blob: a5d5bc22af0eb6749bc3de019eef02c3a9467824 [file] [log] [blame]
Chris Lattner7f02f722007-08-24 05:35:26 +00001//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner0bc735f2007-12-29 19:59:25 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Chris Lattner7f02f722007-08-24 05:35:26 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CodeGenModule.h"
Daniel Dunbarde7fb842008-08-11 05:00:27 +000016#include "clang/AST/ASTContext.h"
Daniel Dunbar98c5ead2008-08-12 05:08:18 +000017#include "clang/AST/DeclObjC.h"
Daniel Dunbarde7fb842008-08-11 05:00:27 +000018#include "clang/AST/StmtVisitor.h"
Chris Lattner25ddea72008-04-20 00:50:39 +000019#include "clang/Basic/TargetInfo.h"
Chris Lattner7f02f722007-08-24 05:35:26 +000020#include "llvm/Constants.h"
21#include "llvm/Function.h"
Anders Carlsson85f9bce2007-10-29 05:01:08 +000022#include "llvm/GlobalVariable.h"
Anders Carlsson7c50aca2007-10-15 20:28:48 +000023#include "llvm/Intrinsics.h"
Chris Lattner7f02f722007-08-24 05:35:26 +000024#include "llvm/Support/Compiler.h"
Chris Lattnerf7b5ea92008-11-12 08:38:24 +000025#include "llvm/Support/CFG.h"
Chris Lattnerc89bf692008-01-03 07:05:49 +000026#include <cstdarg>
Ted Kremenek6aad91a2007-12-10 23:44:32 +000027
Chris Lattner7f02f722007-08-24 05:35:26 +000028using namespace clang;
29using namespace CodeGen;
30using llvm::Value;
31
32//===----------------------------------------------------------------------===//
33// Scalar Expression Emitter
34//===----------------------------------------------------------------------===//
35
36struct BinOpInfo {
37 Value *LHS;
38 Value *RHS;
Chris Lattner1f1ded92007-08-24 21:00:35 +000039 QualType Ty; // Computation Type.
Chris Lattner7f02f722007-08-24 05:35:26 +000040 const BinaryOperator *E;
41};
42
43namespace {
44class VISIBILITY_HIDDEN ScalarExprEmitter
45 : public StmtVisitor<ScalarExprEmitter, Value*> {
46 CodeGenFunction &CGF;
Daniel Dunbar45d196b2008-11-01 01:53:16 +000047 CGBuilderTy &Builder;
Chris Lattner2b94fe32008-03-01 08:45:05 +000048
Chris Lattner7f02f722007-08-24 05:35:26 +000049public:
50
Chris Lattner2b94fe32008-03-01 08:45:05 +000051 ScalarExprEmitter(CodeGenFunction &cgf) : CGF(cgf),
Daniel Dunbared7c6182008-08-20 00:28:19 +000052 Builder(CGF.Builder) {
Chris Lattner7f02f722007-08-24 05:35:26 +000053 }
Chris Lattner7f02f722007-08-24 05:35:26 +000054
55 //===--------------------------------------------------------------------===//
56 // Utilities
57 //===--------------------------------------------------------------------===//
58
59 const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
60 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
61
62 Value *EmitLoadOfLValue(LValue LV, QualType T) {
Chris Lattner9b655512007-08-31 22:49:20 +000063 return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
Chris Lattner7f02f722007-08-24 05:35:26 +000064 }
65
66 /// EmitLoadOfLValue - Given an expression with complex type that represents a
67 /// value l-value, this method emits the address of the l-value, then loads
68 /// and returns the result.
69 Value *EmitLoadOfLValue(const Expr *E) {
70 // FIXME: Volatile
71 return EmitLoadOfLValue(EmitLValue(E), E->getType());
72 }
73
Chris Lattner9abc84e2007-08-26 16:42:57 +000074 /// EmitConversionToBool - Convert the specified expression value to a
Chris Lattner3420d0d2007-08-26 17:25:57 +000075 /// boolean (i1) truth value. This is equivalent to "Val != 0".
Chris Lattner9abc84e2007-08-26 16:42:57 +000076 Value *EmitConversionToBool(Value *Src, QualType DstTy);
77
Chris Lattner3707b252007-08-26 06:48:56 +000078 /// EmitScalarConversion - Emit a conversion from the specified type to the
79 /// specified destination type, both of which are LLVM scalar types.
Chris Lattner4f1a7b32007-08-26 16:34:22 +000080 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
81
82 /// EmitComplexToScalarConversion - Emit a conversion from the specified
83 /// complex type to the specified destination type, where the destination
84 /// type is an LLVM scalar type.
