blob: 61cb02b9a591db88e54c465d2fea439ba6dcb98f [file] [log] [blame]
Chris Lattner5fd3e262008-04-14 17:54:23 +00001//===--- RewriteRope.cpp - Rope specialized for rewriter --------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the RewriteRope class, which is a powerful string.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Rewrite/RewriteRope.h"
15#include "llvm/Support/Casting.h"
Chris Lattner5618d882008-04-14 21:41:00 +000016#include <algorithm>
Chris Lattner5fd3e262008-04-14 17:54:23 +000017using namespace clang;
18using llvm::dyn_cast;
19using llvm::cast;
20
Chris Lattnerb9b30942008-04-15 06:37:11 +000021/// RewriteRope is a "strong" string class, designed to make insertions and
22/// deletions in the middle of the string nearly constant time (really, they are
23/// O(log N), but with a very low constant factor).
24///
25/// The implementation of this datastructure is a conceptual linear sequence of
26/// RopePiece elements. Each RopePiece represents a view on a separately
27/// allocated and reference counted string. This means that splitting a very
28/// long string can be done in constant time by splitting a RopePiece that
29/// references the whole string into two rope pieces that reference each half.
30/// Once split, another string can be inserted in between the two halves by
31/// inserting a RopePiece in between the two others. All of this is very
32/// inexpensive: it takes time proportional to the number of RopePieces, not the
33/// length of the strings they represent.
34///
35/// While a linear sequences of RopePieces is the conceptual model, the actual
36/// implementation captures them in an adapted B+ Tree. Using a B+ tree (which
37/// is a tree that keeps the values in the leaves and has where each node
38/// contains a reasonable number of pointers to children/values) allows us to
39/// maintain efficient operation when the RewriteRope contains a *huge* number
40/// of RopePieces. The basic idea of the B+ Tree is that it allows us to find
41/// the RopePiece corresponding to some offset very efficiently, and it
42/// automatically balances itself on insertions of RopePieces (which can happen
43/// for both insertions and erases of string ranges).
44///
45/// The one wrinkle on the theory is that we don't attempt to keep the tree
46/// properly balanced when erases happen. Erases of string data can both insert
47/// new RopePieces (e.g. when the middle of some other rope piece is deleted,
48/// which results in two rope pieces, which is just like an insert) or it can
49/// reduce the number of RopePieces maintained by the B+Tree. In the case when
50/// the number of RopePieces is reduced, we don't attempt to maintain the
51/// standard 'invariant' that each node in the tree contains at least
52/// 'WidthFactor' children/values. For our use cases, this doesn't seem to
53/// matter.
54///
55/// The implementation below is primarily implemented in terms of three classes:
56/// RopePieceBTreeNode - Common base class for:
57///
58/// RopePieceBTreeLeaf - Directly manages up to '2*WidthFactor' RopePiece
59/// nodes. This directly represents a chunk of the string with those
60/// RopePieces contatenated.
61/// RopePieceBTreeInterior - An interior node in the B+ Tree, which manages
62/// up to '2*WidthFactor' other nodes in the tree.
Chris Lattner5fd3e262008-04-14 17:54:23 +000063
Chris Lattner5fd3e262008-04-14 17:54:23 +000064
Chris Lattner5fd3e262008-04-14 17:54:23 +000065//===----------------------------------------------------------------------===//
66// RopePieceBTreeNode Class
67//===----------------------------------------------------------------------===//
68
69namespace {
Chris Lattnerb9b30942008-04-15 06:37:11 +000070 /// RopePieceBTreeNode - Common base class of RopePieceBTreeLeaf and
71 /// RopePieceBTreeInterior. This provides some 'virtual' dispatching methods
72 /// and a flag that determines which subclass the instance is. Also
73 /// important, this node knows the full extend of the node, including any
74 /// children that it has. This allows efficient skipping over entire subtrees
75 /// when looking for an offset in the BTree.
Chris Lattner5fd3e262008-04-14 17:54:23 +000076 class RopePieceBTreeNode {
77 protected:
78 /// WidthFactor - This controls the number of K/V slots held in the BTree:
79 /// how wide it is. Each level of the BTree is guaranteed to have at least
80 /// 'WidthFactor' elements in it (either ropepieces or children), (except
81 /// the root, which may have less) and may have at most 2*WidthFactor
82 /// elements.
83 enum { WidthFactor = 8 };
84
85 /// Size - This is the number of bytes of file this node (including any
86 /// potential children) covers.
87 unsigned Size;
88
89 /// IsLeaf - True if this is an instance of RopePieceBTreeLeaf, false if it
90 /// is an instance of RopePieceBTreeInterior.
91 bool IsLeaf;
92
Chris Lattnerb442e212008-04-14 20:05:32 +000093 RopePieceBTreeNode(bool isLeaf) : Size(0), IsLeaf(isLeaf) {}
Chris Lattner5fd3e262008-04-14 17:54:23 +000094 ~RopePieceBTreeNode() {}
95 public:
96
97 bool isLeaf() const { return IsLeaf; }
98 unsigned size() const { return Size; }
99
100 void Destroy();
101
102 /// split - Split the range containing the specified offset so that we are
103 /// guaranteed that there is a place to do an insertion at the specified
Chris Lattnerbf268562008-04-14 22:10:58 +0000104 /// offset. The offset is relative, so "0" is the start of the node.
