsigned Bits;
189
190 enum { InResultTypeMask = 1 };
191
192 public:
193 FunctionTypeDepthState() : Bits(0) {}
194
195 /// The number of function types we're inside.
196 unsigned getDepth() const {
197 return Bits >> 1;
198 }
199
200 /// True if we're in the return type of the innermost function type.
201 bool isInResultType() const {
202 return Bits & InResultTypeMask;
203 }
204
205 FunctionTypeDepthState push() {
206 FunctionTypeDepthState tmp = *this;
207 Bits = (Bits & ~InResultTypeMask) + 2;
208 return tmp;
209 }
210
211 void enterResultType() {
212 Bits |= InResultTypeMask;
213 }
214
215 void leaveResultType() {
216 Bits &= ~InResultTypeMask;
217 }
218
219 void pop(FunctionTypeDepthState saved) {
220 assert(getDepth() == saved.getDepth() + 1);
221 Bits = saved.Bits;
222 }
223
224 } FunctionTypeDepth;
225
226 llvm::DenseMap<uintptr_t, unsigned> Substitutions;
227
228 ASTContext &getASTContext() const { return Context.getASTContext(); }
229
230public:
231 CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
232 const NamedDecl *D = 0)
233 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(0),
234 SeqID(0) {
235 // These can't be mangled without a ctor type or dtor type.
236 assert(!D || (!isa<CXXDestructorDecl>(D) &&
237 !isa<CXXConstructorDecl>(D)));
238 }
239 CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
240 const CXXConstructorDecl *D, CXXCtorType Type)
241 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
242 SeqID(0) { }
243 CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
244 const CXXDestructorDecl *D, CXXDtorType Type)
245 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
246 SeqID(0) { }
247
248#if MANGLE_CHECKER
249 ~CXXNameMangler() {
250 if (Out.str()[0] == '\01')
251 return;
252
253 int status = 0;
254 char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
255 assert(status == 0 && "Could not demangle mangled name!");
256 free(result);
257 }
258#endif
259 raw_ostream &getStream() { return Out; }
260
261 void mangle(const NamedDecl *D, StringRef Prefix = "_Z");
262 void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
263 void mangleNumber(const llvm::APSInt &I);
264 void mangleNumber(int64_t Number);
265 void mangleFloat(const llvm::APFloat &F);
266 void mangleFunctionEncoding(const FunctionDecl *FD);
267 void mangleName(const NamedDecl *ND);
268 void mangleType(QualType T);
269 void mangleNameOrStandardSubstitution(const NamedDecl *ND);
270
271private:
272 bool mangleSubstitution(const NamedDecl *ND);
273 bool mangleSubstitution(QualType T);
274 bool mangleSubstitution(TemplateName Template);
275 bool mangleSubstitution(uintptr_t Ptr);
276
277 void mangleExistingSubstitution(QualType type);
278 void mangleExistingSubstitution(TemplateName name);
279
280 bool mangleStandardSubstitution(const NamedDecl *ND);
281
282 void addSubstitution(const NamedDecl *ND) {
283 ND = cast<NamedDecl>(ND->getCanonicalDecl());
284
285 addSubstitution(reinterpret_cast<uintptr_t>(ND));
286 }
287 void addSubstitution(QualType T);
288 void addSubstitution(TemplateName Template);
289 void addSubstitution(uintptr_t Ptr);
290
291 void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
292 NamedDecl *firstQualifierLookup,
293 bool recursive = false);
294 void mangleUnresolvedName(NestedNameSpecifier *qualifier,
295 NamedDecl *firstQualifierLookup,
296 DeclarationName name,
297 unsigned KnownArity = UnknownArity);
298
299 void mangleName(const TemplateDecl *TD,
300 const TemplateArgument *TemplateArgs,
301 unsigned NumTemplateArgs);
302 void mangleUnqualifiedName(const NamedDecl *ND) {
303 mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity);
304 }
305 void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
306 unsigned KnownArity);
307 void mangleUnscopedName(const NamedDecl *ND);
308 void mangleUnscopedTemplateName(const TemplateDecl *ND);
309 void mangleUnscopedTemplateName(TemplateName);
310 void mangleSourceName(const IdentifierInfo *II);
311 void mangleLocalName(const NamedDecl *ND);
312 void mangleLambda(const CXXRecordDecl *Lambda);
313 void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
314 bool NoFunction=false);
315 void mangleNestedName(const TemplateDecl *TD,
316 const TemplateArgument *TemplateArgs,
317 unsigned NumTemplateArgs);
318 void manglePrefix(NestedNameSpecifier *qualifier);
319 void manglePrefix(const DeclContext *DC, bool NoFunction=false);
320 void manglePrefix(QualType type);
321 void mangleTemplatePrefix(const TemplateDecl *ND);
322 void mangleTemplatePrefix(TemplateName Template);
323 void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
324 void mangleQualifiers(Qualifiers Quals);
325 void mangleRefQualifier(RefQualifierKind RefQualifier);
326
327 void mangleObjCMethodName(const ObjCMethodDecl *MD);
328
329 // Declare manglers for every type class.
330#define ABSTRACT_TYPE(CLASS, PARENT)
331#define NON_CANONICAL_TYPE(CLASS, PARENT)
332#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
333#include "clang/AST/TypeNodes.def"
334
335 void mangleType(const TagType*);
336 void mangleType(TemplateName);
337 void mangleBareFunctionType(const FunctionType *T,
338 bool MangleReturnType);
339 void mangleNeonVectorType(const VectorType *T);
340
341 void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
342 void mangleMemberExpr(const Expr *base, bool isArrow,
343 NestedNameSpecifier *qualifier,
344 NamedDecl *firstQualifierLookup,
345 DeclarationName name,
346 unsigned knownArity);
347 void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
348 void mangleCXXCtorType(CXXCtorType T);
349 void mangleCXXDtorType(CXXDtorType T);
350
351 void mangleTemplateArgs(const ASTTemplateArgumentListInfo &TemplateArgs);
352 void mangleTemplateArgs(const TemplateArgument *TemplateArgs,
353 unsigned NumTemplateArgs);
354 void mangleTemplateArgs(const TemplateArgumentList &AL);
355 void mangleTemplateArg(TemplateArgument A);
356
357 void mangleTemplateParameter(unsigned Index);
358
359 void mangleFunctionParam(const ParmVarDecl *parm);
360};
361
362}
363
Guy Benyei7f92f2d2012-12-18 14:30:41 +0000364bool ItaniumMangleContext::shouldMangleDeclName(const NamedDecl *D) {
365 // In C, functions with no attributes never need to be mangled. Fastpath them.
366 if (!getASTContext().getLangOpts().CPlusPlus && !D->hasAttrs())
367 return false;
368
369 // Any decl can be declared with __asm("foo") on it, and this takes precedence
370 // over all other naming in the .o file.
371 if (D->hasAttr<AsmLabelAttr>())
372 return true;
373
Guy Benyei7f92f2d2012-12-18 14:30:41 +0000374 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
Rafael Espindolad2fdd422013-02-14 01:47:04 +0000375 if (FD) {
376 LanguageLinkage L = FD->getLanguageLinkage();
377 // Overloadable functions need mangling.
378 if (FD->hasAttr<OverloadableAttr>())
379 return true;
380
Rafael Espindola83dece52013-02-14 15:38:59 +0000381 // "main" is not mangled.
382 if (FD->isMain())
Rafael Espindolad2fdd422013-02-14 01:47:04 +0000383 return false;
384
385 // C++ functions and those whose names are not a simple identifier need
386 // mangling.
387 if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
388 return true;
Rafael Espindola747836e2013-02-14 03:31:26 +0000389
Rafael Espindola83dece52013-02-14 15:38:59 +0000390 // C functions are not mangled.
391 if (L == CLanguageLinkage)
392 return false;
Rafael Espindolad2fdd422013-02-14 01:47:04 +0000393 }
Guy Benyei7f92f2d2012-12-18 14:30:41 +0000394
395 // Otherwise, no mangling is done outside C++ mode.
396 if (!getASTContext().getLangOpts().CPlusPlus)
397 return false;
398
Rafael Espindolad2fdd422013-02-14 01:47:04 +0000399 const VarDecl *VD = dyn_cast<VarDecl>(D);
400 if (VD) {
401 // C variables are not mangled.
402 if (VD->isExternC())
403 return false;
404
405 // Variables at global scope with non-internal linkage are not mangled
Guy Benyei7f92f2d2012-12-18 14:30:41 +0000406 const DeclContext *DC = getEffectiveDeclContext(D);
407 // Check for extern variable declared locally.
408 if (DC->isFunctionOrMethod() && D->hasLinkage())
409 while (!DC->isNamespace() && !DC->isTranslationUnit())
410 DC = getEffectiveParentContext(DC);
Rafael Espindola181e3ec2013-05-13 00:12:11 +0000411 if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage)
Guy Benyei7f92f2d2012-12-18 14:30:41 +0000412 return false;
413 }
414
Guy Benyei7f92f2d2012-12-18 14:30:41 +0000415 return true;
416}
417
418void CXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) {
419 // Any decl can be declared with __asm("foo") on it, and this takes precedence
420 // over all other naming in the .o file.
421 if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) {
422 // If we have an asm name, then we use it as the mangling.
423
424 // Adding the prefix can cause problems when one file has a "foo" and
425 // another has a "\01foo". That is known to happen on ELF with the
426 // tricks normally used for producing aliases (PR9177). Fortunately the
427 // llvm mangler on ELF is a nop, so we can just avoid adding the \01
428 // marker. We also avoid adding the marker if this is an alias for an
429 // LLVM intrinsic.
430 StringRef UserLabelPrefix =
431 getASTContext().getTargetInfo().getUserLabelPrefix();
432 if (!UserLabelPrefix.empty() && !ALA->getLabel().startswith("llvm."))
433 Out << '\01'; // LLVM IR Marker for __asm("foo")
434
435 Out << ALA->getLabel();
436 return;
437 }
438
439 // <mangled-name> ::= _Z <encoding>
440 // ::= <data name>
441 // ::= <special-name>
442 Out << Prefix;
443 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
444 mangleFunctionEncoding(FD);
445 else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
446 mangleName(VD);
447 else
448 mangleName(cast<FieldDecl>(D));
449}
450
451void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
452 // <encoding> ::= <function name> <bare-function-type>
453 mangleName(FD);
454
455 // Don't mangle in the type if this isn't a decl we should typically mangle.
456 if (!Context.shouldMangleDeclName(FD))
457 return;
458
459 // Whether the mangling of a function type includes the return type depends on
460 // the context and the nature of the function. The rules for deciding whether
461 // the return type is included are:
462 //
463 // 1. Template functions (names or types) have return types encoded, with
464 // the exceptions listed below.
465 // 2. Function types not appearing as part of a function name mangling,
466 // e.g. parameters, pointer types, etc., have return type encoded, with the
467 // exceptions listed below.
468 // 3. Non-template function names do not have return types encoded.
469 //
470 // The exceptions mentioned in (1) and (2) above, for which the return type is
471 // never included, are
472 // 1. Constructors.
473 // 2. Destructors.
474 // 3. Conversion operator functions, e.g. operator int.
475 bool MangleReturnType = false;
476 if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
477 if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
478 isa<CXXConversionDecl>(FD)))
479 MangleReturnType = true;
480
481 // Mangle the type of the primary template.
482 FD = PrimaryTemplate->getTemplatedDecl();
483 }
484
485 mangleBareFunctionType(FD->getType()->getAs<FunctionType>(),
486 MangleReturnType);
487}
488
489static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
490 while (isa<LinkageSpecDecl>(DC)) {
491 DC = getEffectiveParentContext(DC);
492 }
493
494 return DC;
495}
496
497/// isStd - Return whether a given namespace is the 'std' namespace.
498static bool isStd(const NamespaceDecl *NS) {
499 if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
500 ->isTranslationUnit())
501 return false;
502
503 const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
504 return II && II->isStr("std");
505}
506
507// isStdNamespace - Return whether a given decl context is a toplevel 'std'
508// namespace.
509static bool isStdNamespace(const DeclContext *DC) {
510 if (!DC->isNamespace())
511 return false;
512
513 return isStd(cast<NamespaceDecl>(DC));
514}
515
516static const TemplateDecl *
517isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
518 // Check if we have a function template.
519 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
520 if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
521 TemplateArgs = FD->getTemplateSpecializationArgs();
522 return TD;
523 }
524 }
525
526 // Check if we have a class template.
527 if (const ClassTemplateSpecializationDecl *Spec =
528 dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
529 TemplateArgs = &Spec->getTemplateArgs();
530 return Spec->getSpecializedTemplate();
531 }
532
533 return 0;
534}
535
536static bool isLambda(const NamedDecl *ND) {
537 const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
538 if (!Record)
539 return false;
540
541 return Record->isLambda();
542}
543
544void CXXNameMangler::mangleName(const NamedDecl *ND) {
545 // <name> ::= <nested-name>
546 // ::= <unscoped-name>
547 // ::= <unscoped-template-name> <template-args>
548 // ::= <local-name>
549 //
550 const DeclContext *DC = getEffectiveDeclContext(ND);
551
552 // If this is an extern variable declared locally, the relevant DeclContext
553 // is that of the containing namespace, or the translation unit.
554 // FIXME: This is a hack; extern variables declared locally should have
555 // a proper semantic declaration context!
556 if (isa<FunctionDecl>(DC) && ND->hasLinkage() && !isLambda(ND))
557 while (!DC->isNamespace() && !DC->isTranslationUnit())
558 DC = getEffectiveParentContext(DC);
559 else if (GetLocalClassDecl(ND)) {
560 mangleLocalName(ND);
561 return;
562 }
563
564 DC = IgnoreLinkageSpecDecls(DC);
565
566 if (DC->isTranslationUnit() || isStdNamespace(DC)) {
567 // Check if we have a template.
568 const TemplateArgumentList *TemplateArgs = 0;
569 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
570 mangleUnscopedTemplateName(TD);
571 mangleTemplateArgs(*TemplateArgs);
572 return;
573 }
574
575 mangleUnscopedName(ND);
576 return;
577 }
578
579 if (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)) {
580 mangleLocalName(ND);
581 return;
582 }
583
584 mangleNestedName(ND, DC);
585}
586void CXXNameMangler::mangleName(const TemplateDecl *TD,
587 const TemplateArgument *TemplateArgs,
588 unsigned NumTemplateArgs) {
589 const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
590
591 if (DC->isTranslationUnit() || isStdNamespace(DC)) {
592 mangleUnscopedTemplateName(TD);
593 mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
594 } else {
595 mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
596 }
597}
598
599void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) {
600 // <unscoped-name> ::= <unqualified-name>
601 // ::= St <unqualified-name> # ::std::
602
603 if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
604 Out << "St";
605
606 mangleUnqualifiedName(ND);
607}
608
609void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) {
610 // <unscoped-template-name> ::= <unscoped-name>
611 // ::= <substitution>
612 if (mangleSubstitution(ND))
613 return;
614
615 // <template-template-param> ::= <template-param>
616 if (const TemplateTemplateParmDecl *TTP
617 = dyn_cast<TemplateTemplateParmDecl>(ND)) {
618 mangleTemplateParameter(TTP->getIndex());
619 return;
620 }
621
622 mangleUnscopedName(ND->getTemplatedDecl());
623 addSubstitution(ND);
624}
625
626void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) {
627 // <unscoped-template-name> ::= <unscoped-name>
628 // ::= <substitution>
629 if (TemplateDecl *TD = Template.getAsTemplateDecl())
630 return mangleUnscopedTemplateName(TD);
631
632 if (mangleSubstitution(Template))
633 return;
634
635 DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
636 assert(Dependent && "Not a dependent template name?");
637 if (const IdentifierInfo *Id = Dependent->getIdentifier())
638 mangleSourceName(Id);
639 else
640 mangleOperatorName(Dependent->getOperator(), UnknownArity);
641
642 addSubstitution(Template);
643}
644
645void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
646 // ABI:
647 // Floating-point literals are encoded using a fixed-length
648 // lowercase hexadecimal string corresponding to the internal
649 // representation (IEEE on Itanium), high-order bytes first,
650 // without leading zeroes. For example: "Lf bf800000 E" is -1.0f
651 // on Itanium.