85 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
86 QualType SrcTy, QualType DstTy);
Chris Lattner3707b252007-08-26 06:48:56 +000087
Chris Lattner7f02f722007-08-24 05:35:26 +000088 //===--------------------------------------------------------------------===//
89 // Visitor Methods
90 //===--------------------------------------------------------------------===//
91
92 Value *VisitStmt(Stmt *S) {
Ted Kremenek7a9d49f2007-12-11 21:27:55 +000093 S->dump(CGF.getContext().getSourceManager());
Chris Lattner7f02f722007-08-24 05:35:26 +000094 assert(0 && "Stmt can't have complex result type!");
95 return 0;
96 }
97 Value *VisitExpr(Expr *S);
98 Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); }
99
100 // Leaves.
101 Value *VisitIntegerLiteral(const IntegerLiteral *E) {
102 return llvm::ConstantInt::get(E->getValue());
103 }
104 Value *VisitFloatingLiteral(const FloatingLiteral *E) {
Chris Lattner59138ba2008-04-20 00:45:53 +0000105 return llvm::ConstantFP::get(E->getValue());
Chris Lattner7f02f722007-08-24 05:35:26 +0000106 }
107 Value *VisitCharacterLiteral(const CharacterLiteral *E) {
108 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
109 }
Nate Begemane7579b52007-11-15 05:40:03 +0000110 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
111 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
112 }
Argyrios Kyrtzidis7267f782008-08-23 19:35:47 +0000113 Value *VisitCXXZeroInitValueExpr(const CXXZeroInitValueExpr *E) {
114 return llvm::Constant::getNullValue(ConvertType(E->getType()));
115 }
Chris Lattner7f02f722007-08-24 05:35:26 +0000116 Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
117 return llvm::ConstantInt::get(ConvertType(E->getType()),
Steve Naroffec0550f2007-10-15 20:41:53 +0000118 CGF.getContext().typesAreCompatible(
119 E->getArgType1(), E->getArgType2()));
Chris Lattner7f02f722007-08-24 05:35:26 +0000120 }
Sebastian Redl05189992008-11-11 17:56:53 +0000121 Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E);
Daniel Dunbar0ffb1252008-08-04 16:51:22 +0000122 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
Daniel Dunbar54d19092008-08-16 01:41:47 +0000123 llvm::Value *V =
124 llvm::ConstantInt::get(llvm::Type::Int32Ty,
125 CGF.GetIDForAddrOfLabel(E->getLabel()));
126
127 return Builder.CreateIntToPtr(V, ConvertType(E->getType()));
Daniel Dunbar0ffb1252008-08-04 16:51:22 +0000128 }
Chris Lattner7f02f722007-08-24 05:35:26 +0000129
130 // l-values.
131 Value *VisitDeclRefExpr(DeclRefExpr *E) {
132 if (const EnumConstantDecl *EC = dyn_cast<EnumConstantDecl>(E->getDecl()))
133 return llvm::ConstantInt::get(EC->getInitVal());
134 return EmitLoadOfLValue(E);
135 }
Daniel Dunbar9c3fc702008-08-27 06:57:25 +0000136 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
137 return CGF.EmitObjCSelectorExpr(E);
138 }
139 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
140 return CGF.EmitObjCProtocolExpr(E);
141 }
142 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
143 return EmitLoadOfLValue(E);
144 }
Daniel Dunbar0a04d772008-08-23 10:51:21 +0000145 Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
Daniel Dunbar85c59ed2008-08-29 08:11:39 +0000146 return EmitLoadOfLValue(E);
Daniel Dunbar9c3fc702008-08-27 06:57:25 +0000147 }
Fariborz Jahanian43f44702008-11-22 22:30:21 +0000148 Value *VisitObjCKVCRefExpr(ObjCKVCRefExpr *E) {
149 return EmitLoadOfLValue(E);
150 }
Daniel Dunbar9c3fc702008-08-27 06:57:25 +0000151 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
152 return CGF.EmitObjCMessageExpr(E).getScalarVal();
Daniel Dunbar0a04d772008-08-23 10:51:21 +0000153 }
154
Chris Lattner7f02f722007-08-24 05:35:26 +0000155 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
Eli Friedmand38617c2008-05-14 19:38:39 +0000156 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
Chris Lattner7f02f722007-08-24 05:35:26 +0000157 Value *VisitMemberExpr(Expr *E) { return EmitLoadOfLValue(E); }
Nate Begeman213541a2008-04-18 23:10:10 +0000158 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
Chris Lattnerbe20bb52008-10-26 23:53:12 +0000159 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
160 return EmitLoadOfLValue(E);
161 }
Chris Lattner7f02f722007-08-24 05:35:26 +0000162 Value *VisitStringLiteral(Expr *E) { return EmitLValue(E).getAddress(); }
Chris Lattnerd9f69102008-08-10 01:53:14 +0000163 Value *VisitPredefinedExpr(Expr *E) { return EmitLValue(E).getAddress(); }
Devang Patel35634f52007-10-24 17:18:43 +0000164
165 Value *VisitInitListExpr(InitListExpr *E) {
Anders Carlsson7019a9e2007-12-05 07:36:10 +0000166 unsigned NumInitElements = E->getNumInits();
167
Anders Carlsson7019a9e2007-12-05 07:36:10 +0000168 const llvm::VectorType *VType =
Anders Carlssonf6884ac2008-01-29 01:15:48 +0000169 dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
170
171 // We have a scalar in braces. Just use the first element.