105 ///
106 /// If there is no space in this subtree for the extra piece, the extra tree
107 /// node is returned and must be inserted into a parent.
108 RopePieceBTreeNode *split(unsigned Offset);
Chris Lattner5fd3e262008-04-14 17:54:23 +0000109
110 /// insert - Insert the specified ropepiece into this tree node at the
111 /// specified offset. The offset is relative, so "0" is the start of the
Chris Lattnerbf268562008-04-14 22:10:58 +0000112 /// node.
113 ///
114 /// If there is no space in this subtree for the extra piece, the extra tree
115 /// node is returned and must be inserted into a parent.
116 RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
Chris Lattner5fd3e262008-04-14 17:54:23 +0000117
118 /// erase - Remove NumBytes from this node at the specified offset. We are
119 /// guaranteed that there is a split at Offset.
120 void erase(unsigned Offset, unsigned NumBytes);
121
122 static inline bool classof(const RopePieceBTreeNode *) { return true; }
123
124 };
125} // end anonymous namespace
126
127//===----------------------------------------------------------------------===//
128// RopePieceBTreeLeaf Class
129//===----------------------------------------------------------------------===//
130
131namespace {
Chris Lattnerb9b30942008-04-15 06:37:11 +0000132 /// RopePieceBTreeLeaf - Directly manages up to '2*WidthFactor' RopePiece
133 /// nodes. This directly represents a chunk of the string with those
134 /// RopePieces contatenated. Since this is a B+Tree, all values (in this case
135 /// instances of RopePiece) are stored in leaves like this. To make iteration
136 /// over the leaves efficient, they maintain a singly linked list through the
137 /// NextLeaf field. This allows the B+Tree forward iterator to be constant
138 /// time for all increments.
Chris Lattner5fd3e262008-04-14 17:54:23 +0000139 class RopePieceBTreeLeaf : public RopePieceBTreeNode {
140 /// NumPieces - This holds the number of rope pieces currently active in the
141 /// Pieces array.
142 unsigned char NumPieces;
143
144 /// Pieces - This tracks the file chunks currently in this leaf.
145 ///
146 RopePiece Pieces[2*WidthFactor];
147
148 /// NextLeaf - This is a pointer to the next leaf in the tree, allowing
149 /// efficient in-order forward iteration of the tree without traversal.
Chris Lattner3d2e8c72008-05-28 18:45:56 +0000150 RopePieceBTreeLeaf **PrevLeaf, *NextLeaf;
Chris Lattner5fd3e262008-04-14 17:54:23 +0000151 public:
Chris Lattner3d2e8c72008-05-28 18:45:56 +0000152 RopePieceBTreeLeaf() : RopePieceBTreeNode(true), NumPieces(0),
153 PrevLeaf(0), NextLeaf(0) {}
154 ~RopePieceBTreeLeaf() {
155 if (PrevLeaf || NextLeaf)
156 removeFromLeafInOrder();
157 }
Chris Lattner5fd3e262008-04-14 17:54:23 +0000158
159 bool isFull() const { return NumPieces == 2*WidthFactor; }
160
161 /// clear - Remove all rope pieces from this leaf.
162 void clear() {
163 while (NumPieces)
164 Pieces[--NumPieces] = RopePiece();
165 Size = 0;
166 }
167
168 unsigned getNumPieces() const { return NumPieces; }
169
170 const RopePiece &getPiece(unsigned i) const {
171 assert(i < getNumPieces() && "Invalid piece ID");
172 return Pieces[i];
173 }
174
175 const RopePieceBTreeLeaf *getNextLeafInOrder() const { return NextLeaf; }
Chris Lattner3d2e8c72008-05-28 18:45:56 +0000176 void insertAfterLeafInOrder(RopePieceBTreeLeaf *Node) {
177 assert(PrevLeaf == 0 && NextLeaf == 0 && "Already in ordering");
178
179 NextLeaf = Node->NextLeaf;
180 if (NextLeaf)
181 NextLeaf->PrevLeaf = &NextLeaf;
182 PrevLeaf = &Node->NextLeaf;
183 Node->NextLeaf = this;
184 }
185
186 void removeFromLeafInOrder() {
187 if (PrevLeaf) {
188 *PrevLeaf = NextLeaf;
189 if (NextLeaf)
190 NextLeaf->PrevLeaf = PrevLeaf;
191 } else if (NextLeaf) {
192 NextLeaf->PrevLeaf = 0;
193 }
194 }
Chris Lattner5fd3e262008-04-14 17:54:23 +0000195
Chris Lattnerb9b30942008-04-15 06:37:11 +0000196 /// FullRecomputeSizeLocally - This method recomputes the 'Size' field by
197 /// summing the size of all RopePieces.