652 // The 'without leading zeroes' thing seems to be an editorial
653 // mistake; see the discussion on cxx-abi-dev beginning on
654 // 2012-01-16.
655
656 // Our requirements here are just barely weird enough to justify
657 // using a custom algorithm instead of post-processing APInt::toString().
658
659 llvm::APInt valueBits = f.bitcastToAPInt();
660 unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
661 assert(numCharacters != 0);
662
663 // Allocate a buffer of the right number of characters.
Dmitri Gribenkocfa88f82013-01-12 19:30:44 +0000664 SmallVector<char, 20> buffer;
Guy Benyei7f92f2d2012-12-18 14:30:41 +0000665 buffer.set_size(numCharacters);
666
667 // Fill the buffer left-to-right.
668 for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
669 // The bit-index of the next hex digit.
670 unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
671
672 // Project out 4 bits starting at 'digitIndex'.
673 llvm::integerPart hexDigit
674 = valueBits.getRawData()[digitBitIndex / llvm::integerPartWidth];
675 hexDigit >>= (digitBitIndex % llvm::integerPartWidth);
676 hexDigit &= 0xF;
677
678 // Map that over to a lowercase hex digit.
679 static const char charForHex[16] = {
680 '0', '1', '2', '3', '4', '5', '6', '7',
681 '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
682 };
683 buffer[stringIndex] = charForHex[hexDigit];
684 }
685
686 Out.write(buffer.data(), numCharacters);
687}
688
689void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
690 if (Value.isSigned() && Value.isNegative()) {
691 Out << 'n';
692 Value.abs().print(Out, /*signed*/ false);
693 } else {
694 Value.print(Out, /*signed*/ false);
695 }
696}
697
698void CXXNameMangler::mangleNumber(int64_t Number) {
699 // <number> ::= [n] <non-negative decimal integer>
700 if (Number < 0) {
701 Out << 'n';
702 Number = -Number;
703 }
704
705 Out << Number;
706}
707
708void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
709 // <call-offset> ::= h <nv-offset> _
710 // ::= v <v-offset> _
711 // <nv-offset> ::= <offset number> # non-virtual base override
712 // <v-offset> ::= <offset number> _ <virtual offset number>
713 // # virtual base override, with vcall offset
714 if (!Virtual) {
715 Out << 'h';
716 mangleNumber(NonVirtual);
717 Out << '_';
718 return;
719 }
720
721 Out << 'v';
722 mangleNumber(NonVirtual);
723 Out << '_';
724 mangleNumber(Virtual);
725 Out << '_';
726}
727
728void CXXNameMangler::manglePrefix(QualType type) {
729 if (const TemplateSpecializationType *TST =
730 type->getAs<TemplateSpecializationType>()) {
731 if (!mangleSubstitution(QualType(TST, 0))) {
732 mangleTemplatePrefix(TST->getTemplateName());
733
734 // FIXME: GCC does not appear to mangle the template arguments when
735 // the template in question is a dependent template name. Should we
736 // emulate that badness?
737 mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
738 addSubstitution(QualType(TST, 0));
739 }
740 } else if (const DependentTemplateSpecializationType *DTST
741 = type->getAs<DependentTemplateSpecializationType>()) {
742 TemplateName Template
743 = getASTContext().getDependentTemplateName(DTST->getQualifier(),
744 DTST->getIdentifier());
745 mangleTemplatePrefix(Template);
746
747 // FIXME: GCC does not appear to mangle the template arguments when
748 // the template in question is a dependent template name. Should we
749 // emulate that badness?
750 mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
751 } else {
752 // We use the QualType mangle type variant here because it handles
753 // substitutions.
754 mangleType(type);
755 }
756}
757
758/// Mangle everything prior to the base-unresolved-name in an unresolved-name.
759///
760/// \param firstQualifierLookup - the entity found by unqualified lookup
761/// for the first name in the qualifier, if this is for a member expression
762/// \param recursive - true if this is being called recursively,
763/// i.e. if there is more prefix "to the right".
764void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
765 NamedDecl *firstQualifierLookup,
766 bool recursive) {
767
768 // x, ::x
769 // <unresolved-name> ::= [gs] <base-unresolved-name>
770
771 // T::x / decltype(p)::x
772 // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
773
774 // T::N::x /decltype(p)::N::x
775 // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
776 // <base-unresolved-name>
777
778 // A::x, N::y, A<T>::z; "gs" means leading "::"
779 // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
780 // <base-unresolved-name>
781
782 switch (qualifier->getKind()) {
783 case NestedNameSpecifier::Global:
784 Out << "gs";
785
786 // We want an 'sr' unless this is the entire NNS.
787 if (recursive)
788 Out << "sr";
789
790 // We never want an 'E' here.
791 return;
792
793 case NestedNameSpecifier::Namespace:
794 if (qualifier->getPrefix())
795 mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
796 /*recursive*/ true);
797 else
798 Out << "sr";
799 mangleSourceName(qualifier->getAsNamespace()->getIdentifier());
800 break;
801 case NestedNameSpecifier::NamespaceAlias:
802 if (qualifier->getPrefix())
803 mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
804 /*recursive*/ true);
805 else
806 Out << "sr";
807 mangleSourceName(qualifier->getAsNamespaceAlias()->getIdentifier());
808 break;
809
810 case NestedNameSpecifier::TypeSpec:
811 case NestedNameSpecifier::TypeSpecWithTemplate: {
812 const Type *type = qualifier->getAsType();
813
814 // We only want to use an unresolved-type encoding if this is one of:
815 // - a decltype
816 // - a template type parameter
817 // - a template template parameter with arguments
818 // In all of these cases, we should have no prefix.
819 if (qualifier->getPrefix()) {
820 mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
821 /*recursive*/ true);
822 } else {
823 // Otherwise, all the cases want this.
824 Out << "sr";
825 }
826
827 // Only certain other types are valid as prefixes; enumerate them.
828 switch (type->getTypeClass()) {
829 case Type::Builtin:
830 case Type::Complex:
Reid Kleckner12df2462013-06-24 17:51:48 +0000831 case Type::Decayed:
Guy Benyei7f92f2d2012-12-18 14:30:41 +0000832 case Type::Pointer:
833 case Type::BlockPointer:
834 case Type::LValueReference:
835 case Type::RValueReference:
836 case Type::MemberPointer:
837 case Type::ConstantArray:
838 case Type::IncompleteArray:
839 case Type::VariableArray:
840 case Type::DependentSizedArray:
841 case Type::DependentSizedExtVector:
842 case Type::Vector:
843 case Type::ExtVector:
844 case Type::FunctionProto:
845 case Type::FunctionNoProto:
846 case Type::Enum:
847 case Type::Paren:
848 case Type::Elaborated:
849 case Type::Attributed:
850 case Type::Auto:
851 case Type::PackExpansion:
852 case Type::ObjCObject:
853 case Type::ObjCInterface:
854 case Type::ObjCObjectPointer:
855 case Type::Atomic:
856 llvm_unreachable("type is illegal as a nested name specifier");
857
858 case Type::SubstTemplateTypeParmPack:
859 // FIXME: not clear how to mangle this!
860 // template <class T...> class A {
861 // template <class U...> void foo(decltype(T::foo(U())) x...);
862 // };
863 Out << "_SUBSTPACK_";
864 break;
865
866 // <unresolved-type> ::= <template-param>
867 // ::= <decltype>
868 // ::= <template-template-param> <template-args>
869 // (this last is not official yet)
870 case Type::TypeOfExpr:
871 case Type::TypeOf:
872 case Type::Decltype:
873 case Type::TemplateTypeParm:
874 case Type::UnaryTransform:
875 case Type::SubstTemplateTypeParm:
876 unresolvedType:
877 assert(!qualifier->getPrefix());
878
879 // We only get here recursively if we're followed by identifiers.
880 if (recursive) Out << 'N';
881
882 // This seems to do everything we want. It's not really
883 // sanctioned for a substituted template parameter, though.
884 mangleType(QualType(type, 0));
885
886 // We never want to print 'E' directly after an unresolved-type,
887 // so we return directly.
888 return;
889
890 case Type::Typedef:
891 mangleSourceName(cast<TypedefType>(type)->getDecl()->getIdentifier());
892 break;
893
894 case Type::UnresolvedUsing:
895 mangleSourceName(cast<UnresolvedUsingType>(type)->getDecl()
896 ->getIdentifier());
897 break;
898
899 case Type::Record:
900 mangleSourceName(cast<RecordType>(type)->getDecl()->getIdentifier());
901 break;
902
903 case Type::TemplateSpecialization: {
904 const TemplateSpecializationType *tst
905 = cast<TemplateSpecializationType>(type);
906 TemplateName name = tst->getTemplateName();
907 switch (name.getKind()) {
908 case TemplateName::Template:
909 case TemplateName::QualifiedTemplate: {
910 TemplateDecl *temp = name.getAsTemplateDecl();
911
912 // If the base is a template template parameter, this is an
913 // unresolved type.
914 assert(temp && "no template for template specialization type");
915 if (isa<TemplateTemplateParmDecl>(temp)) goto unresolvedType;
916
917 mangleSourceName(temp->getIdentifier());
918 break;
919 }
920
921 case TemplateName::OverloadedTemplate:
922 case TemplateName::DependentTemplate:
923 llvm_unreachable("invalid base for a template specialization type");
924
925 case TemplateName::SubstTemplateTemplateParm: {
926 SubstTemplateTemplateParmStorage *subst
927 = name.getAsSubstTemplateTemplateParm();
928 mangleExistingSubstitution(subst->getReplacement());
929 break;
930 }
931
932 case TemplateName::SubstTemplateTemplateParmPack: {
933 // FIXME: not clear how to mangle this!
934 // template <template <class U> class T...> class A {
935 // template <class U...> void foo(decltype(T<U>::foo) x...);
936 // };
937 Out << "_SUBSTPACK_";
938 break;
939 }
940 }
941
942 mangleTemplateArgs(tst->getArgs(), tst->getNumArgs());
943 break;
944 }
945
946 case Type::InjectedClassName:
947 mangleSourceName(cast<InjectedClassNameType>(type)->getDecl()
948 ->getIdentifier());
949 break;
950
951 case Type::DependentName:
952 mangleSourceName(cast<DependentNameType>(type)->getIdentifier());
953 break;
954
955 case Type::DependentTemplateSpecialization: {
956 const DependentTemplateSpecializationType *tst
957 = cast<DependentTemplateSpecializationType>(type);
958 mangleSourceName(tst->getIdentifier());
959 mangleTemplateArgs(tst->getArgs(), tst->getNumArgs());
960 break;
961 }
962 }
963 break;
964 }
965
966 case NestedNameSpecifier::Identifier:
967 // Member expressions can have these without prefixes.
968 if (qualifier->getPrefix()) {
969 mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
970 /*recursive*/ true);
971 } else if (firstQualifierLookup) {
972
973 // Try to make a proper qualifier out of the lookup result, and
974 // then just recurse on that.
975 NestedNameSpecifier *newQualifier;
976 if (TypeDecl *typeDecl = dyn_cast<TypeDecl>(firstQualifierLookup)) {
977 QualType type = getASTContext().getTypeDeclType(typeDecl);
978
979 // Pretend we had a different nested name specifier.
980 newQualifier = NestedNameSpecifier::Create(getASTContext(),
981 /*prefix*/ 0,
982 /*template*/ false,
983 type.getTypePtr());
984 } else if (NamespaceDecl *nspace =
985 dyn_cast<NamespaceDecl>(firstQualifierLookup)) {
986 newQualifier = NestedNameSpecifier::Create(getASTContext(),
987 /*prefix*/ 0,
988 nspace);
989 } else if (NamespaceAliasDecl *alias =
990 dyn_cast<NamespaceAliasDecl>(firstQualifierLookup)) {
991 newQualifier = NestedNameSpecifier::Create(getASTContext(),
992 /*prefix*/ 0,
993 alias);
994 } else {
995 // No sensible mangling to do here.
996 newQualifier = 0;
997 }
998
999 if (newQualifier)
1000 return mangleUnresolvedPrefix(newQualifier, /*lookup*/ 0, recursive);
1001
1002 } else {
1003 Out << "sr";
1004 }
1005
1006 mangleSourceName(qualifier->getAsIdentifier());
1007 break;
1008 }
1009
1010 // If this was the innermost part of the NNS, and we fell out to
1011 // here, append an 'E'.
1012 if (!recursive)
1013 Out << 'E';
1014}
1015
1016/// Mangle an unresolved-name, which is generally used for names which
1017/// weren't resolved to specific entities.
1018void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *qualifier,
1019 NamedDecl *firstQualifierLookup,
1020 DeclarationName name,
1021 unsigned knownArity) {
1022 if (qualifier) mangleUnresolvedPrefix(qualifier, firstQualifierLookup);
1023 mangleUnqualifiedName(0, name, knownArity);
1024}
1025
1026static const FieldDecl *FindFirstNamedDataMember(const RecordDecl *RD) {
1027 assert(RD->isAnonymousStructOrUnion() &&
1028 "Expected anonymous struct or union!");
1029
1030 for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
1031 I != E; ++I) {
1032 if (I->getIdentifier())
1033 return *I;
1034
1035 if (const RecordType *RT = I->getType()->getAs<RecordType>())
1036 if (const FieldDecl *NamedDataMember =
1037 FindFirstNamedDataMember(RT->getDecl()))
1038 return NamedDataMember;
1039 }
1040
1041 // We didn't find a named data member.
1042 return 0;
1043}
1044
1045void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
1046 DeclarationName Name,
1047 unsigned KnownArity) {
1048 // <unqualified-name> ::= <operator-name>
1049 // ::= <ctor-dtor-name>
1050 // ::= <source-name>
1051 switch (Name.getNameKind()) {
1052 case DeclarationName::Identifier: {
1053 if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
1054 // We must avoid conflicts between internally- and externally-
1055 // linked variable and function declaration names in the same TU:
1056 // void test() { extern void foo(); }
1057 // static void foo();
1058 // This naming convention is the same as that followed by GCC,
1059 // though it shouldn't actually matter.
Rafael Espindola181e3ec2013-05-13 00:12:11 +00001060 if (ND && ND->getFormalLinkage() == InternalLinkage &&
Guy Benyei7f92f2d2012-12-18 14:30:41 +00001061 getEffectiveDeclContext(ND)->isFileContext())
1062 Out << 'L';
1063
1064 mangleSourceName(II);
1065 break;
1066 }
1067
1068 // Otherwise, an anonymous entity. We must have a declaration.
1069 assert(ND && "mangling empty name without declaration");
1070
1071 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
1072 if (NS->isAnonymousNamespace()) {
1073 // This is how gcc mangles these names.
1074 Out << "12_GLOBAL__N_1";
1075 break;
1076 }
1077 }
1078
1079 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1080 // We must have an anonymous union or struct declaration.
1081 const RecordDecl *RD =
1082 cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl());
1083
1084 // Itanium C++ ABI 5.1.2:
1085 //
1086 // For the purposes of mangling, the name of an anonymous union is
1087 // considered to be the name of the first named data member found by a
1088 // pre-order, depth-first, declaration-order walk of the data members of
1089 // the anonymous union. If there is no such data member (i.e., if all of
1090 // the data members in the union are unnamed), then there is no way for
1091 // a program to refer to the anonymous union, and there is therefore no
1092 // need to mangle its name.
1093 const FieldDecl *FD = FindFirstNamedDataMember(RD);
1094
1095 // It's actually possible for various reasons for us to get here
1096 // with an empty anonymous struct / union. Fortunately, it
1097 // doesn't really matter what name we generate.