172 if (!VType)
173 return Visit(E->getInit(0));
Anders Carlsson7019a9e2007-12-05 07:36:10 +0000174
Chris Lattnerbe20bb52008-10-26 23:53:12 +0000175 if (E->hadDesignators()) {
176 CGF.ErrorUnsupported(E, "initializer list with designators");
177 return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
178 }
179
Anders Carlsson7019a9e2007-12-05 07:36:10 +0000180 unsigned NumVectorElements = VType->getNumElements();
181 const llvm::Type *ElementType = VType->getElementType();
Anders Carlsson7019a9e2007-12-05 07:36:10 +0000182
183 // Emit individual vector element stores.
184 llvm::Value *V = llvm::UndefValue::get(VType);
185
Anders Carlsson222d2c82007-12-18 02:45:33 +0000186 // Emit initializers
187 unsigned i;
188 for (i = 0; i < NumInitElements; ++i) {
Devang Patela83cc332007-10-24 18:05:48 +0000189 Value *NewV = Visit(E->getInit(i));
190 Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
191 V = Builder.CreateInsertElement(V, NewV, Idx);
Devang Patel35634f52007-10-24 17:18:43 +0000192 }
Anders Carlsson7019a9e2007-12-05 07:36:10 +0000193
194 // Emit remaining default initializers
195 for (/* Do not initialize i*/; i < NumVectorElements; ++i) {
196 Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
197 llvm::Value *NewV = llvm::Constant::getNullValue(ElementType);
198 V = Builder.CreateInsertElement(V, NewV, Idx);
199 }
200
Devang Patela83cc332007-10-24 18:05:48 +0000201 return V;
Devang Patel35634f52007-10-24 17:18:43 +0000202 }
Chris Lattner04421082008-04-08 04:40:51 +0000203
Chris Lattner7f02f722007-08-24 05:35:26 +0000204 Value *VisitImplicitCastExpr(const ImplicitCastExpr *E);
205 Value *VisitCastExpr(const CastExpr *E) {
206 return EmitCastExpr(E->getSubExpr(), E->getType());
207 }
208 Value *EmitCastExpr(const Expr *E, QualType T);
209
210 Value *VisitCallExpr(const CallExpr *E) {
Chris Lattner9b655512007-08-31 22:49:20 +0000211 return CGF.EmitCallExpr(E).getScalarVal();
Chris Lattner7f02f722007-08-24 05:35:26 +0000212 }
Daniel Dunbar8f2926b2008-08-23 03:46:30 +0000213
Chris Lattner33793202007-08-31 22:09:40 +0000214 Value *VisitStmtExpr(const StmtExpr *E);
215
Chris Lattner7f02f722007-08-24 05:35:26 +0000216 // Unary Operators.
217 Value *VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre);
218 Value *VisitUnaryPostDec(const UnaryOperator *E) {
219 return VisitPrePostIncDec(E, false, false);
220 }
221 Value *VisitUnaryPostInc(const UnaryOperator *E) {
222 return VisitPrePostIncDec(E, true, false);
223 }
224 Value *VisitUnaryPreDec(const UnaryOperator *E) {
225 return VisitPrePostIncDec(E, false, true);
226 }
227 Value *VisitUnaryPreInc(const UnaryOperator *E) {
228 return VisitPrePostIncDec(E, true, true);
229 }
230 Value *VisitUnaryAddrOf(const UnaryOperator *E) {
231 return EmitLValue(E->getSubExpr()).getAddress();
232 }
233 Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
234 Value *VisitUnaryPlus(const UnaryOperator *E) {
235 return Visit(E->getSubExpr());
236 }
237 Value *VisitUnaryMinus (const UnaryOperator *E);
238 Value *VisitUnaryNot (const UnaryOperator *E);
239 Value *VisitUnaryLNot (const UnaryOperator *E);
Chris Lattner46f93d02007-08-24 21:20:17 +0000240 Value *VisitUnaryReal (const UnaryOperator *E);
241 Value *VisitUnaryImag (const UnaryOperator *E);
Chris Lattner7f02f722007-08-24 05:35:26 +0000242 Value *VisitUnaryExtension(const UnaryOperator *E) {
243 return Visit(E->getSubExpr());
244 }
Anders Carlsson5a1deb82008-01-29 15:56:48 +0000245 Value *VisitUnaryOffsetOf(const UnaryOperator *E);
Chris Lattner04421082008-04-08 04:40:51 +0000246 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
247 return Visit(DAE->getExpr());
248 }
Anders Carlsson5a1deb82008-01-29 15:56:48 +0000249
Chris Lattner7f02f722007-08-24 05:35:26 +0000250 // Binary Operators.