Chris Lattner5fd3e262008-04-14 17:54:23 +0000198 void FullRecomputeSizeLocally() {
199 Size = 0;
200 for (unsigned i = 0, e = getNumPieces(); i != e; ++i)
201 Size += getPiece(i).size();
202 }
203
204 /// split - Split the range containing the specified offset so that we are
205 /// guaranteed that there is a place to do an insertion at the specified
Chris Lattnerbf268562008-04-14 22:10:58 +0000206 /// offset. The offset is relative, so "0" is the start of the node.
207 ///
208 /// If there is no space in this subtree for the extra piece, the extra tree
209 /// node is returned and must be inserted into a parent.
210 RopePieceBTreeNode *split(unsigned Offset);
Chris Lattner5fd3e262008-04-14 17:54:23 +0000211
212 /// insert - Insert the specified ropepiece into this tree node at the
213 /// specified offset. The offset is relative, so "0" is the start of the
Chris Lattnerbf268562008-04-14 22:10:58 +0000214 /// node.
215 ///
216 /// If there is no space in this subtree for the extra piece, the extra tree
217 /// node is returned and must be inserted into a parent.
218 RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
Chris Lattner5fd3e262008-04-14 17:54:23 +0000219
220
221 /// erase - Remove NumBytes from this node at the specified offset. We are
222 /// guaranteed that there is a split at Offset.
223 void erase(unsigned Offset, unsigned NumBytes);
224
225 static inline bool classof(const RopePieceBTreeLeaf *) { return true; }
226 static inline bool classof(const RopePieceBTreeNode *N) {
227 return N->isLeaf();
228 }
229 };
230} // end anonymous namespace
231
232/// split - Split the range containing the specified offset so that we are
233/// guaranteed that there is a place to do an insertion at the specified
Chris Lattnerbf268562008-04-14 22:10:58 +0000234/// offset. The offset is relative, so "0" is the start of the node.
235///
236/// If there is no space in this subtree for the extra piece, the extra tree
237/// node is returned and must be inserted into a parent.
238RopePieceBTreeNode *RopePieceBTreeLeaf::split(unsigned Offset) {
Chris Lattner5fd3e262008-04-14 17:54:23 +0000239 // Find the insertion point. We are guaranteed that there is a split at the
240 // specified offset so find it.
241 if (Offset == 0 || Offset == size()) {
242 // Fastpath for a common case. There is already a splitpoint at the end.
Chris Lattnerbf268562008-04-14 22:10:58 +0000243 return 0;
Chris Lattner5fd3e262008-04-14 17:54:23 +0000244 }
245
246 // Find the piece that this offset lands in.
247 unsigned PieceOffs = 0;
248 unsigned i = 0;
249 while (Offset >= PieceOffs+Pieces[i].size()) {
250 PieceOffs += Pieces[i].size();
251 ++i;
252 }
253
254 // If there is already a split point at the specified offset, just return
255 // success.
256 if (PieceOffs == Offset)
Chris Lattnerbf268562008-04-14 22:10:58 +0000257 return 0;
Chris Lattner5fd3e262008-04-14 17:54:23 +0000258
259 // Otherwise, we need to split piece 'i' at Offset-PieceOffs. Convert Offset
260 // to being Piece relative.
261 unsigned IntraPieceOffset = Offset-PieceOffs;
262
263 // We do this by shrinking the RopePiece and then doing an insert of the tail.
264 RopePiece Tail(Pieces[i].StrData, Pieces[i].StartOffs+IntraPieceOffset,
265 Pieces[i].EndOffs);
266 Size -= Pieces[i].size();
267 Pieces[i].EndOffs = Pieces[i].StartOffs+IntraPieceOffset;
268 Size += Pieces[i].size();
269
Chris Lattnerbf268562008-04-14 22:10:58 +0000270 return insert(Offset, Tail);
Chris Lattner5fd3e262008-04-14 17:54:23 +0000271}
272
273
274/// insert - Insert the specified RopePiece into this tree node at the
Chris Lattnerbf268562008-04-14 22:10:58 +0000275/// specified offset. The offset is relative, so "0" is the start of the node.
276///
277/// If there is no space in this subtree for the extra piece, the extra tree
278/// node is returned and must be inserted into a parent.
279RopePieceBTreeNode *RopePieceBTreeLeaf::insert(unsigned Offset,
280 const RopePiece &R) {
Chris Lattner5fd3e262008-04-14 17:54:23 +0000281 // If this node is not full, insert the piece.
282 if (!isFull()) {
283 // Find the insertion point. We are guaranteed that there is a split at the
284 // specified offset so find it.
285 unsigned i = 0, e = getNumPieces();
286 if (Offset == size()) {
287 // Fastpath for a common case.
288 i = e;
289 } else {
290 unsigned SlotOffs = 0;
291 for (; Offset > SlotOffs; ++i)
292 SlotOffs += getPiece(i).size();
293 assert(SlotOffs == Offset && "Split didn't occur before insertion!");
294 }
295
296 // For an insertion into a non-full leaf node, just insert the value in
297 // its sorted position. This requires moving later values over.