1098 if (!FD) break;
1099 assert(FD->getIdentifier() && "Data member name isn't an identifier!");
1100
1101 mangleSourceName(FD->getIdentifier());
1102 break;
1103 }
John McCall0baaabb2013-04-10 06:08:21 +00001104
1105 // Class extensions have no name as a category, and it's possible
1106 // for them to be the semantic parent of certain declarations
1107 // (primarily, tag decls defined within declarations). Such
1108 // declarations will always have internal linkage, so the name
1109 // doesn't really matter, but we shouldn't crash on them. For
1110 // safety, just handle all ObjC containers here.
1111 if (isa<ObjCContainerDecl>(ND))
1112 break;
Guy Benyei7f92f2d2012-12-18 14:30:41 +00001113
1114 // We must have an anonymous struct.
1115 const TagDecl *TD = cast<TagDecl>(ND);
1116 if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1117 assert(TD->getDeclContext() == D->getDeclContext() &&
1118 "Typedef should not be in another decl context!");
1119 assert(D->getDeclName().getAsIdentifierInfo() &&
1120 "Typedef was not named!");
1121 mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1122 break;
1123 }
1124
1125 // <unnamed-type-name> ::= <closure-type-name>
1126 //
1127 // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
1128 // <lambda-sig> ::= <parameter-type>+ # Parameter types or 'v' for 'void'.
1129 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1130 if (Record->isLambda() && Record->getLambdaManglingNumber()) {
1131 mangleLambda(Record);
1132 break;
1133 }
1134 }
1135
1136 int UnnamedMangle = Context.getASTContext().getUnnamedTagManglingNumber(TD);
1137 if (UnnamedMangle != -1) {
1138 Out << "Ut";
1139 if (UnnamedMangle != 0)
1140 Out << llvm::utostr(UnnamedMangle - 1);
1141 Out << '_';
1142 break;
1143 }
1144
1145 // Get a unique id for the anonymous struct.
1146 uint64_t AnonStructId = Context.getAnonymousStructId(TD);
1147
1148 // Mangle it as a source name in the form
1149 // [n] $_<id>
1150 // where n is the length of the string.
1151 SmallString<8> Str;
1152 Str += "$_";
1153 Str += llvm::utostr(AnonStructId);
1154
1155 Out << Str.size();
1156 Out << Str.str();
1157 break;
1158 }
1159
1160 case DeclarationName::ObjCZeroArgSelector:
1161 case DeclarationName::ObjCOneArgSelector:
1162 case DeclarationName::ObjCMultiArgSelector:
1163 llvm_unreachable("Can't mangle Objective-C selector names here!");
1164
1165 case DeclarationName::CXXConstructorName:
1166 if (ND == Structor)
1167 // If the named decl is the C++ constructor we're mangling, use the type
1168 // we were given.
1169 mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));
1170 else
1171 // Otherwise, use the complete constructor name. This is relevant if a
1172 // class with a constructor is declared within a constructor.
1173 mangleCXXCtorType(Ctor_Complete);
1174 break;
1175
1176 case DeclarationName::CXXDestructorName:
1177 if (ND == Structor)
1178 // If the named decl is the C++ destructor we're mangling, use the type we
1179 // were given.
1180 mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1181 else
1182 // Otherwise, use the complete destructor name. This is relevant if a
1183 // class with a destructor is declared within a destructor.
1184 mangleCXXDtorType(Dtor_Complete);
1185 break;
1186
1187 case DeclarationName::CXXConversionFunctionName:
1188 // <operator-name> ::= cv <type> # (cast)
1189 Out << "cv";
1190 mangleType(Name.getCXXNameType());
1191 break;
1192
1193 case DeclarationName::CXXOperatorName: {
1194 unsigned Arity;
1195 if (ND) {
1196 Arity = cast<FunctionDecl>(ND)->getNumParams();
1197
1198 // If we have a C++ member function, we need to include the 'this' pointer.
1199 // FIXME: This does not make sense for operators that are static, but their
1200 // names stay the same regardless of the arity (operator new for instance).
1201 if (isa<CXXMethodDecl>(ND))
1202 Arity++;
1203 } else
1204 Arity = KnownArity;
1205
1206 mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
1207 break;
1208 }
1209
1210 case DeclarationName::CXXLiteralOperatorName:
1211 // FIXME: This mangling is not yet official.
1212 Out << "li";
1213 mangleSourceName(Name.getCXXLiteralIdentifier());
1214 break;
1215
1216 case DeclarationName::CXXUsingDirective:
1217 llvm_unreachable("Can't mangle a using directive name!");
1218 }
1219}
1220
1221void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1222 // <source-name> ::= <positive length number> <identifier>
1223 // <number> ::= [n] <non-negative decimal integer>
1224 // <identifier> ::= <unqualified source code identifier>
1225 Out << II->getLength() << II->getName();
1226}
1227
1228void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
1229 const DeclContext *DC,
1230 bool NoFunction) {
1231 // <nested-name>
1232 // ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1233 // ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
1234 // <template-args> E
1235
1236 Out << 'N';
1237 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
1238 mangleQualifiers(Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
1239 mangleRefQualifier(Method->getRefQualifier());
1240 }
1241
1242 // Check if we have a template.
1243 const TemplateArgumentList *TemplateArgs = 0;
1244 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1245 mangleTemplatePrefix(TD);
1246 mangleTemplateArgs(*TemplateArgs);
1247 }
1248 else {
1249 manglePrefix(DC, NoFunction);
1250 mangleUnqualifiedName(ND);
1251 }
1252
1253 Out << 'E';
1254}
1255void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1256 const TemplateArgument *TemplateArgs,
1257 unsigned NumTemplateArgs) {
1258 // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1259
1260 Out << 'N';
1261
1262 mangleTemplatePrefix(TD);
1263 mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
1264
1265 Out << 'E';
1266}
1267
1268void CXXNameMangler::mangleLocalName(const NamedDecl *ND) {
1269 // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1270 // := Z <function encoding> E s [<discriminator>]
1271 // <local-name> := Z <function encoding> E d [ <parameter number> ]
1272 // _ <entity name>
1273 // <discriminator> := _ <non-negative number>
1274 const DeclContext *DC = getEffectiveDeclContext(ND);
1275 if (isa<ObjCMethodDecl>(DC) && isa<FunctionDecl>(ND)) {
1276 // Don't add objc method name mangling to locally declared function
1277 mangleUnqualifiedName(ND);
1278 return;
1279 }
1280
1281 Out << 'Z';
1282
1283 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC)) {
1284 mangleObjCMethodName(MD);
1285 } else if (const CXXRecordDecl *RD = GetLocalClassDecl(ND)) {
1286 mangleFunctionEncoding(cast<FunctionDecl>(getEffectiveDeclContext(RD)));
1287 Out << 'E';
1288
1289 // The parameter number is omitted for the last parameter, 0 for the
1290 // second-to-last parameter, 1 for the third-to-last parameter, etc. The
1291 // <entity name> will of course contain a <closure-type-name>: Its
1292 // numbering will be local to the particular argument in which it appears
1293 // -- other default arguments do not affect its encoding.
1294 bool SkipDiscriminator = false;
1295 if (RD->isLambda()) {
1296 if (const ParmVarDecl *Parm
1297 = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl())) {
1298 if (const FunctionDecl *Func
1299 = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1300 Out << 'd';
1301 unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1302 if (Num > 1)
1303 mangleNumber(Num - 2);
1304 Out << '_';
1305 SkipDiscriminator = true;
1306 }
1307 }
1308 }
1309
1310 // Mangle the name relative to the closest enclosing function.
1311 if (ND == RD) // equality ok because RD derived from ND above
1312 mangleUnqualifiedName(ND);
1313 else
1314 mangleNestedName(ND, DC, true /*NoFunction*/);
1315
1316 if (!SkipDiscriminator) {
1317 unsigned disc;
1318 if (Context.getNextDiscriminator(RD, disc)) {
1319 if (disc < 10)
1320 Out << '_' << disc;
1321 else
1322 Out << "__" << disc << '_';
1323 }
1324 }
1325
1326 return;
1327 }
1328 else
1329 mangleFunctionEncoding(cast<FunctionDecl>(DC));
1330
1331 Out << 'E';
1332 mangleUnqualifiedName(ND);
1333}
1334
1335void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
1336 // If the context of a closure type is an initializer for a class member
1337 // (static or nonstatic), it is encoded in a qualified name with a final
1338 // <prefix> of the form:
1339 //
1340 // <data-member-prefix> := <member source-name> M
1341 //
1342 // Technically, the data-member-prefix is part of the <prefix>. However,
1343 // since a closure type will always be mangled with a prefix, it's easier
1344 // to emit that last part of the prefix here.
1345 if (Decl *Context = Lambda->getLambdaContextDecl()) {
1346 if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1347 Context->getDeclContext()->isRecord()) {
1348 if (const IdentifierInfo *Name
1349 = cast<NamedDecl>(Context)->getIdentifier()) {
1350 mangleSourceName(Name);
1351 Out << 'M';
1352 }
1353 }
1354 }
1355
1356 Out << "Ul";
1357 const FunctionProtoType *Proto = Lambda->getLambdaTypeInfo()->getType()->
1358 getAs<FunctionProtoType>();
1359 mangleBareFunctionType(Proto, /*MangleReturnType=*/false);
1360 Out << "E";
1361
1362 // The number is omitted for the first closure type with a given
1363 // <lambda-sig> in a given context; it is n-2 for the nth closure type
1364 // (in lexical order) with that same <lambda-sig> and context.
1365 //
1366 // The AST keeps track of the number for us.
1367 unsigned Number = Lambda->getLambdaManglingNumber();
1368 assert(Number > 0 && "Lambda should be mangled as an unnamed class");
1369 if (Number > 1)
1370 mangleNumber(Number - 2);
1371 Out << '_';
1372}
1373
1374void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
1375 switch (qualifier->getKind()) {
1376 case NestedNameSpecifier::Global:
1377 // nothing
1378 return;
1379
1380 case NestedNameSpecifier::Namespace:
1381 mangleName(qualifier->getAsNamespace());
1382 return;
1383
1384 case NestedNameSpecifier::NamespaceAlias:
1385 mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
1386 return;
1387
1388 case NestedNameSpecifier::TypeSpec:
1389 case NestedNameSpecifier::TypeSpecWithTemplate:
1390 manglePrefix(QualType(qualifier->getAsType(), 0));
1391 return;
1392
1393 case NestedNameSpecifier::Identifier:
1394 // Member expressions can have these without prefixes, but that
1395 // should end up in mangleUnresolvedPrefix instead.
1396 assert(qualifier->getPrefix());
1397 manglePrefix(qualifier->getPrefix());
1398
1399 mangleSourceName(qualifier->getAsIdentifier());
1400 return;
1401 }
1402
1403 llvm_unreachable("unexpected nested name specifier");
1404}
1405
1406void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
1407 // <prefix> ::= <prefix> <unqualified-name>
1408 // ::= <template-prefix> <template-args>
1409 // ::= <template-param>
1410 // ::= # empty
1411 // ::= <substitution>
1412
1413 DC = IgnoreLinkageSpecDecls(DC);
1414
1415 if (DC->isTranslationUnit())
1416 return;
1417
1418 if (const BlockDecl *Block = dyn_cast<BlockDecl>(DC)) {
Eli Friedman07369dd2013-07-01 20:22:57 +00001419 // Reflect the lambda mangling rules, except that we don't have an
1420 // actual function declaration.
1421 if (NoFunction)
1422 return;
1423
1424 manglePrefix(getEffectiveParentContext(DC), NoFunction);
1425 // If we have a block mangling number, use it.
1426 unsigned Number = Block->getBlockManglingNumber();
1427 // Otherwise, just make up a number. It doesn't matter what it is because
1428 // the symbol in question isn't externally visible.
1429 if (!Number)
1430 Number = Context.getBlockId(Block, false);
1431 Out << "Ub";
Eli Friedmanbace10c2013-06-24 20:24:19 +00001432 if (Number > 1)
Eli Friedman07369dd2013-07-01 20:22:57 +00001433 Out << Number - 2;
1434 Out << '_';
Guy Benyei7f92f2d2012-12-18 14:30:41 +00001435 return;
Ben Langmuir524387a2013-05-09 19:17:11 +00001436 } else if (isa<CapturedDecl>(DC)) {
1437 // Skip CapturedDecl context.
1438 manglePrefix(getEffectiveParentContext(DC), NoFunction);
1439 return;
Guy Benyei7f92f2d2012-12-18 14:30:41 +00001440 }
1441
1442 const NamedDecl *ND = cast<NamedDecl>(DC);
1443 if (mangleSubstitution(ND))
1444 return;
1445
1446 // Check if we have a template.
1447 const TemplateArgumentList *TemplateArgs = 0;
1448 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1449 mangleTemplatePrefix(TD);
1450 mangleTemplateArgs(*TemplateArgs);
1451 }
1452 else if(NoFunction && (isa<FunctionDecl>(ND) || isa<ObjCMethodDecl>(ND)))
1453 return;
1454 else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(ND))
1455 mangleObjCMethodName(Method);
1456 else {
1457 manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1458 mangleUnqualifiedName(ND);
1459 }
1460
1461 addSubstitution(ND);
1462}
1463
1464void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
1465 // <template-prefix> ::= <prefix> <template unqualified-name>
1466 // ::= <template-param>
1467 // ::= <substitution>
1468 if (TemplateDecl *TD = Template.getAsTemplateDecl())
1469 return mangleTemplatePrefix(TD);
1470
1471 if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
1472 manglePrefix(Qualified->getQualifier());
1473
1474 if (OverloadedTemplateStorage *Overloaded
1475 = Template.getAsOverloadedTemplate()) {
1476 mangleUnqualifiedName(0, (*Overloaded->begin())->getDeclName(),
1477 UnknownArity);
1478 return;
1479 }
1480
1481 DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
1482 assert(Dependent && "Unknown template name kind?");
1483 manglePrefix(Dependent->getQualifier());
1484 mangleUnscopedTemplateName(Template);
1485}
1486
1487void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND) {
1488 // <template-prefix> ::= <prefix> <template unqualified-name>
1489 // ::= <template-param>
1490 // ::= <substitution>
1491 // <template-template-param> ::= <template-param>
1492 // <substitution>
1493
1494 if (mangleSubstitution(ND))
1495 return;
1496
1497 // <template-template-param> ::= <template-param>
1498 if (const TemplateTemplateParmDecl *TTP
1499 = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1500 mangleTemplateParameter(TTP->getIndex());
1501 return;
1502 }
1503
1504 manglePrefix(getEffectiveDeclContext(ND));
1505 mangleUnqualifiedName(ND->getTemplatedDecl());
1506 addSubstitution(ND);
1507}
1508
1509/// Mangles a template name under the production <type>. Required for
1510/// template template arguments.
1511/// <type> ::= <class-enum-type>
1512/// ::= <template-param>
1513/// ::= <substitution>
1514void CXXNameMangler::mangleType(TemplateName TN) {
1515 if (mangleSubstitution(TN))
1516 return;
1517
1518 TemplateDecl *TD = 0;
1519
1520 switch (TN.getKind()) {
1521 case TemplateName::QualifiedTemplate:
1522 TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
1523 goto HaveDecl;
1524
1525 case TemplateName::Template:
1526 TD = TN.getAsTemplateDecl();
1527 goto HaveDecl;
1528
1529 HaveDecl:
1530 if (isa<TemplateTemplateParmDecl>(TD))
1531 mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
1532 else
1533 mangleName(TD);
1534 break;
1535
1536 case TemplateName::OverloadedTemplate:
1537 llvm_unreachable("can't mangle an overloaded template name as a <type>");
1538
1539 case TemplateName::DependentTemplate: {
1540 const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
1541 assert(Dependent->isIdentifier());
1542
1543 // <class-enum-type> ::= <name>
1544 // <name> ::= <nested-name>
1545 mangleUnresolvedPrefix(Dependent->getQualifier(), 0);
1546 mangleSourceName(Dependent->getIdentifier());
1547 break;
1548 }
1549
1550 case TemplateName::SubstTemplateTemplateParm: {
1551 // Substituted template parameters are mangled as the substituted
1552 // template. This will check for the substitution twice, which is
1553 // fine, but we have to return early so that we don't try to *add*
1554 // the substitution twice.