Chris Lattner7f02f722007-08-24 05:35:26 +0000251 Value *EmitMul(const BinOpInfo &Ops) {
252 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
253 }
254 Value *EmitDiv(const BinOpInfo &Ops);
255 Value *EmitRem(const BinOpInfo &Ops);
256 Value *EmitAdd(const BinOpInfo &Ops);
257 Value *EmitSub(const BinOpInfo &Ops);
258 Value *EmitShl(const BinOpInfo &Ops);
259 Value *EmitShr(const BinOpInfo &Ops);
260 Value *EmitAnd(const BinOpInfo &Ops) {
261 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
262 }
263 Value *EmitXor(const BinOpInfo &Ops) {
264 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
265 }
266 Value *EmitOr (const BinOpInfo &Ops) {
267 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
268 }
269
Chris Lattner1f1ded92007-08-24 21:00:35 +0000270 BinOpInfo EmitBinOps(const BinaryOperator *E);
Chris Lattner3ccf7742007-08-26 21:41:21 +0000271 Value *EmitCompoundAssign(const CompoundAssignOperator *E,
Chris Lattner1f1ded92007-08-24 21:00:35 +0000272 Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
273
274 // Binary operators and binary compound assignment operators.
275#define HANDLEBINOP(OP) \
Chris Lattner3ccf7742007-08-26 21:41:21 +0000276 Value *VisitBin ## OP(const BinaryOperator *E) { \
277 return Emit ## OP(EmitBinOps(E)); \
278 } \
279 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \
280 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \
Chris Lattner1f1ded92007-08-24 21:00:35 +0000281 }
282 HANDLEBINOP(Mul);
283 HANDLEBINOP(Div);
284 HANDLEBINOP(Rem);
285 HANDLEBINOP(Add);
Daniel Dunbar8c6f57c2008-08-06 02:00:38 +0000286 HANDLEBINOP(Sub);
Chris Lattner1f1ded92007-08-24 21:00:35 +0000287 HANDLEBINOP(Shl);
288 HANDLEBINOP(Shr);
289 HANDLEBINOP(And);
290 HANDLEBINOP(Xor);
291 HANDLEBINOP(Or);
292#undef HANDLEBINOP
Daniel Dunbar8c6f57c2008-08-06 02:00:38 +0000293
Chris Lattner7f02f722007-08-24 05:35:26 +0000294 // Comparisons.
295 Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
296 unsigned SICmpOpc, unsigned FCmpOpc);
297#define VISITCOMP(CODE, UI, SI, FP) \
298 Value *VisitBin##CODE(const BinaryOperator *E) { \
299 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
300 llvm::FCmpInst::FP); }
301 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT);
302 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT);
303 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE);
304 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE);
305 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ);
306 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE);
307#undef VISITCOMP
308
309 Value *VisitBinAssign (const BinaryOperator *E);
310
311 Value *VisitBinLAnd (const BinaryOperator *E);
312 Value *VisitBinLOr (const BinaryOperator *E);
Chris Lattner7f02f722007-08-24 05:35:26 +0000313 Value *VisitBinComma (const BinaryOperator *E);
314
315 // Other Operators.
316 Value *VisitConditionalOperator(const ConditionalOperator *CO);
317 Value *VisitChooseExpr(ChooseExpr *CE);
Nate Begemane2ce1d92008-01-17 17:46:27 +0000318 Value *VisitOverloadExpr(OverloadExpr *OE);
Anders Carlsson7c50aca2007-10-15 20:28:48 +0000319 Value *VisitVAArgExpr(VAArgExpr *VE);
Chris Lattner7f02f722007-08-24 05:35:26 +0000320 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
321 return CGF.EmitObjCStringLiteral(E);
322 }
Anders Carlsson85f9bce2007-10-29 05:01:08 +0000323 Value *VisitObjCEncodeExpr(const ObjCEncodeExpr *E);
Chris Lattner7f02f722007-08-24 05:35:26 +0000324};
325} // end anonymous namespace.
326
327//===----------------------------------------------------------------------===//
328// Utilities
329//===----------------------------------------------------------------------===//
330
Chris Lattner9abc84e2007-08-26 16:42:57 +0000331/// EmitConversionToBool - Convert the specified expression value to a
Chris Lattner3420d0d2007-08-26 17:25:57 +0000332/// boolean (i1) truth value. This is equivalent to "Val != 0".
Chris Lattner9abc84e2007-08-26 16:42:57 +0000333Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
334 assert(SrcType->isCanonical() && "EmitScalarConversion strips typedefs");
335
336 if (SrcType->isRealFloatingType()) {
337 // Compare against 0.0 for fp scalars.