298 for (; i != e; --e)
299 Pieces[e] = Pieces[e-1];
300 Pieces[i] = R;
301 ++NumPieces;
302 Size += R.size();
Chris Lattnerbf268562008-04-14 22:10:58 +0000303 return 0;
Chris Lattner5fd3e262008-04-14 17:54:23 +0000304 }
305
306 // Otherwise, if this is leaf is full, split it in two halves. Since this
307 // node is full, it contains 2*WidthFactor values. We move the first
308 // 'WidthFactor' values to the LHS child (which we leave in this node) and
309 // move the last 'WidthFactor' values into the RHS child.
310
311 // Create the new node.
312 RopePieceBTreeLeaf *NewNode = new RopePieceBTreeLeaf();
313
314 // Move over the last 'WidthFactor' values from here to NewNode.
315 std::copy(&Pieces[WidthFactor], &Pieces[2*WidthFactor],
316 &NewNode->Pieces[0]);
317 // Replace old pieces with null RopePieces to drop refcounts.
318 std::fill(&Pieces[WidthFactor], &Pieces[2*WidthFactor], RopePiece());
319
320 // Decrease the number of values in the two nodes.
321 NewNode->NumPieces = NumPieces = WidthFactor;
322
323 // Recompute the two nodes' size.
324 NewNode->FullRecomputeSizeLocally();
325 FullRecomputeSizeLocally();
326
327 // Update the list of leaves.
Chris Lattner3d2e8c72008-05-28 18:45:56 +0000328 NewNode->insertAfterLeafInOrder(this);
Chris Lattner5fd3e262008-04-14 17:54:23 +0000329
Chris Lattnerbf268562008-04-14 22:10:58 +0000330 // These insertions can't fail.
Chris Lattner5fd3e262008-04-14 17:54:23 +0000331 if (this->size() >= Offset)
Chris Lattnerbf268562008-04-14 22:10:58 +0000332 this->insert(Offset, R);
Chris Lattner5fd3e262008-04-14 17:54:23 +0000333 else
Chris Lattnerbf268562008-04-14 22:10:58 +0000334 NewNode->insert(Offset - this->size(), R);
335 return NewNode;
Chris Lattner5fd3e262008-04-14 17:54:23 +0000336}
337
338/// erase - Remove NumBytes from this node at the specified offset. We are
339/// guaranteed that there is a split at Offset.
340void RopePieceBTreeLeaf::erase(unsigned Offset, unsigned NumBytes) {
341 // Since we are guaranteed that there is a split at Offset, we start by
342 // finding the Piece that starts there.
343 unsigned PieceOffs = 0;
344 unsigned i = 0;
345 for (; Offset > PieceOffs; ++i)
346 PieceOffs += getPiece(i).size();
347 assert(PieceOffs == Offset && "Split didn't occur before erase!");
348
349 unsigned StartPiece = i;
350
351 // Figure out how many pieces completely cover 'NumBytes'. We want to remove
352 // all of them.
353 for (; Offset+NumBytes > PieceOffs+getPiece(i).size(); ++i)
354 PieceOffs += getPiece(i).size();
355
356 // If we exactly include the last one, include it in the region to delete.
357 if (Offset+NumBytes == PieceOffs+getPiece(i).size())
358 PieceOffs += getPiece(i).size(), ++i;
359
360 // If we completely cover some RopePieces, erase them now.
361 if (i != StartPiece) {
362 unsigned NumDeleted = i-StartPiece;
363 for (; i != getNumPieces(); ++i)
364 Pieces[i-NumDeleted] = Pieces[i];
365
366 // Drop references to dead rope pieces.
367 std::fill(&Pieces[getNumPieces()-NumDeleted], &Pieces[getNumPieces()],
368 RopePiece());
369 NumPieces -= NumDeleted;
370
371 unsigned CoverBytes = PieceOffs-Offset;
372 NumBytes -= CoverBytes;
373 Size -= CoverBytes;
374 }
375
376 // If we completely removed some stuff, we could be done.
377 if (NumBytes == 0) return;
378
379 // Okay, now might be erasing part of some Piece. If this is the case, then
380 // move the start point of the piece.
381 assert(getPiece(StartPiece).size() > NumBytes);
382 Pieces[StartPiece].StartOffs += NumBytes;
383
384 // The size of this node just shrunk by NumBytes.
385 Size -= NumBytes;
386}
387
388//===----------------------------------------------------------------------===//
389// RopePieceBTreeInterior Class
390//===----------------------------------------------------------------------===//
391
392namespace {
Chris Lattnerb9b30942008-04-15 06:37:11 +0000393 /// RopePieceBTreeInterior - This represents an interior node in the B+Tree,
394 /// which holds up to 2*WidthFactor pointers to child nodes.
Chris Lattner5fd3e262008-04-14 17:54:23 +0000395 class RopePieceBTreeInterior : public RopePieceBTreeNode {
396 /// NumChildren - This holds the number of children currently active in the
397 /// Children array.