1555 SubstTemplateTemplateParmStorage *subst
1556 = TN.getAsSubstTemplateTemplateParm();
1557 mangleType(subst->getReplacement());
1558 return;
1559 }
1560
1561 case TemplateName::SubstTemplateTemplateParmPack: {
1562 // FIXME: not clear how to mangle this!
1563 // template <template <class> class T...> class A {
1564 // template <template <class> class U...> void foo(B<T,U> x...);
1565 // };
1566 Out << "_SUBSTPACK_";
1567 break;
1568 }
1569 }
1570
1571 addSubstitution(TN);
1572}
1573
1574void
1575CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
1576 switch (OO) {
1577 // <operator-name> ::= nw # new
1578 case OO_New: Out << "nw"; break;
1579 // ::= na # new[]
1580 case OO_Array_New: Out << "na"; break;
1581 // ::= dl # delete
1582 case OO_Delete: Out << "dl"; break;
1583 // ::= da # delete[]
1584 case OO_Array_Delete: Out << "da"; break;
1585 // ::= ps # + (unary)
1586 // ::= pl # + (binary or unknown)
1587 case OO_Plus:
1588 Out << (Arity == 1? "ps" : "pl"); break;
1589 // ::= ng # - (unary)
1590 // ::= mi # - (binary or unknown)
1591 case OO_Minus:
1592 Out << (Arity == 1? "ng" : "mi"); break;
1593 // ::= ad # & (unary)
1594 // ::= an # & (binary or unknown)
1595 case OO_Amp:
1596 Out << (Arity == 1? "ad" : "an"); break;
1597 // ::= de # * (unary)
1598 // ::= ml # * (binary or unknown)
1599 case OO_Star:
1600 // Use binary when unknown.
1601 Out << (Arity == 1? "de" : "ml"); break;
1602 // ::= co # ~
1603 case OO_Tilde: Out << "co"; break;
1604 // ::= dv # /
1605 case OO_Slash: Out << "dv"; break;
1606 // ::= rm # %
1607 case OO_Percent: Out << "rm"; break;
1608 // ::= or # |
1609 case OO_Pipe: Out << "or"; break;
1610 // ::= eo # ^
1611 case OO_Caret: Out << "eo"; break;
1612 // ::= aS # =
1613 case OO_Equal: Out << "aS"; break;
1614 // ::= pL # +=
1615 case OO_PlusEqual: Out << "pL"; break;
1616 // ::= mI # -=
1617 case OO_MinusEqual: Out << "mI"; break;
1618 // ::= mL # *=
1619 case OO_StarEqual: Out << "mL"; break;
1620 // ::= dV # /=
1621 case OO_SlashEqual: Out << "dV"; break;
1622 // ::= rM # %=
1623 case OO_PercentEqual: Out << "rM"; break;
1624 // ::= aN # &=
1625 case OO_AmpEqual: Out << "aN"; break;
1626 // ::= oR # |=
1627 case OO_PipeEqual: Out << "oR"; break;
1628 // ::= eO # ^=
1629 case OO_CaretEqual: Out << "eO"; break;
1630 // ::= ls # <<
1631 case OO_LessLess: Out << "ls"; break;
1632 // ::= rs # >>
1633 case OO_GreaterGreater: Out << "rs"; break;
1634 // ::= lS # <<=
1635 case OO_LessLessEqual: Out << "lS"; break;
1636 // ::= rS # >>=
1637 case OO_GreaterGreaterEqual: Out << "rS"; break;
1638 // ::= eq # ==
1639 case OO_EqualEqual: Out << "eq"; break;
1640 // ::= ne # !=
1641 case OO_ExclaimEqual: Out << "ne"; break;
1642 // ::= lt # <
1643 case OO_Less: Out << "lt"; break;
1644 // ::= gt # >
1645 case OO_Greater: Out << "gt"; break;
1646 // ::= le # <=
1647 case OO_LessEqual: Out << "le"; break;
1648 // ::= ge # >=
1649 case OO_GreaterEqual: Out << "ge"; break;
1650 // ::= nt # !
1651 case OO_Exclaim: Out << "nt"; break;
1652 // ::= aa # &&
1653 case OO_AmpAmp: Out << "aa"; break;
1654 // ::= oo # ||
1655 case OO_PipePipe: Out << "oo"; break;
1656 // ::= pp # ++
1657 case OO_PlusPlus: Out << "pp"; break;
1658 // ::= mm # --
1659 case OO_MinusMinus: Out << "mm"; break;
1660 // ::= cm # ,
1661 case OO_Comma: Out << "cm"; break;
1662 // ::= pm # ->*
1663 case OO_ArrowStar: Out << "pm"; break;
1664 // ::= pt # ->
1665 case OO_Arrow: Out << "pt"; break;
1666 // ::= cl # ()
1667 case OO_Call: Out << "cl"; break;
1668 // ::= ix # []
1669 case OO_Subscript: Out << "ix"; break;
1670
1671 // ::= qu # ?
1672 // The conditional operator can't be overloaded, but we still handle it when
1673 // mangling expressions.
1674 case OO_Conditional: Out << "qu"; break;
1675
1676 case OO_None:
1677 case NUM_OVERLOADED_OPERATORS:
1678 llvm_unreachable("Not an overloaded operator");
1679 }
1680}
1681
1682void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
1683 // <CV-qualifiers> ::= [r] [V] [K] # restrict (C99), volatile, const
1684 if (Quals.hasRestrict())
1685 Out << 'r';
1686 if (Quals.hasVolatile())
1687 Out << 'V';
1688 if (Quals.hasConst())
1689 Out << 'K';
1690
1691 if (Quals.hasAddressSpace()) {
1692 // Extension:
1693 //
1694 // <type> ::= U <address-space-number>
1695 //
1696 // where <address-space-number> is a source name consisting of 'AS'
1697 // followed by the address space <number>.
1698 SmallString<64> ASString;
Tanya Lattnerf21107b2013-02-08 01:07:32 +00001699 ASString = "AS" + llvm::utostr_32(
1700 Context.getASTContext().getTargetAddressSpace(Quals.getAddressSpace()));
Guy Benyei7f92f2d2012-12-18 14:30:41 +00001701 Out << 'U' << ASString.size() << ASString;
1702 }
1703
1704 StringRef LifetimeName;
1705 switch (Quals.getObjCLifetime()) {
1706 // Objective-C ARC Extension:
1707 //
1708 // <type> ::= U "__strong"
1709 // <type> ::= U "__weak"
1710 // <type> ::= U "__autoreleasing"
1711 case Qualifiers::OCL_None:
1712 break;
1713
1714 case Qualifiers::OCL_Weak:
1715 LifetimeName = "__weak";
1716 break;
1717
1718 case Qualifiers::OCL_Strong:
1719 LifetimeName = "__strong";
1720 break;
1721
1722 case Qualifiers::OCL_Autoreleasing:
1723 LifetimeName = "__autoreleasing";
1724 break;
1725
1726 case Qualifiers::OCL_ExplicitNone:
1727 // The __unsafe_unretained qualifier is *not* mangled, so that
1728 // __unsafe_unretained types in ARC produce the same manglings as the
1729 // equivalent (but, naturally, unqualified) types in non-ARC, providing
1730 // better ABI compatibility.
1731 //
1732 // It's safe to do this because unqualified 'id' won't show up
1733 // in any type signatures that need to be mangled.
1734 break;
1735 }
1736 if (!LifetimeName.empty())
1737 Out << 'U' << LifetimeName.size() << LifetimeName;
1738}
1739
1740void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
1741 // <ref-qualifier> ::= R # lvalue reference
1742 // ::= O # rvalue-reference
1743 // Proposal to Itanium C++ ABI list on 1/26/11
1744 switch (RefQualifier) {
1745 case RQ_None:
1746 break;
1747
1748 case RQ_LValue:
1749 Out << 'R';
1750 break;
1751
1752 case RQ_RValue:
1753 Out << 'O';
1754 break;
1755 }
1756}
1757
1758void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1759 Context.mangleObjCMethodName(MD, Out);
1760}
1761
1762void CXXNameMangler::mangleType(QualType T) {
1763 // If our type is instantiation-dependent but not dependent, we mangle
1764 // it as it was written in the source, removing any top-level sugar.
1765 // Otherwise, use the canonical type.
1766 //
1767 // FIXME: This is an approximation of the instantiation-dependent name
1768 // mangling rules, since we should really be using the type as written and
1769 // augmented via semantic analysis (i.e., with implicit conversions and
1770 // default template arguments) for any instantiation-dependent type.
1771 // Unfortunately, that requires several changes to our AST:
1772 // - Instantiation-dependent TemplateSpecializationTypes will need to be
1773 // uniqued, so that we can handle substitutions properly
1774 // - Default template arguments will need to be represented in the
1775 // TemplateSpecializationType, since they need to be mangled even though
1776 // they aren't written.
1777 // - Conversions on non-type template arguments need to be expressed, since
1778 // they can affect the mangling of sizeof/alignof.
1779 if (!T->isInstantiationDependentType() || T->isDependentType())
1780 T = T.getCanonicalType();
1781 else {
1782 // Desugar any types that are purely sugar.
1783 do {
1784 // Don't desugar through template specialization types that aren't
1785 // type aliases. We need to mangle the template arguments as written.
1786 if (const TemplateSpecializationType *TST
1787 = dyn_cast<TemplateSpecializationType>(T))
1788 if (!TST->isTypeAlias())
1789 break;
1790
1791 QualType Desugared
1792 = T.getSingleStepDesugaredType(Context.getASTContext());
1793 if (Desugared == T)
1794 break;
1795
1796 T = Desugared;
1797 } while (true);
1798 }
1799 SplitQualType split = T.split();
1800 Qualifiers quals = split.Quals;
1801 const Type *ty = split.Ty;
1802
1803 bool isSubstitutable = quals || !isa<BuiltinType>(T);
1804 if (isSubstitutable && mangleSubstitution(T))
1805 return;
1806
1807 // If we're mangling a qualified array type, push the qualifiers to
1808 // the element type.
1809 if (quals && isa<ArrayType>(T)) {
1810 ty = Context.getASTContext().getAsArrayType(T);
1811 quals = Qualifiers();
1812
1813 // Note that we don't update T: we want to add the
1814 // substitution at the original type.
1815 }
1816
1817 if (quals) {
1818 mangleQualifiers(quals);
1819 // Recurse: even if the qualified type isn't yet substitutable,
1820 // the unqualified type might be.
1821 mangleType(QualType(ty, 0));
1822 } else {
1823 switch (ty->getTypeClass()) {
1824#define ABSTRACT_TYPE(CLASS, PARENT)
1825#define NON_CANONICAL_TYPE(CLASS, PARENT) \
1826 case Type::CLASS: \
1827 llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
1828 return;
1829#define TYPE(CLASS, PARENT) \
1830 case Type::CLASS: \
1831 mangleType(static_cast<const CLASS##Type*>(ty)); \
1832 break;
1833#include "clang/AST/TypeNodes.def"
1834 }
1835 }
1836
1837 // Add the substitution.
1838 if (isSubstitutable)
1839 addSubstitution(T);
1840}
1841
1842void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
1843 if (!mangleStandardSubstitution(ND))
1844 mangleName(ND);
1845}
1846
1847void CXXNameMangler::mangleType(const BuiltinType *T) {
1848 // <type> ::= <builtin-type>
1849 // <builtin-type> ::= v # void
1850 // ::= w # wchar_t
1851 // ::= b # bool
1852 // ::= c # char
1853 // ::= a # signed char
1854 // ::= h # unsigned char
1855 // ::= s # short
1856 // ::= t # unsigned short
1857 // ::= i # int
1858 // ::= j # unsigned int
1859 // ::= l # long
1860 // ::= m # unsigned long
1861 // ::= x # long long, __int64
1862 // ::= y # unsigned long long, __int64
1863 // ::= n # __int128
1864 // UNSUPPORTED: ::= o # unsigned __int128
1865 // ::= f # float
1866 // ::= d # double
1867 // ::= e # long double, __float80
1868 // UNSUPPORTED: ::= g # __float128
1869 // UNSUPPORTED: ::= Dd # IEEE 754r decimal floating point (64 bits)
1870 // UNSUPPORTED: ::= De # IEEE 754r decimal floating point (128 bits)
1871 // UNSUPPORTED: ::= Df # IEEE 754r decimal floating point (32 bits)
1872 // ::= Dh # IEEE 754r half-precision floating point (16 bits)
1873 // ::= Di # char32_t
1874 // ::= Ds # char16_t
1875 // ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
1876 // ::= u <source-name> # vendor extended type
1877 switch (T->getKind()) {
1878 case BuiltinType::Void: Out << 'v'; break;
1879 case BuiltinType::Bool: Out << 'b'; break;
1880 case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break;
1881 case BuiltinType::UChar: Out << 'h'; break;
1882 case BuiltinType::UShort: Out << 't'; break;
1883 case BuiltinType::UInt: Out << 'j'; break;
1884 case BuiltinType::ULong: Out << 'm'; break;
1885 case BuiltinType::ULongLong: Out << 'y'; break;
1886 case BuiltinType::UInt128: Out << 'o'; break;
1887 case BuiltinType::SChar: Out << 'a'; break;
1888 case BuiltinType::WChar_S:
1889 case BuiltinType::WChar_U: Out << 'w'; break;
1890 case BuiltinType::Char16: Out << "Ds"; break;
1891 case BuiltinType::Char32: Out << "Di"; break;
1892 case BuiltinType::Short: Out << 's'; break;
1893 case BuiltinType::Int: Out << 'i'; break;
1894 case BuiltinType::Long: Out << 'l'; break;
1895 case BuiltinType::LongLong: Out << 'x'; break;
1896 case BuiltinType::Int128: Out << 'n'; break;
1897 case BuiltinType::Half: Out << "Dh"; break;
1898 case BuiltinType::Float: Out << 'f'; break;
1899 case BuiltinType::Double: Out << 'd'; break;
1900 case BuiltinType::LongDouble: Out << 'e'; break;
1901 case BuiltinType::NullPtr: Out << "Dn"; break;
1902
1903#define BUILTIN_TYPE(Id, SingletonId)
1904#define PLACEHOLDER_TYPE(Id, SingletonId) \
1905 case BuiltinType::Id:
1906#include "clang/AST/BuiltinTypes.def"
1907 case BuiltinType::Dependent:
1908 llvm_unreachable("mangling a placeholder type");
1909 case BuiltinType::ObjCId: Out << "11objc_object"; break;
1910 case BuiltinType::ObjCClass: Out << "10objc_class"; break;
1911 case BuiltinType::ObjCSel: Out << "13objc_selector"; break;
Guy Benyeib13621d2012-12-18 14:38:23 +00001912 case BuiltinType::OCLImage1d: Out << "11ocl_image1d"; break;
1913 case BuiltinType::OCLImage1dArray: Out << "16ocl_image1darray"; break;
1914 case BuiltinType::OCLImage1dBuffer: Out << "17ocl_image1dbuffer"; break;
1915 case BuiltinType::OCLImage2d: Out << "11ocl_image2d"; break;
1916 case BuiltinType::OCLImage2dArray: Out << "16ocl_image2darray"; break;
1917 case BuiltinType::OCLImage3d: Out << "11ocl_image3d"; break;
Guy Benyei21f18c42013-02-07 10:55:47 +00001918 case BuiltinType::OCLSampler: Out << "11ocl_sampler"; break;
Guy Benyeie6b9d802013-01-20 12:31:11 +00001919 case BuiltinType::OCLEvent: Out << "9ocl_event"; break;
Guy Benyei7f92f2d2012-12-18 14:30:41 +00001920 }
1921}
1922
1923// <type> ::= <function-type>
1924// <function-type> ::= [<CV-qualifiers>] F [Y]
1925// <bare-function-type> [<ref-qualifier>] E
1926// (Proposal to cxx-abi-dev, 2012-05-11)
1927void CXXNameMangler::mangleType(const FunctionProtoType *T) {
1928 // Mangle CV-qualifiers, if present. These are 'this' qualifiers,
1929 // e.g. "const" in "int (A::*)() const".