338 llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
Chris Lattner9abc84e2007-08-26 16:42:57 +0000339 return Builder.CreateFCmpUNE(Src, Zero, "tobool");
340 }
341
Daniel Dunbard1d66bc2008-08-25 10:38:11 +0000342 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
Chris Lattner9abc84e2007-08-26 16:42:57 +0000343 "Unknown scalar type to convert");
344
345 // Because of the type rules of C, we often end up computing a logical value,
346 // then zero extending it to int, then wanting it as a logical value again.
347 // Optimize this common case.
348 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
349 if (ZI->getOperand(0)->getType() == llvm::Type::Int1Ty) {
350 Value *Result = ZI->getOperand(0);
Eli Friedman356916e2008-01-29 18:13:51 +0000351 // If there aren't any more uses, zap the instruction to save space.
352 // Note that there can be more uses, for example if this
353 // is the result of an assignment.
354 if (ZI->use_empty())
355 ZI->eraseFromParent();
Chris Lattner9abc84e2007-08-26 16:42:57 +0000356 return Result;
357 }
358 }
359
360 // Compare against an integer or pointer null.
361 llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
362 return Builder.CreateICmpNE(Src, Zero, "tobool");
363}
364
Chris Lattner3707b252007-08-26 06:48:56 +0000365/// EmitScalarConversion - Emit a conversion from the specified type to the
366/// specified destination type, both of which are LLVM scalar types.
Chris Lattner4f1a7b32007-08-26 16:34:22 +0000367Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
368 QualType DstType) {
Chris Lattner96196622008-07-26 22:37:01 +0000369 SrcType = CGF.getContext().getCanonicalType(SrcType);
370 DstType = CGF.getContext().getCanonicalType(DstType);
Chris Lattner3707b252007-08-26 06:48:56 +0000371 if (SrcType == DstType) return Src;
Chris Lattnercf289082007-08-26 07:21:11 +0000372
373 if (DstType->isVoidType()) return 0;
Chris Lattner3707b252007-08-26 06:48:56 +0000374
375 // Handle conversions to bool first, they are special: comparisons against 0.
Chris Lattnered70f0a2007-08-26 16:52:28 +0000376 if (DstType->isBooleanType())
377 return EmitConversionToBool(Src, SrcType);
Chris Lattner3707b252007-08-26 06:48:56 +0000378
379 const llvm::Type *DstTy = ConvertType(DstType);
380
381 // Ignore conversions like int -> uint.
382 if (Src->getType() == DstTy)
383 return Src;
384
Daniel Dunbar270cc662008-08-25 09:51:32 +0000385 // Handle pointer conversions next: pointers can only be converted
386 // to/from other pointers and integers. Check for pointer types in
387 // terms of LLVM, as some native types (like Obj-C id) may map to a
388 // pointer type.
389 if (isa<llvm::PointerType>(DstTy)) {
Chris Lattner3707b252007-08-26 06:48:56 +0000390 // The source value may be an integer, or a pointer.
391 if (isa<llvm::PointerType>(Src->getType()))
392 return Builder.CreateBitCast(Src, DstTy, "conv");
393 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
394 return Builder.CreateIntToPtr(Src, DstTy, "conv");
395 }
396
Daniel Dunbar270cc662008-08-25 09:51:32 +0000397 if (isa<llvm::PointerType>(Src->getType())) {
Chris Lattner3707b252007-08-26 06:48:56 +0000398 // Must be an ptr to int cast.
399 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
Anders Carlsson50b5a302007-10-31 23:18:02 +0000400 return Builder.CreatePtrToInt(Src, DstTy, "conv");
Chris Lattner3707b252007-08-26 06:48:56 +0000401 }
402
Nate Begeman213541a2008-04-18 23:10:10 +0000403 // A scalar can be splatted to an extended vector of the same element type
404 if (DstType->isExtVectorType() && !isa<VectorType>(SrcType) &&
Chris Lattner3b1ae002008-02-02 04:51:41 +0000405 cast<llvm::VectorType>(DstTy)->getElementType() == Src->getType())
Nate Begeman4119d1a2007-12-30 02:59:45 +0000406 return CGF.EmitVector(&Src, DstType->getAsVectorType()->getNumElements(),
407 true);
Nate Begeman4119d1a2007-12-30 02:59:45 +0000408
Chris Lattner3b1ae002008-02-02 04:51:41 +0000409 // Allow bitcast from vector to integer/fp of the same size.
Anders Carlsson7019a9e2007-12-05 07:36:10 +0000410 if (isa<llvm::VectorType>(Src->getType()) ||
Chris Lattner3b1ae002008-02-02 04:51:41 +0000411 isa<llvm::VectorType>(DstTy))
Anders Carlsson7019a9e2007-12-05 07:36:10 +0000412 return Builder.CreateBitCast(Src, DstTy, "conv");
Anders Carlsson7019a9e2007-12-05 07:36:10 +0000413
Chris Lattner3707b252007-08-26 06:48:56 +0000414 // Finally, we have the arithmetic types: real int/float.