398 unsigned char NumChildren;
399 RopePieceBTreeNode *Children[2*WidthFactor];
400 public:
Chris Lattner70778c82008-04-14 20:07:03 +0000401 RopePieceBTreeInterior() : RopePieceBTreeNode(false), NumChildren(0) {}
Chris Lattner5fd3e262008-04-14 17:54:23 +0000402
403 RopePieceBTreeInterior(RopePieceBTreeNode *LHS, RopePieceBTreeNode *RHS)
404 : RopePieceBTreeNode(false) {
405 Children[0] = LHS;
406 Children[1] = RHS;
407 NumChildren = 2;
408 Size = LHS->size() + RHS->size();
409 }
410
411 bool isFull() const { return NumChildren == 2*WidthFactor; }
412
413 unsigned getNumChildren() const { return NumChildren; }
414 const RopePieceBTreeNode *getChild(unsigned i) const {
415 assert(i < NumChildren && "invalid child #");
416 return Children[i];
417 }
418 RopePieceBTreeNode *getChild(unsigned i) {
419 assert(i < NumChildren && "invalid child #");
420 return Children[i];
421 }
422
Chris Lattnerb9b30942008-04-15 06:37:11 +0000423 /// FullRecomputeSizeLocally - Recompute the Size field of this node by
424 /// summing up the sizes of the child nodes.
Chris Lattner5fd3e262008-04-14 17:54:23 +0000425 void FullRecomputeSizeLocally() {
426 Size = 0;
427 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
428 Size += getChild(i)->size();
429 }
430
431
432 /// split - Split the range containing the specified offset so that we are
433 /// guaranteed that there is a place to do an insertion at the specified
Chris Lattnerbf268562008-04-14 22:10:58 +0000434 /// offset. The offset is relative, so "0" is the start of the node.
435 ///
436 /// If there is no space in this subtree for the extra piece, the extra tree
437 /// node is returned and must be inserted into a parent.
438 RopePieceBTreeNode *split(unsigned Offset);
Chris Lattner5fd3e262008-04-14 17:54:23 +0000439
440
441 /// insert - Insert the specified ropepiece into this tree node at the
442 /// specified offset. The offset is relative, so "0" is the start of the
Chris Lattnerbf268562008-04-14 22:10:58 +0000443 /// node.
444 ///
445 /// If there is no space in this subtree for the extra piece, the extra tree
446 /// node is returned and must be inserted into a parent.
447 RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
Chris Lattner5fd3e262008-04-14 17:54:23 +0000448
449 /// HandleChildPiece - A child propagated an insertion result up to us.
450 /// Insert the new child, and/or propagate the result further up the tree.
Chris Lattnerbf268562008-04-14 22:10:58 +0000451 RopePieceBTreeNode *HandleChildPiece(unsigned i, RopePieceBTreeNode *RHS);
Chris Lattner5fd3e262008-04-14 17:54:23 +0000452
453 /// erase - Remove NumBytes from this node at the specified offset. We are
454 /// guaranteed that there is a split at Offset.
455 void erase(unsigned Offset, unsigned NumBytes);
456
457 static inline bool classof(const RopePieceBTreeInterior *) { return true; }
458 static inline bool classof(const RopePieceBTreeNode *N) {
459 return !N->isLeaf();
460 }
461 };
462} // end anonymous namespace
463
464/// split - Split the range containing the specified offset so that we are
465/// guaranteed that there is a place to do an insertion at the specified
Chris Lattnerbf268562008-04-14 22:10:58 +0000466/// offset. The offset is relative, so "0" is the start of the node.
467///
468/// If there is no space in this subtree for the extra piece, the extra tree
469/// node is returned and must be inserted into a parent.
470RopePieceBTreeNode *RopePieceBTreeInterior::split(unsigned Offset) {
Chris Lattner5fd3e262008-04-14 17:54:23 +0000471 // Figure out which child to split.
472 if (Offset == 0 || Offset == size())
Chris Lattnerbf268562008-04-14 22:10:58 +0000473 return 0; // If we have an exact offset, we're already split.
Chris Lattner5fd3e262008-04-14 17:54:23 +0000474
475 unsigned ChildOffset = 0;
476 unsigned i = 0;
477 for (; Offset >= ChildOffset+getChild(i)->size(); ++i)
478 ChildOffset += getChild(i)->size();
479
480 // If already split there, we're done.
481 if (ChildOffset == Offset)
Chris Lattnerbf268562008-04-14 22:10:58 +0000482 return 0;
Chris Lattner5fd3e262008-04-14 17:54:23 +0000483
484 // Otherwise, recursively split the child.
Chris Lattnerbf268562008-04-14 22:10:58 +0000485 if (RopePieceBTreeNode *RHS = getChild(i)->split(Offset-ChildOffset))
486 return HandleChildPiece(i, RHS);
487 return 0; // Done!
Chris Lattner5fd3e262008-04-14 17:54:23 +0000488}
489
490/// insert - Insert the specified ropepiece into this tree node at the
491/// specified offset. The offset is relative, so "0" is the start of the
Chris Lattnerbf268562008-04-14 22:10:58 +0000492/// node.
493///
494/// If there is no space in this subtree for the extra piece, the extra tree
495/// node is returned and must be inserted into a parent.
496RopePieceBTreeNode *RopePieceBTreeInterior::insert(unsigned Offset,
497 const RopePiece &R) {
Chris Lattner5fd3e262008-04-14 17:54:23 +0000498 // Find the insertion point. We are guaranteed that there is a split at the
499 // specified offset so find it.