1930 mangleQualifiers(Qualifiers::fromCVRMask(T->getTypeQuals()));
1931
1932 Out << 'F';
1933
1934 // FIXME: We don't have enough information in the AST to produce the 'Y'
1935 // encoding for extern "C" function types.
1936 mangleBareFunctionType(T, /*MangleReturnType=*/true);
1937
1938 // Mangle the ref-qualifier, if present.
1939 mangleRefQualifier(T->getRefQualifier());
1940
1941 Out << 'E';
1942}
1943void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
1944 llvm_unreachable("Can't mangle K&R function prototypes");
1945}
1946void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
1947 bool MangleReturnType) {
1948 // We should never be mangling something without a prototype.
1949 const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
1950
1951 // Record that we're in a function type. See mangleFunctionParam
1952 // for details on what we're trying to achieve here.
1953 FunctionTypeDepthState saved = FunctionTypeDepth.push();
1954
1955 // <bare-function-type> ::= <signature type>+
1956 if (MangleReturnType) {
1957 FunctionTypeDepth.enterResultType();
1958 mangleType(Proto->getResultType());
1959 FunctionTypeDepth.leaveResultType();
1960 }
1961
1962 if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) {
1963 // <builtin-type> ::= v # void
1964 Out << 'v';
1965
1966 FunctionTypeDepth.pop(saved);
1967 return;
1968 }
1969
1970 for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
1971 ArgEnd = Proto->arg_type_end();
1972 Arg != ArgEnd; ++Arg)
1973 mangleType(Context.getASTContext().getSignatureParameterType(*Arg));
1974
1975 FunctionTypeDepth.pop(saved);
1976
1977 // <builtin-type> ::= z # ellipsis
1978 if (Proto->isVariadic())
1979 Out << 'z';
1980}
1981
1982// <type> ::= <class-enum-type>
1983// <class-enum-type> ::= <name>
1984void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
1985 mangleName(T->getDecl());
1986}
1987
1988// <type> ::= <class-enum-type>
1989// <class-enum-type> ::= <name>
1990void CXXNameMangler::mangleType(const EnumType *T) {
1991 mangleType(static_cast<const TagType*>(T));
1992}
1993void CXXNameMangler::mangleType(const RecordType *T) {
1994 mangleType(static_cast<const TagType*>(T));
1995}
1996void CXXNameMangler::mangleType(const TagType *T) {
1997 mangleName(T->getDecl());
1998}
1999
2000// <type> ::= <array-type>
2001// <array-type> ::= A <positive dimension number> _ <element type>
2002// ::= A [<dimension expression>] _ <element type>
2003void CXXNameMangler::mangleType(const ConstantArrayType *T) {
2004 Out << 'A' << T->getSize() << '_';
2005 mangleType(T->getElementType());
2006}
2007void CXXNameMangler::mangleType(const VariableArrayType *T) {
2008 Out << 'A';
2009 // decayed vla types (size 0) will just be skipped.
2010 if (T->getSizeExpr())
2011 mangleExpression(T->getSizeExpr());
2012 Out << '_';
2013 mangleType(T->getElementType());
2014}
2015void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
2016 Out << 'A';
2017 mangleExpression(T->getSizeExpr());
2018 Out << '_';
2019 mangleType(T->getElementType());
2020}
2021void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
2022 Out << "A_";
2023 mangleType(T->getElementType());
2024}
2025
2026// <type> ::= <pointer-to-member-type>
2027// <pointer-to-member-type> ::= M <class type> <member type>
2028void CXXNameMangler::mangleType(const MemberPointerType *T) {
2029 Out << 'M';
2030 mangleType(QualType(T->getClass(), 0));
2031 QualType PointeeType = T->getPointeeType();
2032 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
2033 mangleType(FPT);
2034
2035 // Itanium C++ ABI 5.1.8:
2036 //
2037 // The type of a non-static member function is considered to be different,
2038 // for the purposes of substitution, from the type of a namespace-scope or
2039 // static member function whose type appears similar. The types of two
2040 // non-static member functions are considered to be different, for the
2041 // purposes of substitution, if the functions are members of different
2042 // classes. In other words, for the purposes of substitution, the class of
2043 // which the function is a member is considered part of the type of
2044 // function.
2045
2046 // Given that we already substitute member function pointers as a
2047 // whole, the net effect of this rule is just to unconditionally
2048 // suppress substitution on the function type in a member pointer.
2049 // We increment the SeqID here to emulate adding an entry to the
2050 // substitution table.
2051 ++SeqID;
2052 } else
2053 mangleType(PointeeType);
2054}
2055
2056// <type> ::= <template-param>
2057void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
2058 mangleTemplateParameter(T->getIndex());
2059}
2060
2061// <type> ::= <template-param>
2062void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
2063 // FIXME: not clear how to mangle this!
2064 // template <class T...> class A {
2065 // template <class U...> void foo(T(*)(U) x...);
2066 // };
2067 Out << "_SUBSTPACK_";
2068}
2069
2070// <type> ::= P <type> # pointer-to
2071void CXXNameMangler::mangleType(const PointerType *T) {
2072 Out << 'P';
2073 mangleType(T->getPointeeType());
2074}
2075void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
2076 Out << 'P';
2077 mangleType(T->getPointeeType());
2078}
2079
2080// <type> ::= R <type> # reference-to
2081void CXXNameMangler::mangleType(const LValueReferenceType *T) {
2082 Out << 'R';
2083 mangleType(T->getPointeeType());
2084}
2085
2086// <type> ::= O <type> # rvalue reference-to (C++0x)
2087void CXXNameMangler::mangleType(const RValueReferenceType *T) {
2088 Out << 'O';
2089 mangleType(T->getPointeeType());
2090}
2091
2092// <type> ::= C <type> # complex pair (C 2000)
2093void CXXNameMangler::mangleType(const ComplexType *T) {
2094 Out << 'C';
2095 mangleType(T->getElementType());
2096}
2097
2098// ARM's ABI for Neon vector types specifies that they should be mangled as
2099// if they are structs (to match ARM's initial implementation). The
2100// vector type must be one of the special types predefined by ARM.
2101void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
2102 QualType EltType = T->getElementType();
2103 assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
2104 const char *EltName = 0;
2105 if (T->getVectorKind() == VectorType::NeonPolyVector) {
2106 switch (cast<BuiltinType>(EltType)->getKind()) {
2107 case BuiltinType::SChar: EltName = "poly8_t"; break;
2108 case BuiltinType::Short: EltName = "poly16_t"; break;
2109 default: llvm_unreachable("unexpected Neon polynomial vector element type");
2110 }
2111 } else {
2112 switch (cast<BuiltinType>(EltType)->getKind()) {
2113 case BuiltinType::SChar: EltName = "int8_t"; break;
2114 case BuiltinType::UChar: EltName = "uint8_t"; break;
2115 case BuiltinType::Short: EltName = "int16_t"; break;
2116 case BuiltinType::UShort: EltName = "uint16_t"; break;
2117 case BuiltinType::Int: EltName = "int32_t"; break;
2118 case BuiltinType::UInt: EltName = "uint32_t"; break;
2119 case BuiltinType::LongLong: EltName = "int64_t"; break;
2120 case BuiltinType::ULongLong: EltName = "uint64_t"; break;
2121 case BuiltinType::Float: EltName = "float32_t"; break;
2122 default: llvm_unreachable("unexpected Neon vector element type");
2123 }
2124 }
2125 const char *BaseName = 0;
2126 unsigned BitSize = (T->getNumElements() *
2127 getASTContext().getTypeSize(EltType));
2128 if (BitSize == 64)
2129 BaseName = "__simd64_";
2130 else {
2131 assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
2132 BaseName = "__simd128_";
2133 }
2134 Out << strlen(BaseName) + strlen(EltName);
2135 Out << BaseName << EltName;
2136}
2137
2138// GNU extension: vector types
2139// <type> ::= <vector-type>
2140// <vector-type> ::= Dv <positive dimension number> _
2141// <extended element type>
2142// ::= Dv [<dimension expression>] _ <element type>
2143// <extended element type> ::= <element type>
2144// ::= p # AltiVec vector pixel
2145// ::= b # Altivec vector bool
2146void CXXNameMangler::mangleType(const VectorType *T) {
2147 if ((T->getVectorKind() == VectorType::NeonVector ||
2148 T->getVectorKind() == VectorType::NeonPolyVector)) {
2149 mangleNeonVectorType(T);
2150 return;
2151 }
2152 Out << "Dv" << T->getNumElements() << '_';
2153 if (T->getVectorKind() == VectorType::AltiVecPixel)
2154 Out << 'p';
2155 else if (T->getVectorKind() == VectorType::AltiVecBool)
2156 Out << 'b';
2157 else
2158 mangleType(T->getElementType());
2159}
2160void CXXNameMangler::mangleType(const ExtVectorType *T) {
2161 mangleType(static_cast<const VectorType*>(T));
2162}
2163void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
2164 Out << "Dv";
2165 mangleExpression(T->getSizeExpr());
2166 Out << '_';
2167 mangleType(T->getElementType());
2168}
2169
2170void CXXNameMangler::mangleType(const PackExpansionType *T) {
2171 // <type> ::= Dp <type> # pack expansion (C++0x)
2172 Out << "Dp";
2173 mangleType(T->getPattern());
2174}
2175
2176void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
2177 mangleSourceName(T->getDecl()->getIdentifier());
2178}
2179
2180void CXXNameMangler::mangleType(const ObjCObjectType *T) {
Eli Friedman06017002013-06-18 22:41:37 +00002181 if (!T->qual_empty()) {
2182 // Mangle protocol qualifiers.
2183 SmallString<64> QualStr;
2184 llvm::raw_svector_ostream QualOS(QualStr);
2185 QualOS << "objcproto";
2186 ObjCObjectType::qual_iterator i = T->qual_begin(), e = T->qual_end();
2187 for ( ; i != e; ++i) {
2188 StringRef name = (*i)->getName();
2189 QualOS << name.size() << name;
2190 }
2191 QualOS.flush();
2192 Out << 'U' << QualStr.size() << QualStr;
2193 }
Guy Benyei7f92f2d2012-12-18 14:30:41 +00002194 mangleType(T->getBaseType());
2195}
2196
2197void CXXNameMangler::mangleType(const BlockPointerType *T) {
2198 Out << "U13block_pointer";
2199 mangleType(T->getPointeeType());
2200}
2201
2202void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
2203 // Mangle injected class name types as if the user had written the
2204 // specialization out fully. It may not actually be possible to see
2205 // this mangling, though.
2206 mangleType(T->getInjectedSpecializationType());
2207}
2208
2209void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
2210 if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
2211 mangleName(TD, T->getArgs(), T->getNumArgs());
2212 } else {
2213 if (mangleSubstitution(QualType(T, 0)))
2214 return;
2215
2216 mangleTemplatePrefix(T->getTemplateName());
2217
2218 // FIXME: GCC does not appear to mangle the template arguments when
2219 // the template in question is a dependent template name. Should we
2220 // emulate that badness?
2221 mangleTemplateArgs(T->getArgs(), T->getNumArgs());
2222 addSubstitution(QualType(T, 0));
2223 }
2224}
2225
2226void CXXNameMangler::mangleType(const DependentNameType *T) {
2227 // Typename types are always nested
2228 Out << 'N';
2229 manglePrefix(T->getQualifier());
2230 mangleSourceName(T->getIdentifier());
2231 Out << 'E';
2232}
2233
2234void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
2235 // Dependently-scoped template types are nested if they have a prefix.
2236 Out << 'N';
2237
2238 // TODO: avoid making this TemplateName.
2239 TemplateName Prefix =
2240 getASTContext().getDependentTemplateName(T->getQualifier(),
2241 T->getIdentifier());
2242 mangleTemplatePrefix(Prefix);
2243
2244 // FIXME: GCC does not appear to mangle the template arguments when
2245 // the template in question is a dependent template name. Should we
2246 // emulate that badness?
2247 mangleTemplateArgs(T->getArgs(), T->getNumArgs());
2248 Out << 'E';
2249}
2250
2251void CXXNameMangler::mangleType(const TypeOfType *T) {
2252 // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2253 // "extension with parameters" mangling.
2254 Out << "u6typeof";
2255}
2256
2257void CXXNameMangler::mangleType(const TypeOfExprType *T) {
2258 // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2259 // "extension with parameters" mangling.
2260 Out << "u6typeof";
2261}
2262
2263void CXXNameMangler::mangleType(const DecltypeType *T) {
2264 Expr *E = T->getUnderlyingExpr();
2265
2266 // type ::= Dt <expression> E # decltype of an id-expression
2267 // # or class member access
2268 // ::= DT <expression> E # decltype of an expression
2269
2270 // This purports to be an exhaustive list of id-expressions and
2271 // class member accesses. Note that we do not ignore parentheses;
2272 // parentheses change the semantics of decltype for these
2273 // expressions (and cause the mangler to use the other form).
2274 if (isa<DeclRefExpr>(E) ||
2275 isa<MemberExpr>(E) ||
2276 isa<UnresolvedLookupExpr>(E) ||
2277 isa<DependentScopeDeclRefExpr>(E) ||
2278 isa<CXXDependentScopeMemberExpr>(E) ||
2279 isa<UnresolvedMemberExpr>(E))
2280 Out << "Dt";
2281 else
2282 Out << "DT";
2283 mangleExpression(E);
2284 Out << 'E';
2285}
2286
2287void CXXNameMangler::mangleType(const UnaryTransformType *T) {
2288 // If this is dependent, we need to record that. If not, we simply
2289 // mangle it as the underlying type since they are equivalent.
2290 if (T->isDependentType()) {
2291 Out << 'U';
2292
2293 switch (T->getUTTKind()) {
2294 case UnaryTransformType::EnumUnderlyingType:
2295 Out << "3eut";
2296 break;
2297 }
2298 }
2299
2300 mangleType(T->getUnderlyingType());
2301}
2302
2303void CXXNameMangler::mangleType(const AutoType *T) {
2304 QualType D = T->getDeducedType();
2305 // <builtin-type> ::= Da # dependent auto
2306 if (D.isNull())
Richard Smitha2c36462013-04-26 16:15:35 +00002307 Out << (T->isDecltypeAuto() ? "Dc" : "Da");
Guy Benyei7f92f2d2012-12-18 14:30:41 +00002308 else
2309 mangleType(D);
2310}
2311
2312void CXXNameMangler::mangleType(const AtomicType *T) {
2313 // <type> ::= U <source-name> <type> # vendor extended type qualifier
2314 // (Until there's a standardized mangling...)
2315 Out << "U7_Atomic";
2316 mangleType(T->getValueType());
2317}
2318
2319void CXXNameMangler::mangleIntegerLiteral(QualType T,
2320 const llvm::APSInt &Value) {
2321 // <expr-primary> ::= L <type> <value number> E # integer literal
2322 Out << 'L';
2323
2324 mangleType(T);
2325 if (T->isBooleanType()) {
2326 // Boolean values are encoded as 0/1.
2327 Out << (Value.getBoolValue() ? '1' : '0');
2328 } else {
2329 mangleNumber(Value);
2330 }
2331 Out << 'E';
2332
2333}
2334
2335/// Mangles a member expression.
2336void CXXNameMangler::mangleMemberExpr(const Expr *base,
2337 bool isArrow,
2338 NestedNameSpecifier *qualifier,
2339 NamedDecl *firstQualifierLookup,
2340 DeclarationName member,
2341 unsigned arity) {
2342 // <expression> ::= dt <expression> <unresolved-name>
2343 // ::= pt <expression> <unresolved-name>
2344 if (base) {
2345 if (base->isImplicitCXXThis()) {
2346 // Note: GCC mangles member expressions to the implicit 'this' as
2347 // *this., whereas we represent them as this->. The Itanium C++ ABI
2348 // does not specify anything here, so we follow GCC.