415 if (isa<llvm::IntegerType>(Src->getType())) {
416 bool InputSigned = SrcType->isSignedIntegerType();
Anders Carlssonb5ce0972007-12-26 18:20:19 +0000417 if (isa<llvm::IntegerType>(DstTy))
418 return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
419 else if (InputSigned)
420 return Builder.CreateSIToFP(Src, DstTy, "conv");
421 else
422 return Builder.CreateUIToFP(Src, DstTy, "conv");
Chris Lattner3707b252007-08-26 06:48:56 +0000423 }
424
425 assert(Src->getType()->isFloatingPoint() && "Unknown real conversion");
426 if (isa<llvm::IntegerType>(DstTy)) {
Anders Carlssonb5ce0972007-12-26 18:20:19 +0000427 if (DstType->isSignedIntegerType())
428 return Builder.CreateFPToSI(Src, DstTy, "conv");
429 else
430 return Builder.CreateFPToUI(Src, DstTy, "conv");
Chris Lattner3707b252007-08-26 06:48:56 +0000431 }
432
433 assert(DstTy->isFloatingPoint() && "Unknown real conversion");
Anders Carlssonb5ce0972007-12-26 18:20:19 +0000434 if (DstTy->getTypeID() < Src->getType()->getTypeID())
435 return Builder.CreateFPTrunc(Src, DstTy, "conv");
436 else
437 return Builder.CreateFPExt(Src, DstTy, "conv");
Chris Lattner3707b252007-08-26 06:48:56 +0000438}
439
Chris Lattner4f1a7b32007-08-26 16:34:22 +0000440/// EmitComplexToScalarConversion - Emit a conversion from the specified
441/// complex type to the specified destination type, where the destination
442/// type is an LLVM scalar type.
443Value *ScalarExprEmitter::
444EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
445 QualType SrcTy, QualType DstTy) {
Chris Lattnered70f0a2007-08-26 16:52:28 +0000446 // Get the source element type.
Chris Lattner96196622008-07-26 22:37:01 +0000447 SrcTy = SrcTy->getAsComplexType()->getElementType();
Chris Lattnered70f0a2007-08-26 16:52:28 +0000448
449 // Handle conversions to bool first, they are special: comparisons against 0.
450 if (DstTy->isBooleanType()) {
451 // Complex != 0 -> (Real != 0) | (Imag != 0)
452 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy);
453 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
454 return Builder.CreateOr(Src.first, Src.second, "tobool");
455 }
456
Chris Lattner4f1a7b32007-08-26 16:34:22 +0000457 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
458 // the imaginary part of the complex value is discarded and the value of the
459 // real part is converted according to the conversion rules for the
460 // corresponding real type.
Chris Lattner4f1a7b32007-08-26 16:34:22 +0000461 return EmitScalarConversion(Src.first, SrcTy, DstTy);
462}
463
464
Chris Lattner7f02f722007-08-24 05:35:26 +0000465//===----------------------------------------------------------------------===//
466// Visitor Methods
467//===----------------------------------------------------------------------===//
468
469Value *ScalarExprEmitter::VisitExpr(Expr *E) {
Daniel Dunbar488e9932008-08-16 00:56:44 +0000470 CGF.ErrorUnsupported(E, "scalar expression");
Chris Lattner7f02f722007-08-24 05:35:26 +0000471 if (E->getType()->isVoidType())
472 return 0;
473 return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
474}
475
Eli Friedmand38617c2008-05-14 19:38:39 +0000476Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
477 llvm::SmallVector<llvm::Constant*, 32> indices;
478 for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
479 indices.push_back(cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i))));
480 }
481 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
482 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
483 Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size());
484 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
485}
486
Chris Lattner7f02f722007-08-24 05:35:26 +0000487Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
488 // Emit subscript expressions in rvalue context's. For most cases, this just
489 // loads the lvalue formed by the subscript expr. However, we have to be
490 // careful, because the base of a vector subscript is occasionally an rvalue,
491 // so we can't get it as an lvalue.
492 if (!E->getBase()->getType()->isVectorType())
493 return EmitLoadOfLValue(E);
494
495 // Handle the vector case. The base must be a vector, the index must be an
496 // integer value.
497 Value *Base = Visit(E->getBase());
498 Value *Idx = Visit(E->getIdx());
499
500 // FIXME: Convert Idx to i32 type.
501 return Builder.CreateExtractElement(Base, Idx, "vecext");
502}
503
504/// VisitImplicitCastExpr - Implicit casts are the same as normal casts, but
505/// also handle things like function to pointer-to-function decay, and array to
506/// pointer decay.
507Value *ScalarExprEmitter::VisitImplicitCastExpr(const ImplicitCastExpr *E) {
508 const Expr *Op = E->getSubExpr();
509
510 // If this is due to array->pointer conversion, emit the array expression as
511 // an l-value.