500 unsigned i = 0, e = getNumChildren();
501
502 unsigned ChildOffs = 0;
503 if (Offset == size()) {
504 // Fastpath for a common case. Insert at end of last child.
505 i = e-1;
506 ChildOffs = size()-getChild(i)->size();
507 } else {
508 for (; Offset > ChildOffs+getChild(i)->size(); ++i)
509 ChildOffs += getChild(i)->size();
510 }
511
512 Size += R.size();
513
514 // Insert at the end of this child.
Chris Lattnerbf268562008-04-14 22:10:58 +0000515 if (RopePieceBTreeNode *RHS = getChild(i)->insert(Offset-ChildOffs, R))
516 return HandleChildPiece(i, RHS);
Chris Lattner5fd3e262008-04-14 17:54:23 +0000517
Chris Lattnerbf268562008-04-14 22:10:58 +0000518 return 0;
Chris Lattner5fd3e262008-04-14 17:54:23 +0000519}
520
521/// HandleChildPiece - A child propagated an insertion result up to us.
522/// Insert the new child, and/or propagate the result further up the tree.
Chris Lattnerbf268562008-04-14 22:10:58 +0000523RopePieceBTreeNode *
524RopePieceBTreeInterior::HandleChildPiece(unsigned i, RopePieceBTreeNode *RHS) {
Chris Lattner5fd3e262008-04-14 17:54:23 +0000525 // Otherwise the child propagated a subtree up to us as a new child. See if
526 // we have space for it here.
527 if (!isFull()) {
Chris Lattnerbf268562008-04-14 22:10:58 +0000528 // Insert RHS after child 'i'.
Chris Lattner5fd3e262008-04-14 17:54:23 +0000529 if (i + 1 != getNumChildren())
530 memmove(&Children[i+2], &Children[i+1],
531 (getNumChildren()-i-1)*sizeof(Children[0]));
Chris Lattnerbf268562008-04-14 22:10:58 +0000532 Children[i+1] = RHS;
Chris Lattner5fd3e262008-04-14 17:54:23 +0000533 ++NumChildren;
534 return false;
535 }
536
537 // Okay, this node is full. Split it in half, moving WidthFactor children to
538 // a newly allocated interior node.
539
540 // Create the new node.
541 RopePieceBTreeInterior *NewNode = new RopePieceBTreeInterior();
542
543 // Move over the last 'WidthFactor' values from here to NewNode.
544 memcpy(&NewNode->Children[0], &Children[WidthFactor],
545 WidthFactor*sizeof(Children[0]));
546
547 // Decrease the number of values in the two nodes.
548 NewNode->NumChildren = NumChildren = WidthFactor;
549
550 // Finally, insert the two new children in the side the can (now) hold them.
Chris Lattnerbf268562008-04-14 22:10:58 +0000551 // These insertions can't fail.
Chris Lattner5fd3e262008-04-14 17:54:23 +0000552 if (i < WidthFactor)
Chris Lattnerbf268562008-04-14 22:10:58 +0000553 this->HandleChildPiece(i, RHS);
Chris Lattner5fd3e262008-04-14 17:54:23 +0000554 else
Chris Lattnerbf268562008-04-14 22:10:58 +0000555 NewNode->HandleChildPiece(i-WidthFactor, RHS);
Chris Lattner5fd3e262008-04-14 17:54:23 +0000556
557 // Recompute the two nodes' size.
558 NewNode->FullRecomputeSizeLocally();
559 FullRecomputeSizeLocally();
Chris Lattnerbf268562008-04-14 22:10:58 +0000560 return NewNode;
Chris Lattner5fd3e262008-04-14 17:54:23 +0000561}
562
563/// erase - Remove NumBytes from this node at the specified offset. We are
564/// guaranteed that there is a split at Offset.
565void RopePieceBTreeInterior::erase(unsigned Offset, unsigned NumBytes) {
566 // This will shrink this node by NumBytes.
567 Size -= NumBytes;
568
569 // Find the first child that overlaps with Offset.
570 unsigned i = 0;
571 for (; Offset >= getChild(i)->size(); ++i)
572 Offset -= getChild(i)->size();
573
574 // Propagate the delete request into overlapping children, or completely
575 // delete the children as appropriate.
576 while (NumBytes) {
577 RopePieceBTreeNode *CurChild = getChild(i);
578
579 // If we are deleting something contained entirely in the child, pass on the
580 // request.
581 if (Offset+NumBytes < CurChild->size()) {
582 CurChild->erase(Offset, NumBytes);
583 return;
584 }
585
586 // If this deletion request starts somewhere in the middle of the child, it
587 // must be deleting to the end of the child.
588 if (Offset) {
589 unsigned BytesFromChild = CurChild->size()-Offset;
590 CurChild->erase(Offset, BytesFromChild);
591 NumBytes -= BytesFromChild;
Chris Lattnerb6403af2008-05-08 03:23:46 +0000592 // Start at the beginning of the next child.
593 Offset = 0;
Chris Lattner5fd3e262008-04-14 17:54:23 +0000594 ++i;
595 continue;
596 }
Chris Lattnerb6403af2008-05-08 03:23:46 +0000597
Chris Lattner5fd3e262008-04-14 17:54:23 +0000598 // If the deletion request completely covers the child, delete it and move
599 // the rest down.