2349 Out << "dtdefpT";
2350 } else {
2351 Out << (isArrow ? "pt" : "dt");
2352 mangleExpression(base);
2353 }
2354 }
2355 mangleUnresolvedName(qualifier, firstQualifierLookup, member, arity);
2356}
2357
2358/// Look at the callee of the given call expression and determine if
2359/// it's a parenthesized id-expression which would have triggered ADL
2360/// otherwise.
2361static bool isParenthesizedADLCallee(const CallExpr *call) {
2362 const Expr *callee = call->getCallee();
2363 const Expr *fn = callee->IgnoreParens();
2364
2365 // Must be parenthesized. IgnoreParens() skips __extension__ nodes,
2366 // too, but for those to appear in the callee, it would have to be
2367 // parenthesized.
2368 if (callee == fn) return false;
2369
2370 // Must be an unresolved lookup.
2371 const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
2372 if (!lookup) return false;
2373
2374 assert(!lookup->requiresADL());
2375
2376 // Must be an unqualified lookup.
2377 if (lookup->getQualifier()) return false;
2378
2379 // Must not have found a class member. Note that if one is a class
2380 // member, they're all class members.
2381 if (lookup->getNumDecls() > 0 &&
2382 (*lookup->decls_begin())->isCXXClassMember())
2383 return false;
2384
2385 // Otherwise, ADL would have been triggered.
2386 return true;
2387}
2388
2389void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
2390 // <expression> ::= <unary operator-name> <expression>
2391 // ::= <binary operator-name> <expression> <expression>
2392 // ::= <trinary operator-name> <expression> <expression> <expression>
2393 // ::= cv <type> expression # conversion with one argument
2394 // ::= cv <type> _ <expression>* E # conversion with a different number of arguments
2395 // ::= st <type> # sizeof (a type)
2396 // ::= at <type> # alignof (a type)
2397 // ::= <template-param>
2398 // ::= <function-param>
2399 // ::= sr <type> <unqualified-name> # dependent name
2400 // ::= sr <type> <unqualified-name> <template-args> # dependent template-id
2401 // ::= ds <expression> <expression> # expr.*expr
2402 // ::= sZ <template-param> # size of a parameter pack
2403 // ::= sZ <function-param> # size of a function parameter pack
2404 // ::= <expr-primary>
2405 // <expr-primary> ::= L <type> <value number> E # integer literal
2406 // ::= L <type <value float> E # floating literal
2407 // ::= L <mangled-name> E # external name
2408 // ::= fpT # 'this' expression
2409 QualType ImplicitlyConvertedToType;
2410
2411recurse:
2412 switch (E->getStmtClass()) {
2413 case Expr::NoStmtClass:
2414#define ABSTRACT_STMT(Type)
2415#define EXPR(Type, Base)
2416#define STMT(Type, Base) \
2417 case Expr::Type##Class:
2418#include "clang/AST/StmtNodes.inc"
2419 // fallthrough
2420
2421 // These all can only appear in local or variable-initialization
2422 // contexts and so should never appear in a mangling.
2423 case Expr::AddrLabelExprClass:
2424 case Expr::DesignatedInitExprClass:
2425 case Expr::ImplicitValueInitExprClass:
2426 case Expr::ParenListExprClass:
2427 case Expr::LambdaExprClass:
John McCall76da55d2013-04-16 07:28:30 +00002428 case Expr::MSPropertyRefExprClass:
Guy Benyei7f92f2d2012-12-18 14:30:41 +00002429 llvm_unreachable("unexpected statement kind");
2430
2431 // FIXME: invent manglings for all these.
2432 case Expr::BlockExprClass:
2433 case Expr::CXXPseudoDestructorExprClass:
2434 case Expr::ChooseExprClass:
2435 case Expr::CompoundLiteralExprClass:
2436 case Expr::ExtVectorElementExprClass:
2437 case Expr::GenericSelectionExprClass:
2438 case Expr::ObjCEncodeExprClass:
2439 case Expr::ObjCIsaExprClass:
2440 case Expr::ObjCIvarRefExprClass:
2441 case Expr::ObjCMessageExprClass:
2442 case Expr::ObjCPropertyRefExprClass:
2443 case Expr::ObjCProtocolExprClass:
2444 case Expr::ObjCSelectorExprClass:
2445 case Expr::ObjCStringLiteralClass:
2446 case Expr::ObjCBoxedExprClass:
2447 case Expr::ObjCArrayLiteralClass:
2448 case Expr::ObjCDictionaryLiteralClass:
2449 case Expr::ObjCSubscriptRefExprClass:
2450 case Expr::ObjCIndirectCopyRestoreExprClass:
2451 case Expr::OffsetOfExprClass:
2452 case Expr::PredefinedExprClass:
2453 case Expr::ShuffleVectorExprClass:
2454 case Expr::StmtExprClass:
2455 case Expr::UnaryTypeTraitExprClass:
2456 case Expr::BinaryTypeTraitExprClass:
2457 case Expr::TypeTraitExprClass:
2458 case Expr::ArrayTypeTraitExprClass:
2459 case Expr::ExpressionTraitExprClass:
2460 case Expr::VAArgExprClass:
2461 case Expr::CXXUuidofExprClass:
2462 case Expr::CUDAKernelCallExprClass:
2463 case Expr::AsTypeExprClass:
2464 case Expr::PseudoObjectExprClass:
2465 case Expr::AtomicExprClass:
2466 {
2467 // As bad as this diagnostic is, it's better than crashing.
2468 DiagnosticsEngine &Diags = Context.getDiags();
2469 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2470 "cannot yet mangle expression type %0");
2471 Diags.Report(E->getExprLoc(), DiagID)
2472 << E->getStmtClassName() << E->getSourceRange();
2473 break;
2474 }
2475
2476 // Even gcc-4.5 doesn't mangle this.
2477 case Expr::BinaryConditionalOperatorClass: {
2478 DiagnosticsEngine &Diags = Context.getDiags();
2479 unsigned DiagID =
2480 Diags.getCustomDiagID(DiagnosticsEngine::Error,
2481 "?: operator with omitted middle operand cannot be mangled");
2482 Diags.Report(E->getExprLoc(), DiagID)
2483 << E->getStmtClassName() << E->getSourceRange();
2484 break;
2485 }
2486
2487 // These are used for internal purposes and cannot be meaningfully mangled.
2488 case Expr::OpaqueValueExprClass:
2489 llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
2490
2491 case Expr::InitListExprClass: {
2492 // Proposal by Jason Merrill, 2012-01-03
2493 Out << "il";
2494 const InitListExpr *InitList = cast<InitListExpr>(E);
2495 for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
2496 mangleExpression(InitList->getInit(i));
2497 Out << "E";
2498 break;
2499 }
2500
2501 case Expr::CXXDefaultArgExprClass:
2502 mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
2503 break;
2504
Richard Smithc3bf52c2013-04-20 22:23:05 +00002505 case Expr::CXXDefaultInitExprClass:
2506 mangleExpression(cast<CXXDefaultInitExpr>(E)->getExpr(), Arity);
2507 break;
2508
Richard Smith7c3e6152013-06-12 22:31:48 +00002509 case Expr::CXXStdInitializerListExprClass:
2510 mangleExpression(cast<CXXStdInitializerListExpr>(E)->getSubExpr(), Arity);
2511 break;
2512
Guy Benyei7f92f2d2012-12-18 14:30:41 +00002513 case Expr::SubstNonTypeTemplateParmExprClass:
2514 mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
2515 Arity);
2516 break;
2517
2518 case Expr::UserDefinedLiteralClass:
2519 // We follow g++'s approach of mangling a UDL as a call to the literal
2520 // operator.
2521 case Expr::CXXMemberCallExprClass: // fallthrough
2522 case Expr::CallExprClass: {
2523 const CallExpr *CE = cast<CallExpr>(E);
2524
2525 // <expression> ::= cp <simple-id> <expression>* E
2526 // We use this mangling only when the call would use ADL except
2527 // for being parenthesized. Per discussion with David
2528 // Vandervoorde, 2011.04.25.
2529 if (isParenthesizedADLCallee(CE)) {
2530 Out << "cp";
2531 // The callee here is a parenthesized UnresolvedLookupExpr with
2532 // no qualifier and should always get mangled as a <simple-id>
2533 // anyway.
2534
2535 // <expression> ::= cl <expression>* E
2536 } else {
2537 Out << "cl";
2538 }
2539
2540 mangleExpression(CE->getCallee(), CE->getNumArgs());
2541 for (unsigned I = 0, N = CE->getNumArgs(); I != N; ++I)
2542 mangleExpression(CE->getArg(I));
2543 Out << 'E';
2544 break;
2545 }
2546
2547 case Expr::CXXNewExprClass: {
2548 const CXXNewExpr *New = cast<CXXNewExpr>(E);
2549 if (New->isGlobalNew()) Out << "gs";
2550 Out << (New->isArray() ? "na" : "nw");
2551 for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
2552 E = New->placement_arg_end(); I != E; ++I)
2553 mangleExpression(*I);
2554 Out << '_';
2555 mangleType(New->getAllocatedType());
2556 if (New->hasInitializer()) {
2557 // Proposal by Jason Merrill, 2012-01-03
2558 if (New->getInitializationStyle() == CXXNewExpr::ListInit)
2559 Out << "il";
2560 else
2561 Out << "pi";
2562 const Expr *Init = New->getInitializer();
2563 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
2564 // Directly inline the initializers.
2565 for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
2566 E = CCE->arg_end();
2567 I != E; ++I)
2568 mangleExpression(*I);
2569 } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
2570 for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
2571 mangleExpression(PLE->getExpr(i));
2572 } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
2573 isa<InitListExpr>(Init)) {
2574 // Only take InitListExprs apart for list-initialization.
2575 const InitListExpr *InitList = cast<InitListExpr>(Init);
2576 for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
2577 mangleExpression(InitList->getInit(i));
2578 } else
2579 mangleExpression(Init);
2580 }
2581 Out << 'E';
2582 break;
2583 }
2584
2585 case Expr::MemberExprClass: {
2586 const MemberExpr *ME = cast<MemberExpr>(E);
2587 mangleMemberExpr(ME->getBase(), ME->isArrow(),
2588 ME->getQualifier(), 0, ME->getMemberDecl()->getDeclName(),
2589 Arity);
2590 break;
2591 }
2592
2593 case Expr::UnresolvedMemberExprClass: {
2594 const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
2595 mangleMemberExpr(ME->getBase(), ME->isArrow(),
2596 ME->getQualifier(), 0, ME->getMemberName(),
2597 Arity);
2598 if (ME->hasExplicitTemplateArgs())
2599 mangleTemplateArgs(ME->getExplicitTemplateArgs());
2600 break;
2601 }
2602
2603 case Expr::CXXDependentScopeMemberExprClass: {
2604 const CXXDependentScopeMemberExpr *ME
2605 = cast<CXXDependentScopeMemberExpr>(E);
2606 mangleMemberExpr(ME->getBase(), ME->isArrow(),
2607 ME->getQualifier(), ME->getFirstQualifierFoundInScope(),
2608 ME->getMember(), Arity);
2609 if (ME->hasExplicitTemplateArgs())
2610 mangleTemplateArgs(ME->getExplicitTemplateArgs());
2611 break;
2612 }
2613
2614 case Expr::UnresolvedLookupExprClass: {
2615 const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
2616 mangleUnresolvedName(ULE->getQualifier(), 0, ULE->getName(), Arity);
2617
2618 // All the <unresolved-name> productions end in a
2619 // base-unresolved-name, where <template-args> are just tacked
2620 // onto the end.
2621 if (ULE->hasExplicitTemplateArgs())
2622 mangleTemplateArgs(ULE->getExplicitTemplateArgs());
2623 break;
2624 }
2625
2626 case Expr::CXXUnresolvedConstructExprClass: {
2627 const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
2628 unsigned N = CE->arg_size();
2629
2630 Out << "cv";
2631 mangleType(CE->getType());
2632 if (N != 1) Out << '_';
2633 for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2634 if (N != 1) Out << 'E';
2635 break;
2636 }
2637
2638 case Expr::CXXTemporaryObjectExprClass:
2639 case Expr::CXXConstructExprClass: {
2640 const CXXConstructExpr *CE = cast<CXXConstructExpr>(E);
2641 unsigned N = CE->getNumArgs();
2642
2643 // Proposal by Jason Merrill, 2012-01-03
2644 if (CE->isListInitialization())
2645 Out << "tl";
2646 else
2647 Out << "cv";
2648 mangleType(CE->getType());
2649 if (N != 1) Out << '_';
2650 for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2651 if (N != 1) Out << 'E';
2652 break;
2653 }
2654
2655 case Expr::CXXScalarValueInitExprClass:
2656 Out <<"cv";
2657 mangleType(E->getType());
2658 Out <<"_E";
2659 break;
2660
2661 case Expr::CXXNoexceptExprClass:
2662 Out << "nx";
2663 mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
2664 break;
2665
2666 case Expr::UnaryExprOrTypeTraitExprClass: {
2667 const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
2668
2669 if (!SAE->isInstantiationDependent()) {
2670 // Itanium C++ ABI:
2671 // If the operand of a sizeof or alignof operator is not
2672 // instantiation-dependent it is encoded as an integer literal
2673 // reflecting the result of the operator.
2674 //
2675 // If the result of the operator is implicitly converted to a known
2676 // integer type, that type is used for the literal; otherwise, the type
2677 // of std::size_t or std::ptrdiff_t is used.
2678 QualType T = (ImplicitlyConvertedToType.isNull() ||
2679 !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
2680 : ImplicitlyConvertedToType;
2681 llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
2682 mangleIntegerLiteral(T, V);
2683 break;
2684 }
2685
2686 switch(SAE->getKind()) {
2687 case UETT_SizeOf:
2688 Out << 's';
2689 break;
2690 case UETT_AlignOf:
2691 Out << 'a';
2692 break;
2693 case UETT_VecStep:
2694 DiagnosticsEngine &Diags = Context.getDiags();
2695 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2696 "cannot yet mangle vec_step expression");
2697 Diags.Report(DiagID);
2698 return;
2699 }
2700 if (SAE->isArgumentType()) {
2701 Out << 't';
2702 mangleType(SAE->getArgumentType());
2703 } else {
2704 Out << 'z';
2705 mangleExpression(SAE->getArgumentExpr());
2706 }
2707 break;
2708 }
2709
2710 case Expr::CXXThrowExprClass: {
2711 const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
2712
2713 // Proposal from David Vandervoorde, 2010.06.30
2714 if (TE->getSubExpr()) {
2715 Out << "tw";
2716 mangleExpression(TE->getSubExpr());
2717 } else {
2718 Out << "tr";
2719 }
2720 break;
2721 }
2722
2723 case Expr::CXXTypeidExprClass: {
2724 const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
2725
2726 // Proposal from David Vandervoorde, 2010.06.30
2727 if (TIE->isTypeOperand()) {
2728 Out << "ti";
2729 mangleType(TIE->getTypeOperand());
2730 } else {
2731 Out << "te";
2732 mangleExpression(TIE->getExprOperand());
2733 }
2734 break;
2735 }
2736
2737 case Expr::CXXDeleteExprClass: {
2738 const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
2739
2740 // Proposal from David Vandervoorde, 2010.06.30
2741 if (DE->isGlobalDelete()) Out << "gs";
2742 Out << (DE->isArrayForm() ? "da" : "dl");
2743 mangleExpression(DE->getArgument());
2744 break;
2745 }
2746
2747 case Expr::UnaryOperatorClass: {
2748 const UnaryOperator *UO = cast<UnaryOperator>(E);
2749 mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
2750 /*Arity=*/1);
2751 mangleExpression(UO->getSubExpr());
2752 break;
2753 }
2754
2755 case Expr::ArraySubscriptExprClass: {
2756 const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
2757
2758 // Array subscript is treated as a syntactically weird form of
2759 // binary operator.