512 if (Op->getType()->isArrayType()) {
513 // FIXME: For now we assume that all source arrays map to LLVM arrays. This
514 // will not true when we add support for VLAs.
Chris Lattner4f1a7b32007-08-26 16:34:22 +0000515 Value *V = EmitLValue(Op).getAddress(); // Bitfields can't be arrays.
Eli Friedman8f39f5e2008-12-20 23:11:59 +0000516
517 if (!Op->getType()->isVariableArrayType()) {
518 assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
519 assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
520 ->getElementType()) &&
521 "Expected pointer to array");
522 V = Builder.CreateStructGEP(V, 0, "arraydecay");
Daniel Dunbar662174c82008-08-29 17:28:43 +0000523 }
Chris Lattnera9e63722007-12-12 04:13:20 +0000524
525 // The resultant pointer type can be implicitly casted to other pointer
Chris Lattnerf31627f2008-07-23 06:31:27 +0000526 // types as well (e.g. void*) and can be implicitly converted to integer.
527 const llvm::Type *DestTy = ConvertType(E->getType());
528 if (V->getType() != DestTy) {
529 if (isa<llvm::PointerType>(DestTy))
530 V = Builder.CreateBitCast(V, DestTy, "ptrconv");
531 else {
532 assert(isa<llvm::IntegerType>(DestTy) && "Unknown array decay");
533 V = Builder.CreatePtrToInt(V, DestTy, "ptrconv");
534 }
535 }
Chris Lattnera9e63722007-12-12 04:13:20 +0000536 return V;
537
Anders Carlsson793680e2007-10-12 23:56:29 +0000538 } else if (E->getType()->isReferenceType()) {
Anders Carlsson793680e2007-10-12 23:56:29 +0000539 return EmitLValue(Op).getAddress();
Chris Lattner7f02f722007-08-24 05:35:26 +0000540 }
541
542 return EmitCastExpr(Op, E->getType());
543}
544
545
546// VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
547// have to handle a more broad range of conversions than explicit casts, as they
548// handle things like function to ptr-to-function decay etc.
549Value *ScalarExprEmitter::EmitCastExpr(const Expr *E, QualType DestTy) {
Chris Lattner58a2e942007-08-26 07:26:12 +0000550 // Handle cases where the source is an non-complex type.
Chris Lattner19a1d7c2008-02-16 23:55:16 +0000551
552 if (!CGF.hasAggregateLLVMType(E->getType())) {
Chris Lattner3707b252007-08-26 06:48:56 +0000553 Value *Src = Visit(const_cast<Expr*>(E));
554
Chris Lattner3707b252007-08-26 06:48:56 +0000555 // Use EmitScalarConversion to perform the conversion.
556 return EmitScalarConversion(Src, E->getType(), DestTy);
557 }
Chris Lattner19a1d7c2008-02-16 23:55:16 +0000558
Chris Lattner9b2dc282008-04-04 16:54:41 +0000559 if (E->getType()->isAnyComplexType()) {
Chris Lattner19a1d7c2008-02-16 23:55:16 +0000560 // Handle cases where the source is a complex type.
561 return EmitComplexToScalarConversion(CGF.EmitComplexExpr(E), E->getType(),
562 DestTy);
563 }
Chris Lattner10b00cf2007-08-26 07:16:41 +0000564
Chris Lattner19a1d7c2008-02-16 23:55:16 +0000565 // Okay, this is a cast from an aggregate. It must be a cast to void. Just
566 // evaluate the result and return.
567 CGF.EmitAggExpr(E, 0, false);
568 return 0;
Chris Lattner7f02f722007-08-24 05:35:26 +0000569}
570
Chris Lattner33793202007-08-31 22:09:40 +0000571Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
Chris Lattner91d723d2008-07-26 20:23:23 +0000572 return CGF.EmitCompoundStmt(*E->getSubStmt(),
573 !E->getType()->isVoidType()).getScalarVal();
Chris Lattner33793202007-08-31 22:09:40 +0000574}
575
576
Chris Lattner7f02f722007-08-24 05:35:26 +0000577//===----------------------------------------------------------------------===//
578// Unary Operators
579//===----------------------------------------------------------------------===//
580
581Value *ScalarExprEmitter::VisitPrePostIncDec(const UnaryOperator *E,
Chris Lattnerdfce2a52007-08-24 16:24:49 +0000582 bool isInc, bool isPre) {
Chris Lattner7f02f722007-08-24 05:35:26 +0000583 LValue LV = EmitLValue(E->getSubExpr());
584 // FIXME: Handle volatile!