600 NumBytes -= CurChild->size();
601 CurChild->Destroy();
602 --NumChildren;
Chris Lattner514b24c2008-05-23 23:29:33 +0000603 if (i != getNumChildren())
Chris Lattner5fd3e262008-04-14 17:54:23 +0000604 memmove(&Children[i], &Children[i+1],
605 (getNumChildren()-i)*sizeof(Children[0]));
606 }
607}
608
609//===----------------------------------------------------------------------===//
610// RopePieceBTreeNode Implementation
611//===----------------------------------------------------------------------===//
612
613void RopePieceBTreeNode::Destroy() {
614 if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
615 delete Leaf;
616 else
617 delete cast<RopePieceBTreeInterior>(this);
618}
619
620/// split - Split the range containing the specified offset so that we are
621/// guaranteed that there is a place to do an insertion at the specified
Chris Lattnerbf268562008-04-14 22:10:58 +0000622/// offset. The offset is relative, so "0" is the start of the node.
623///
624/// If there is no space in this subtree for the extra piece, the extra tree
625/// node is returned and must be inserted into a parent.
626RopePieceBTreeNode *RopePieceBTreeNode::split(unsigned Offset) {
Chris Lattner5fd3e262008-04-14 17:54:23 +0000627 assert(Offset <= size() && "Invalid offset to split!");
628 if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
Chris Lattnerbf268562008-04-14 22:10:58 +0000629 return Leaf->split(Offset);
630 return cast<RopePieceBTreeInterior>(this)->split(Offset);
Chris Lattner5fd3e262008-04-14 17:54:23 +0000631}
632
633/// insert - Insert the specified ropepiece into this tree node at the
634/// specified offset. The offset is relative, so "0" is the start of the
635/// node.
Chris Lattnerbf268562008-04-14 22:10:58 +0000636///
637/// If there is no space in this subtree for the extra piece, the extra tree
638/// node is returned and must be inserted into a parent.
639RopePieceBTreeNode *RopePieceBTreeNode::insert(unsigned Offset,
640 const RopePiece &R) {
Chris Lattner5fd3e262008-04-14 17:54:23 +0000641 assert(Offset <= size() && "Invalid offset to insert!");
642 if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
Chris Lattnerbf268562008-04-14 22:10:58 +0000643 return Leaf->insert(Offset, R);
644 return cast<RopePieceBTreeInterior>(this)->insert(Offset, R);
Chris Lattner5fd3e262008-04-14 17:54:23 +0000645}
646
647/// erase - Remove NumBytes from this node at the specified offset. We are
648/// guaranteed that there is a split at Offset.
649void RopePieceBTreeNode::erase(unsigned Offset, unsigned NumBytes) {
650 assert(Offset+NumBytes <= size() && "Invalid offset to erase!");
651 if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
652 return Leaf->erase(Offset, NumBytes);
653 return cast<RopePieceBTreeInterior>(this)->erase(Offset, NumBytes);
654}
655
656
657//===----------------------------------------------------------------------===//
658// RopePieceBTreeIterator Implementation
659//===----------------------------------------------------------------------===//
660
661static const RopePieceBTreeLeaf *getCN(const void *P) {
662 return static_cast<const RopePieceBTreeLeaf*>(P);
663}
664
665// begin iterator.
666RopePieceBTreeIterator::RopePieceBTreeIterator(const void *n) {
667 const RopePieceBTreeNode *N = static_cast<const RopePieceBTreeNode*>(n);
668
669 // Walk down the left side of the tree until we get to a leaf.
670 while (const RopePieceBTreeInterior *IN = dyn_cast<RopePieceBTreeInterior>(N))
671 N = IN->getChild(0);
672
673 // We must have at least one leaf.
674 CurNode = cast<RopePieceBTreeLeaf>(N);
675
676 // If we found a leaf that happens to be empty, skip over it until we get
677 // to something full.
678 while (CurNode && getCN(CurNode)->getNumPieces() == 0)
679 CurNode = getCN(CurNode)->getNextLeafInOrder();
680
681 if (CurNode != 0)
682 CurPiece = &getCN(CurNode)->getPiece(0);
683 else // Empty tree, this is an end() iterator.
684 CurPiece = 0;
685 CurChar = 0;
686}
687
688void RopePieceBTreeIterator::MoveToNextPiece() {
689 if (CurPiece != &getCN(CurNode)->getPiece(getCN(CurNode)->getNumPieces()-1)) {
690 CurChar = 0;
691 ++CurPiece;
692 return;
693 }
694
695 // Find the next non-empty leaf node.
696 do
697 CurNode = getCN(CurNode)->getNextLeafInOrder();
698 while (CurNode && getCN(CurNode)->getNumPieces() == 0);
699
700 if (CurNode != 0)
701 CurPiece = &getCN(CurNode)->getPiece(0);
702 else // Hit end().