2760 Out << "ix";
2761 mangleExpression(AE->getLHS());
2762 mangleExpression(AE->getRHS());
2763 break;
2764 }
2765
2766 case Expr::CompoundAssignOperatorClass: // fallthrough
2767 case Expr::BinaryOperatorClass: {
2768 const BinaryOperator *BO = cast<BinaryOperator>(E);
2769 if (BO->getOpcode() == BO_PtrMemD)
2770 Out << "ds";
2771 else
2772 mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
2773 /*Arity=*/2);
2774 mangleExpression(BO->getLHS());
2775 mangleExpression(BO->getRHS());
2776 break;
2777 }
2778
2779 case Expr::ConditionalOperatorClass: {
2780 const ConditionalOperator *CO = cast<ConditionalOperator>(E);
2781 mangleOperatorName(OO_Conditional, /*Arity=*/3);
2782 mangleExpression(CO->getCond());
2783 mangleExpression(CO->getLHS(), Arity);
2784 mangleExpression(CO->getRHS(), Arity);
2785 break;
2786 }
2787
2788 case Expr::ImplicitCastExprClass: {
2789 ImplicitlyConvertedToType = E->getType();
2790 E = cast<ImplicitCastExpr>(E)->getSubExpr();
2791 goto recurse;
2792 }
2793
2794 case Expr::ObjCBridgedCastExprClass: {
2795 // Mangle ownership casts as a vendor extended operator __bridge,
2796 // __bridge_transfer, or __bridge_retain.
2797 StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
2798 Out << "v1U" << Kind.size() << Kind;
2799 }
2800 // Fall through to mangle the cast itself.
2801
2802 case Expr::CStyleCastExprClass:
2803 case Expr::CXXStaticCastExprClass:
2804 case Expr::CXXDynamicCastExprClass:
2805 case Expr::CXXReinterpretCastExprClass:
2806 case Expr::CXXConstCastExprClass:
2807 case Expr::CXXFunctionalCastExprClass: {
2808 const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
2809 Out << "cv";
2810 mangleType(ECE->getType());
2811 mangleExpression(ECE->getSubExpr());
2812 break;
2813 }
2814
2815 case Expr::CXXOperatorCallExprClass: {
2816 const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
2817 unsigned NumArgs = CE->getNumArgs();
2818 mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
2819 // Mangle the arguments.
2820 for (unsigned i = 0; i != NumArgs; ++i)
2821 mangleExpression(CE->getArg(i));
2822 break;
2823 }
2824
2825 case Expr::ParenExprClass:
2826 mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
2827 break;
2828
2829 case Expr::DeclRefExprClass: {
2830 const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
2831
2832 switch (D->getKind()) {
2833 default:
2834 // <expr-primary> ::= L <mangled-name> E # external name
2835 Out << 'L';
2836 mangle(D, "_Z");
2837 Out << 'E';
2838 break;
2839
2840 case Decl::ParmVar:
2841 mangleFunctionParam(cast<ParmVarDecl>(D));
2842 break;
2843
2844 case Decl::EnumConstant: {
2845 const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
2846 mangleIntegerLiteral(ED->getType(), ED->getInitVal());
2847 break;
2848 }
2849
2850 case Decl::NonTypeTemplateParm: {
2851 const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
2852 mangleTemplateParameter(PD->getIndex());
2853 break;
2854 }
2855
2856 }
2857
2858 break;
2859 }
2860
2861 case Expr::SubstNonTypeTemplateParmPackExprClass:
2862 // FIXME: not clear how to mangle this!
2863 // template <unsigned N...> class A {
2864 // template <class U...> void foo(U (&x)[N]...);
2865 // };
2866 Out << "_SUBSTPACK_";
2867 break;
2868
2869 case Expr::FunctionParmPackExprClass: {
2870 // FIXME: not clear how to mangle this!
2871 const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
2872 Out << "v110_SUBSTPACK";
2873 mangleFunctionParam(FPPE->getParameterPack());
2874 break;
2875 }
2876
2877 case Expr::DependentScopeDeclRefExprClass: {
2878 const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
2879 mangleUnresolvedName(DRE->getQualifier(), 0, DRE->getDeclName(), Arity);
2880
2881 // All the <unresolved-name> productions end in a
2882 // base-unresolved-name, where <template-args> are just tacked
2883 // onto the end.
2884 if (DRE->hasExplicitTemplateArgs())
2885 mangleTemplateArgs(DRE->getExplicitTemplateArgs());
2886 break;
2887 }
2888
2889 case Expr::CXXBindTemporaryExprClass:
2890 mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
2891 break;
2892
2893 case Expr::ExprWithCleanupsClass:
2894 mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
2895 break;
2896
2897 case Expr::FloatingLiteralClass: {
2898 const FloatingLiteral *FL = cast<FloatingLiteral>(E);
2899 Out << 'L';
2900 mangleType(FL->getType());
2901 mangleFloat(FL->getValue());
2902 Out << 'E';
2903 break;
2904 }
2905
2906 case Expr::CharacterLiteralClass:
2907 Out << 'L';
2908 mangleType(E->getType());
2909 Out << cast<CharacterLiteral>(E)->getValue();
2910 Out << 'E';
2911 break;
2912
2913 // FIXME. __objc_yes/__objc_no are mangled same as true/false
2914 case Expr::ObjCBoolLiteralExprClass:
2915 Out << "Lb";
2916 Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
2917 Out << 'E';
2918 break;
2919
2920 case Expr::CXXBoolLiteralExprClass:
2921 Out << "Lb";
2922 Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
2923 Out << 'E';
2924 break;
2925
2926 case Expr::IntegerLiteralClass: {
2927 llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
2928 if (E->getType()->isSignedIntegerType())
2929 Value.setIsSigned(true);
2930 mangleIntegerLiteral(E->getType(), Value);
2931 break;
2932 }
2933
2934 case Expr::ImaginaryLiteralClass: {
2935 const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
2936 // Mangle as if a complex literal.
2937 // Proposal from David Vandevoorde, 2010.06.30.
2938 Out << 'L';
2939 mangleType(E->getType());
2940 if (const FloatingLiteral *Imag =
2941 dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
2942 // Mangle a floating-point zero of the appropriate type.
2943 mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
2944 Out << '_';
2945 mangleFloat(Imag->getValue());
2946 } else {
2947 Out << "0_";
2948 llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
2949 if (IE->getSubExpr()->getType()->isSignedIntegerType())
2950 Value.setIsSigned(true);
2951 mangleNumber(Value);
2952 }
2953 Out << 'E';
2954 break;
2955 }
2956
2957 case Expr::StringLiteralClass: {
2958 // Revised proposal from David Vandervoorde, 2010.07.15.
2959 Out << 'L';
2960 assert(isa<ConstantArrayType>(E->getType()));
2961 mangleType(E->getType());
2962 Out << 'E';
2963 break;
2964 }
2965
2966 case Expr::GNUNullExprClass:
2967 // FIXME: should this really be mangled the same as nullptr?
2968 // fallthrough
2969
2970 case Expr::CXXNullPtrLiteralExprClass: {
2971 // Proposal from David Vandervoorde, 2010.06.30, as
2972 // modified by ABI list discussion.
2973 Out << "LDnE";
2974 break;
2975 }
2976
2977 case Expr::PackExpansionExprClass:
2978 Out << "sp";
2979 mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
2980 break;
2981
2982 case Expr::SizeOfPackExprClass: {
2983 Out << "sZ";
2984 const NamedDecl *Pack = cast<SizeOfPackExpr>(E)->getPack();
2985 if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
2986 mangleTemplateParameter(TTP->getIndex());
2987 else if (const NonTypeTemplateParmDecl *NTTP
2988 = dyn_cast<NonTypeTemplateParmDecl>(Pack))
2989 mangleTemplateParameter(NTTP->getIndex());
2990 else if (const TemplateTemplateParmDecl *TempTP
2991 = dyn_cast<TemplateTemplateParmDecl>(Pack))
2992 mangleTemplateParameter(TempTP->getIndex());
2993 else
2994 mangleFunctionParam(cast<ParmVarDecl>(Pack));
2995 break;
2996 }
2997
2998 case Expr::MaterializeTemporaryExprClass: {
2999 mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr());
3000 break;
3001 }
3002
3003 case Expr::CXXThisExprClass:
3004 Out << "fpT";
3005 break;
3006 }
3007}
3008
3009/// Mangle an expression which refers to a parameter variable.
3010///
3011/// <expression> ::= <function-param>
3012/// <function-param> ::= fp <top-level CV-qualifiers> _ # L == 0, I == 0
3013/// <function-param> ::= fp <top-level CV-qualifiers>
3014/// <parameter-2 non-negative number> _ # L == 0, I > 0
3015/// <function-param> ::= fL <L-1 non-negative number>
3016/// p <top-level CV-qualifiers> _ # L > 0, I == 0
3017/// <function-param> ::= fL <L-1 non-negative number>
3018/// p <top-level CV-qualifiers>
3019/// <I-1 non-negative number> _ # L > 0, I > 0
3020///
3021/// L is the nesting depth of the parameter, defined as 1 if the
3022/// parameter comes from the innermost function prototype scope
3023/// enclosing the current context, 2 if from the next enclosing
3024/// function prototype scope, and so on, with one special case: if
3025/// we've processed the full parameter clause for the innermost
3026/// function type, then L is one less. This definition conveniently
3027/// makes it irrelevant whether a function's result type was written
3028/// trailing or leading, but is otherwise overly complicated; the
3029/// numbering was first designed without considering references to
3030/// parameter in locations other than return types, and then the
3031/// mangling had to be generalized without changing the existing
3032/// manglings.
3033///
3034/// I is the zero-based index of the parameter within its parameter
3035/// declaration clause. Note that the original ABI document describes
3036/// this using 1-based ordinals.
3037void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
3038 unsigned parmDepth = parm->getFunctionScopeDepth();
3039 unsigned parmIndex = parm->getFunctionScopeIndex();
3040
3041 // Compute 'L'.
3042 // parmDepth does not include the declaring function prototype.
3043 // FunctionTypeDepth does account for that.
3044 assert(parmDepth < FunctionTypeDepth.getDepth());
3045 unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
3046 if (FunctionTypeDepth.isInResultType())
3047 nestingDepth--;
3048
3049 if (nestingDepth == 0) {
3050 Out << "fp";
3051 } else {
3052 Out << "fL" << (nestingDepth - 1) << 'p';
3053 }
3054
3055 // Top-level qualifiers. We don't have to worry about arrays here,
3056 // because parameters declared as arrays should already have been
3057 // transformed to have pointer type. FIXME: apparently these don't
3058 // get mangled if used as an rvalue of a known non-class type?
3059 assert(!parm->getType()->isArrayType()
3060 && "parameter's type is still an array type?");
3061 mangleQualifiers(parm->getType().getQualifiers());
3062
3063 // Parameter index.
3064 if (parmIndex != 0) {
3065 Out << (parmIndex - 1);
3066 }
3067 Out << '_';
3068}
3069
3070void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {
3071 // <ctor-dtor-name> ::= C1 # complete object constructor
3072 // ::= C2 # base object constructor
3073 // ::= C3 # complete object allocating constructor
3074 //
3075 switch (T) {
3076 case Ctor_Complete:
3077 Out << "C1";
3078 break;
3079 case Ctor_Base:
3080 Out << "C2";
3081 break;
3082 case Ctor_CompleteAllocating:
3083 Out << "C3";
3084 break;
3085 }
3086}
3087
3088void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
3089 // <ctor-dtor-name> ::= D0 # deleting destructor
3090 // ::= D1 # complete object destructor
3091 // ::= D2 # base object destructor
3092 //
3093 switch (T) {
3094 case Dtor_Deleting:
3095 Out << "D0";
3096 break;
3097 case Dtor_Complete:
3098 Out << "D1";
3099 break;
3100 case Dtor_Base:
3101 Out << "D2";
3102 break;
3103 }
3104}
3105
3106void CXXNameMangler::mangleTemplateArgs(
3107 const ASTTemplateArgumentListInfo &TemplateArgs) {
3108 // <template-args> ::= I <template-arg>+ E
3109 Out << 'I';
3110 for (unsigned i = 0, e = TemplateArgs.NumTemplateArgs; i != e; ++i)
3111 mangleTemplateArg(TemplateArgs.getTemplateArgs()[i].getArgument());
3112 Out << 'E';
3113}
3114
3115void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentList &AL) {
3116 // <template-args> ::= I <template-arg>+ E
3117 Out << 'I';
3118 for (unsigned i = 0, e = AL.size(); i != e; ++i)
3119 mangleTemplateArg(AL[i]);
3120 Out << 'E';
3121}
3122
3123void CXXNameMangler::mangleTemplateArgs(const TemplateArgument *TemplateArgs,
3124 unsigned NumTemplateArgs) {
3125 // <template-args> ::= I <template-arg>+ E
3126 Out << 'I';
3127 for (unsigned i = 0; i != NumTemplateArgs; ++i)
3128 mangleTemplateArg(TemplateArgs[i]);
3129 Out << 'E';
3130}
3131
3132void CXXNameMangler::mangleTemplateArg(TemplateArgument A) {
3133 // <template-arg> ::= <type> # type or template
3134 // ::= X <expression> E # expression
3135 // ::= <expr-primary> # simple expressions
3136 // ::= J <template-arg>* E # argument pack
3137 // ::= sp <expression> # pack expansion of (C++0x)
3138 if (!A.isInstantiationDependent() || A.isDependent())
3139 A = Context.getASTContext().getCanonicalTemplateArgument(A);
3140
3141 switch (A.getKind()) {
3142 case TemplateArgument::Null:
3143 llvm_unreachable("Cannot mangle NULL template argument");
3144
3145 case TemplateArgument::Type:
3146 mangleType(A.getAsType());
3147 break;
3148 case TemplateArgument::Template:
3149 // This is mangled as <type>.
3150 mangleType(A.getAsTemplate());
3151 break;
3152 case TemplateArgument::TemplateExpansion:
3153 // <type> ::= Dp <type> # pack expansion (C++0x)
3154 Out << "Dp";
3155 mangleType(A.getAsTemplateOrTemplatePattern());
3156 break;
3157 case TemplateArgument::Expression: {
3158 // It's possible to end up with a DeclRefExpr here in certain
3159 // dependent cases, in which case we should mangle as a
3160 // declaration.
3161 const Expr *E = A.getAsExpr()->IgnoreParens();
3162 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
3163 const ValueDecl *D = DRE->getDecl();
3164 if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
3165 Out << "L";
3166 mangle(D, "_Z");
3167 Out << 'E';
3168 break;
3169 }
3170 }
3171
3172 Out << 'X';
3173 mangleExpression(E);
3174 Out << 'E';
3175 break;
3176 }
3177 case TemplateArgument::Integral:
3178 mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
3179 break;
3180 case TemplateArgument::Declaration: {
3181 // <expr-primary> ::= L <mangled-name> E # external name
3182 // Clang produces AST's where pointer-to-member-function expressions
3183 // and pointer-to-function expressions are represented as a declaration not
3184 // an expression. We compensate for it here to produce the correct mangling.
3185 ValueDecl *D = A.getAsDecl();
3186 bool compensateMangling = !A.isDeclForReferenceParam();
3187 if (compensateMangling) {
3188 Out << 'X';
3189 mangleOperatorName(OO_Amp, 1);
3190 }
3191
3192 Out << 'L';
3193 // References to external entities use the mangled name; if the name would
3194 // not normally be manged then mangle it as unqualified.
3195 //
3196 // FIXME: The ABI specifies that external names here should have _Z, but
3197 // gcc leaves this off.
3198 if (compensateMangling)
3199 mangle(D, "_Z");
3200 else
3201 mangle(D, "Z");
3202 Out << 'E';
3203
3204 if (compensateMangling)
3205 Out << 'E';
3206
3207 break;
3208 }
3209 case TemplateArgument::NullPtr: {
3210 // <expr-primary> ::= L <type> 0 E
3211 Out << 'L';
3212 mangleType(A.getNullPtrType());
3213 Out << "0E";
3214 break;
3215 }
3216 case TemplateArgument::Pack: {
3217 // Note: proposal by Mike Herrick on 12/20/10
3218 Out << 'J';
3219 for (TemplateArgument::pack_iterator PA = A.pack_begin(),
3220 PAEnd = A.pack_end();
3221 PA != PAEnd; ++PA)
3222 mangleTemplateArg(*PA);
3223 Out << 'E';
3224 }
3225 }
3226}
3227
3228void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
3229 // <template-param> ::= T_ # first template parameter
3230 // ::= T <parameter-2 non-negative number> _
3231 if (Index == 0)
3232 Out << "T_";
3233 else
3234 Out << 'T' << (Index - 1) << '_';
3235}
3236
3237void CXXNameMangler::mangleExistingSubstitution(QualType type) {
3238 bool result = mangleSubstitution(type);
3239 assert(result && "no existing substitution for type");
3240 (void) result;
3241}
3242
3243void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
3244 bool result = mangleSubstitution(tname);
3245 assert(result && "no existing substitution for template name");
3246 (void) result;
3247}
3248
3249// <substitution> ::= S <seq-id> _
3250// ::= S_
3251bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
3252 // Try one of the standard substitutions first.
3253 if (mangleStandardSubstitution(ND))
3254 return true;
3255
3256 ND = cast<NamedDecl>(ND->getCanonicalDecl());
3257 return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
3258}
3259
3260/// \brief Determine whether the given type has any qualifiers that are
3261/// relevant for substitutions.
3262static bool hasMangledSubstitutionQualifiers(QualType T) {
3263 Qualifiers Qs = T.getQualifiers();
3264 return Qs.getCVRQualifiers() || Qs.hasAddressSpace();
3265}
3266
3267bool CXXNameMangler::mangleSubstitution(QualType T) {
3268 if (!hasMangledSubstitutionQualifiers(T)) {
3269 if (const RecordType *RT = T->getAs<RecordType>())
3270 return mangleSubstitution(RT->getDecl());
3271 }
3272
3273 uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3274
3275 return mangleSubstitution(TypePtr);
3276}
3277
3278bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
3279 if (TemplateDecl *TD = Template.getAsTemplateDecl())
3280 return mangleSubstitution(TD);
3281
3282 Template = Context.getASTContext().getCanonicalTemplateName(Template);
3283 return mangleSubstitution(
3284 reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3285}
3286
3287bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
3288 llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
3289 if (I == Substitutions.end())
3290 return false;
3291
3292 unsigned SeqID = I->second;
3293 if (SeqID == 0)
3294 Out << "S_";
3295 else {
3296 SeqID--;
3297
3298 // <seq-id> is encoded in base-36, using digits and upper case letters.
3299 char Buffer[10];
3300 char *BufferPtr = llvm::array_endof(Buffer);
3301
3302 if (SeqID == 0) *--BufferPtr = '0';
3303
3304 while (SeqID) {
3305 assert(BufferPtr > Buffer && "Buffer overflow!");
3306
3307 char c = static_cast<char>(SeqID % 36);
3308
3309 *--BufferPtr = (c < 10 ? '0' + c : 'A' + c - 10);
3310 SeqID /= 36;
3311 }
3312
3313 Out << 'S'
3314 << StringRef(BufferPtr, llvm::array_endof(Buffer)-BufferPtr)
3315 << '_';
3316 }
3317
3318 return true;
3319}
3320
3321static bool isCharType(QualType T) {
3322 if (T.isNull())
3323 return false;
3324
3325 return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
3326 T->isSpecificBuiltinType(BuiltinType::Char_U);
3327}
3328
3329/// isCharSpecialization - Returns whether a given type is a template
3330/// specialization of a given name with a single argument of type char.
3331static bool isCharSpecialization(QualType T, const char *Name) {
3332 if (T.isNull())
3333 return false;
3334
3335 const RecordType *RT = T->getAs<RecordType>();
3336 if (!RT)
3337 return false;
3338
3339 const ClassTemplateSpecializationDecl *SD =
3340 dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
3341 if (!SD)
3342 return false;
3343
3344 if (!isStdNamespace(getEffectiveDeclContext(SD)))
3345 return false;
3346
3347 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3348 if (TemplateArgs.size() != 1)
3349 return false;
3350
3351 if (!isCharType(TemplateArgs[0].getAsType()))
3352 return false;
3353
3354 return SD->getIdentifier()->getName() == Name;
3355}
3356
3357template <std::size_t StrLen>
3358static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
3359 const char (&Str)[StrLen]) {
3360 if (!SD->getIdentifier()->isStr(Str))
3361 return false;
3362
3363 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3364 if (TemplateArgs.size() != 2)
3365 return false;
3366
3367 if (!isCharType(TemplateArgs[0].getAsType()))
3368 return false;
3369
3370 if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3371 return false;
3372
3373 return true;
3374}
3375
3376bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
3377 // <substitution> ::= St # ::std::
3378 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
3379 if (isStd(NS)) {
3380 Out << "St";
3381 return true;
3382 }
3383 }
3384
3385 if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
3386 if (!isStdNamespace(getEffectiveDeclContext(TD)))
3387 return false;
3388
3389 // <substitution> ::= Sa # ::std::allocator
3390 if (TD->getIdentifier()->isStr("allocator")) {
3391 Out << "Sa";
3392 return true;
3393 }
3394
3395 // <<substitution> ::= Sb # ::std::basic_string
3396 if (TD->getIdentifier()->isStr("basic_string")) {
3397 Out << "Sb";
3398 return true;
3399 }
3400 }
3401
3402 if (const ClassTemplateSpecializationDecl *SD =
3403 dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
3404 if (!isStdNamespace(getEffectiveDeclContext(SD)))
3405 return false;
3406
3407 // <substitution> ::= Ss # ::std::basic_string<char,
3408 // ::std::char_traits<char>,
3409 // ::std::allocator<char> >
3410 if (SD->getIdentifier()->isStr("basic_string")) {
3411 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3412
3413 if (TemplateArgs.size() != 3)
3414 return false;
3415
3416 if (!isCharType(TemplateArgs[0].getAsType()))
3417 return false;
3418
3419 if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3420 return false;
3421
3422 if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
3423 return false;
3424
3425 Out << "Ss";
3426 return true;
3427 }
3428
3429 // <substitution> ::= Si # ::std::basic_istream<char,
3430 // ::std::char_traits<char> >
3431 if (isStreamCharSpecialization(SD, "basic_istream")) {
3432 Out << "Si";
3433 return true;
3434 }
3435
3436 // <substitution> ::= So # ::std::basic_ostream<char,
3437 // ::std::char_traits<char> >
3438 if (isStreamCharSpecialization(SD, "basic_ostream")) {
3439 Out << "So";
3440 return true;
3441 }
3442
3443 // <substitution> ::= Sd # ::std::basic_iostream<char,
3444 // ::std::char_traits<char> >
3445 if (isStreamCharSpecialization(SD, "basic_iostream")) {
3446 Out << "Sd";
3447 return true;
3448 }
3449 }
3450 return false;
3451}
3452
3453void CXXNameMangler::addSubstitution(QualType T) {
3454 if (!hasMangledSubstitutionQualifiers(T)) {
3455 if (const RecordType *RT = T->getAs<RecordType>()) {
3456 addSubstitution(RT->getDecl());
3457 return;
3458 }
3459 }
3460
3461 uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3462 addSubstitution(TypePtr);
3463}
3464
3465void CXXNameMangler::addSubstitution(TemplateName Template) {
3466 if (TemplateDecl *TD = Template.getAsTemplateDecl())
3467 return addSubstitution(TD);
3468
3469 Template = Context.getASTContext().getCanonicalTemplateName(Template);
3470 addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3471}
3472
3473void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
3474 assert(!Substitutions.count(Ptr) && "Substitution already exists!");
3475 Substitutions[Ptr] = SeqID++;
3476}
3477
3478//
3479
3480/// \brief Mangles the name of the declaration D and emits that name to the
3481/// given output stream.
3482///
3483/// If the declaration D requires a mangled name, this routine will emit that
3484/// mangled name to \p os and return true. Otherwise, \p os will be unchanged
3485/// and this routine will return false. In this case, the caller should just
3486/// emit the identifier of the declaration (\c D->getIdentifier()) as its
3487/// name.
3488void ItaniumMangleContext::mangleName(const NamedDecl *D,
3489 raw_ostream &Out) {
3490 assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
3491 "Invalid mangleName() call, argument is not a variable or function!");
3492 assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
3493 "Invalid mangleName() call on 'structor decl!");
3494
3495 PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
3496 getASTContext().getSourceManager(),
3497 "Mangling declaration");
3498
3499 CXXNameMangler Mangler(*this, Out, D);
3500 return Mangler.mangle(D);
3501}
3502
3503void ItaniumMangleContext::mangleCXXCtor(const CXXConstructorDecl *D,
3504 CXXCtorType Type,
3505 raw_ostream &Out) {
3506 CXXNameMangler Mangler(*this, Out, D, Type);
3507 Mangler.mangle(D);
3508}
3509
3510void ItaniumMangleContext::mangleCXXDtor(const CXXDestructorDecl *D,
3511 CXXDtorType Type,
3512 raw_ostream &Out) {
3513 CXXNameMangler Mangler(*this, Out, D, Type);
3514 Mangler.mangle(D);
3515}
3516
3517void ItaniumMangleContext::mangleThunk(const CXXMethodDecl *MD,
3518 const ThunkInfo &Thunk,
3519 raw_ostream &Out) {
3520 // <special-name> ::= T <call-offset> <base encoding>
3521 // # base is the nominal target function of thunk
3522 // <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
3523 // # base is the nominal target function of thunk
3524 // # first call-offset is 'this' adjustment
3525 // # second call-offset is result adjustment
3526
3527 assert(!isa<CXXDestructorDecl>(MD) &&
3528 "Use mangleCXXDtor for destructor decls!");
3529 CXXNameMangler Mangler(*this, Out);
3530 Mangler.getStream() << "_ZT";
3531 if (!Thunk.Return.isEmpty())
3532 Mangler.getStream() << 'c';
3533
3534 // Mangle the 'this' pointer adjustment.
3535 Mangler.mangleCallOffset(Thunk.This.NonVirtual, Thunk.This.VCallOffsetOffset);
3536
3537 // Mangle the return pointer adjustment if there is one.
3538 if (!Thunk.Return.isEmpty())
3539 Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
3540 Thunk.Return.VBaseOffsetOffset);
3541
3542 Mangler.mangleFunctionEncoding(MD);
3543}
3544
3545void
3546ItaniumMangleContext::mangleCXXDtorThunk(const CXXDestructorDecl *DD,
3547 CXXDtorType Type,
3548 const ThisAdjustment &ThisAdjustment,
3549 raw_ostream &Out) {
3550 // <special-name> ::= T <call-offset> <base encoding>
3551 // # base is the nominal target function of thunk
3552 CXXNameMangler Mangler(*this, Out, DD, Type);
3553 Mangler.getStream() << "_ZT";
3554
3555 // Mangle the 'this' pointer adjustment.
3556 Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
3557 ThisAdjustment.VCallOffsetOffset);
3558
3559 Mangler.mangleFunctionEncoding(DD);
3560}
3561
3562/// mangleGuardVariable - Returns the mangled name for a guard variable
3563/// for the passed in VarDecl.
3564void ItaniumMangleContext::mangleItaniumGuardVariable(const VarDecl *D,
3565 raw_ostream &Out) {
3566 // <special-name> ::= GV <object name> # Guard variable for one-time
3567 // # initialization
3568 CXXNameMangler Mangler(*this, Out);
3569 Mangler.getStream() << "_ZGV";
3570 Mangler.mangleName(D);
3571}
3572
Richard Smithb80a16e2013-04-19 16:42:07 +00003573void ItaniumMangleContext::mangleItaniumThreadLocalInit(const VarDecl *D,
3574 raw_ostream &Out) {
3575 // <special-name> ::= TH <object name>
3576 CXXNameMangler Mangler(*this, Out);
3577 Mangler.getStream() << "_ZTH";
3578 Mangler.mangleName(D);
3579}
3580
3581void ItaniumMangleContext::mangleItaniumThreadLocalWrapper(const VarDecl *D,
3582 raw_ostream &Out) {
3583 // <special-name> ::= TW <object name>
3584 CXXNameMangler Mangler(*this, Out);
3585 Mangler.getStream() << "_ZTW";
3586 Mangler.mangleName(D);
3587}
3588
Guy Benyei7f92f2d2012-12-18 14:30:41 +00003589void ItaniumMangleContext::mangleReferenceTemporary(const VarDecl *D,
3590 raw_ostream &Out) {
3591 // We match the GCC mangling here.
3592 // <special-name> ::= GR <object name>
3593 CXXNameMangler Mangler(*this, Out);
3594 Mangler.getStream() << "_ZGR";
3595 Mangler.mangleName(D);
3596}
3597
3598void ItaniumMangleContext::mangleCXXVTable(const CXXRecordDecl *RD,
3599 raw_ostream &Out) {
3600 // <special-name> ::= TV <type> # virtual table
3601 CXXNameMangler Mangler(*this, Out);
3602 Mangler.getStream() << "_ZTV";
3603 Mangler.mangleNameOrStandardSubstitution(RD);
3604}
3605
3606void ItaniumMangleContext::mangleCXXVTT(const CXXRecordDecl *RD,
3607 raw_ostream &Out) {
3608 // <special-name> ::= TT <type> # VTT structure
3609 CXXNameMangler Mangler(*this, Out);
3610 Mangler.getStream() << "_ZTT";
3611 Mangler.mangleNameOrStandardSubstitution(RD);
3612}
3613
Reid Kleckner90633022013-06-19 15:20:38 +00003614void
3615ItaniumMangleContext::mangleCXXVBTable(const CXXRecordDecl *Derived,
3616 ArrayRef<const CXXRecordDecl *> BasePath,
3617 raw_ostream &Out) {
3618 llvm_unreachable("The Itanium C++ ABI does not have virtual base tables!");
3619}
3620
Guy Benyei7f92f2d2012-12-18 14:30:41 +00003621void ItaniumMangleContext::mangleCXXCtorVTable(const CXXRecordDecl *RD,
3622 int64_t Offset,
3623 const CXXRecordDecl *Type,
3624 raw_ostream &Out) {
3625 // <special-name> ::= TC <type> <offset number> _ <base type>
3626 CXXNameMangler Mangler(*this, Out);
3627 Mangler.getStream() << "_ZTC";
3628 Mangler.mangleNameOrStandardSubstitution(RD);
3629 Mangler.getStream() << Offset;
3630 Mangler.getStream() << '_';
3631 Mangler.mangleNameOrStandardSubstitution(Type);
3632}
3633
3634void ItaniumMangleContext::mangleCXXRTTI(QualType Ty,
3635 raw_ostream &Out) {
3636 // <special-name> ::= TI <type> # typeinfo structure
3637 assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
3638 CXXNameMangler Mangler(*this, Out);
3639 Mangler.getStream() << "_ZTI";
3640 Mangler.mangleType(Ty);
3641}
3642
3643void ItaniumMangleContext::mangleCXXRTTIName(QualType Ty,
3644 raw_ostream &Out) {
3645 // <special-name> ::= TS <type> # typeinfo name (null terminated byte string)
3646 CXXNameMangler Mangler(*this, Out);
3647 Mangler.getStream() << "_ZTS";
3648 Mangler.mangleType(Ty);
3649}
3650
3651MangleContext *clang::createItaniumMangleContext(ASTContext &Context,
3652 DiagnosticsEngine &Diags) {
3653 return new ItaniumMangleContext(Context, Diags);
3654}