703 CurPiece = 0;
704 CurChar = 0;
705}
706
707//===----------------------------------------------------------------------===//
708// RopePieceBTree Implementation
709//===----------------------------------------------------------------------===//
710
711static RopePieceBTreeNode *getRoot(void *P) {
712 return static_cast<RopePieceBTreeNode*>(P);
713}
714
715RopePieceBTree::RopePieceBTree() {
716 Root = new RopePieceBTreeLeaf();
717}
718RopePieceBTree::RopePieceBTree(const RopePieceBTree &RHS) {
719 assert(RHS.empty() && "Can't copy non-empty tree yet");
720 Root = new RopePieceBTreeLeaf();
721}
722RopePieceBTree::~RopePieceBTree() {
723 getRoot(Root)->Destroy();
724}
725
726unsigned RopePieceBTree::size() const {
727 return getRoot(Root)->size();
728}
729
730void RopePieceBTree::clear() {
731 if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(getRoot(Root)))
732 Leaf->clear();
733 else {
734 getRoot(Root)->Destroy();
735 Root = new RopePieceBTreeLeaf();
736 }
737}
738
739void RopePieceBTree::insert(unsigned Offset, const RopePiece &R) {
Chris Lattner5fd3e262008-04-14 17:54:23 +0000740 // #1. Split at Offset.
Chris Lattnerbf268562008-04-14 22:10:58 +0000741 if (RopePieceBTreeNode *RHS = getRoot(Root)->split(Offset))
742 Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
Chris Lattner5fd3e262008-04-14 17:54:23 +0000743
744 // #2. Do the insertion.
Chris Lattnerbf268562008-04-14 22:10:58 +0000745 if (RopePieceBTreeNode *RHS = getRoot(Root)->insert(Offset, R))
746 Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
Chris Lattner5fd3e262008-04-14 17:54:23 +0000747}
748
749void RopePieceBTree::erase(unsigned Offset, unsigned NumBytes) {
Chris Lattner5fd3e262008-04-14 17:54:23 +0000750 // #1. Split at Offset.
Chris Lattnerbf268562008-04-14 22:10:58 +0000751 if (RopePieceBTreeNode *RHS = getRoot(Root)->split(Offset))
752 Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
Chris Lattner5fd3e262008-04-14 17:54:23 +0000753
754 // #2. Do the erasing.
755 getRoot(Root)->erase(Offset, NumBytes);
756}
Chris Lattner5618d882008-04-14 21:41:00 +0000757
758//===----------------------------------------------------------------------===//
759// RewriteRope Implementation
760//===----------------------------------------------------------------------===//
761
Chris Lattnerb9b30942008-04-15 06:37:11 +0000762/// MakeRopeString - This copies the specified byte range into some instance of
763/// RopeRefCountString, and return a RopePiece that represents it. This uses
764/// the AllocBuffer object to aggregate requests for small strings into one
765/// allocation instead of doing tons of tiny allocations.
Chris Lattner5618d882008-04-14 21:41:00 +0000766RopePiece RewriteRope::MakeRopeString(const char *Start, const char *End) {
767 unsigned Len = End-Start;
Chris Lattnerc66d0aa2008-04-23 03:21:50 +0000768 assert(Len && "Zero length RopePiece is invalid!");
Chris Lattner5618d882008-04-14 21:41:00 +0000769
770 // If we have space for this string in the current alloc buffer, use it.
771 if (AllocOffs+Len <= AllocChunkSize) {
772 memcpy(AllocBuffer->Data+AllocOffs, Start, Len);
773 AllocOffs += Len;
774 return RopePiece(AllocBuffer, AllocOffs-Len, AllocOffs);
775 }
776
777 // If we don't have enough room because this specific allocation is huge,
778 // just allocate a new rope piece for it alone.
779 if (Len > AllocChunkSize) {
780 unsigned Size = End-Start+sizeof(RopeRefCountString)-1;
781 RopeRefCountString *Res =
Chris Lattnerbf268562008-04-14 22:10:58 +0000782 reinterpret_cast<RopeRefCountString *>(new char[Size]);
Chris Lattner5618d882008-04-14 21:41:00 +0000783 Res->RefCount = 0;
784 memcpy(Res->Data, Start, End-Start);
785 return RopePiece(Res, 0, End-Start);
786 }
787
788 // Otherwise, this was a small request but we just don't have space for it
789 // Make a new chunk and share it with later allocations.
790
791 // If we had an old allocation, drop our reference to it.
792 if (AllocBuffer && --AllocBuffer->RefCount == 0)
793 delete [] (char*)AllocBuffer;
794
Zhongxing Xu3f61c182008-09-16 07:58:21 +0000795 unsigned AllocSize = offsetof(RopeRefCountString, Data) + AllocChunkSize;
Chris Lattner5618d882008-04-14 21:41:00 +0000796 AllocBuffer = reinterpret_cast<RopeRefCountString *>(new char[AllocSize]);
797 AllocBuffer->RefCount = 0;
798 memcpy(AllocBuffer->Data, Start, Len);
799 AllocOffs = Len;
800
801 // Start out the new allocation with a refcount of 1, since we have an
802 // internal reference to it.
803 AllocBuffer->addRef();
804 return RopePiece(AllocBuffer, 0, Len);
805}
806
807