Chris Lattnere936cc82007-08-26 05:10:16 +0000585 Value *InVal = CGF.EmitLoadOfLValue(LV, // false
Chris Lattner9b655512007-08-31 22:49:20 +0000586 E->getSubExpr()->getType()).getScalarVal();
Chris Lattner7f02f722007-08-24 05:35:26 +0000587
588 int AmountVal = isInc ? 1 : -1;
589
590 Value *NextVal;
Chris Lattnere936cc82007-08-26 05:10:16 +0000591 if (isa<llvm::PointerType>(InVal->getType())) {
592 // FIXME: This isn't right for VLAs.
593 NextVal = llvm::ConstantInt::get(llvm::Type::Int32Ty, AmountVal);
Chris Lattner36b6a0a2008-03-19 05:19:41 +0000594 NextVal = Builder.CreateGEP(InVal, NextVal, "ptrincdec");
Chris Lattnere936cc82007-08-26 05:10:16 +0000595 } else {
596 // Add the inc/dec to the real part.
597 if (isa<llvm::IntegerType>(InVal->getType()))
598 NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);
Chris Lattnerca2617c2007-09-13 06:19:18 +0000599 else if (InVal->getType() == llvm::Type::FloatTy)
Devang Patele9b8c0a2007-10-30 20:59:40 +0000600 NextVal =
Chris Lattner59138ba2008-04-20 00:45:53 +0000601 llvm::ConstantFP::get(llvm::APFloat(static_cast<float>(AmountVal)));
Chris Lattner25ddea72008-04-20 00:50:39 +0000602 else if (InVal->getType() == llvm::Type::DoubleTy)
Devang Patele9b8c0a2007-10-30 20:59:40 +0000603 NextVal =
Chris Lattner59138ba2008-04-20 00:45:53 +0000604 llvm::ConstantFP::get(llvm::APFloat(static_cast<double>(AmountVal)));
Chris Lattner25ddea72008-04-20 00:50:39 +0000605 else {
606 llvm::APFloat F(static_cast<float>(AmountVal));
Dale Johannesenee5a7002008-10-09 23:02:32 +0000607 bool ignored;
608 F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
609 &ignored);
Chris Lattner25ddea72008-04-20 00:50:39 +0000610 NextVal = llvm::ConstantFP::get(F);
Chris Lattnerca2617c2007-09-13 06:19:18 +0000611 }
Chris Lattnere936cc82007-08-26 05:10:16 +0000612 NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
613 }
Chris Lattner7f02f722007-08-24 05:35:26 +0000614
615 // Store the updated result through the lvalue.
616 CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV,
617 E->getSubExpr()->getType());
618
619 // If this is a postinc, return the value read from memory, otherwise use the
620 // updated value.
621 return isPre ? NextVal : InVal;
622}
623
624
625Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
626 Value *Op = Visit(E->getSubExpr());
627 return Builder.CreateNeg(Op, "neg");
628}
629
630Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
631 Value *Op = Visit(E->getSubExpr());
632 return Builder.CreateNot(Op, "neg");
633}
634
635Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
636 // Compare operand to zero.
637 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
638
639 // Invert value.
640 // TODO: Could dynamically modify easy computations here. For example, if
641 // the operand is an icmp ne, turn into icmp eq.
642 BoolVal = Builder.CreateNot(BoolVal, "lnot");
643
644 // ZExt result to int.
645 return Builder.CreateZExt(BoolVal, CGF.LLVMIntTy, "lnot.ext");
646}
647
Sebastian Redl05189992008-11-11 17:56:53 +0000648/// VisitSizeOfAlignOfExpr - Return the size or alignment of the type of
649/// argument of the sizeof expression as an integer.
650Value *
651ScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
652 QualType RetType = E->getType();
Chris Lattnera269ebf2008-02-21 05:45:29 +0000653 assert(RetType->isIntegerType() && "Result type must be an integer!");
654 uint32_t ResultWidth =
Chris Lattner98be4942008-03-05 18:54:05 +0000655 static_cast<uint32_t>(CGF.getContext().getTypeSize(RetType));
Chris Lattnera269ebf2008-02-21 05:45:29 +0000656
Sebastian Redl05189992008-11-11 17:56:53 +0000657 QualType TypeToSize = E->getTypeOfArgument();
Daniel Dunbar91408452008-07-22 01:35:47 +0000658 // sizeof(void) and __alignof__(void) = 1 as a gcc extension. Also
659 // for function types.
Daniel Dunbar8ee6a632008-07-22 19:44:18 +0000660 // FIXME: what is alignof a function type in gcc?
Daniel Dunbar91408452008-07-22 01:35:47 +0000661 if (TypeToSize->isVoidType() || TypeToSize->isFunctionType())
Chris Lattnera269ebf2008-02-21 05:45:29 +0000662 return llvm::ConstantInt::get(llvm::APInt(ResultWidth, 1));
663
Anders Carlsson5d463152008-12-12 07:38:43 +0000664 if (const VariableArrayType *VAT =
665 CGF.getContext().getAsVariableArrayType(TypeToSize)) {
Anders Carlssonb50525b2008-12-21 03:33:21 +0000666 if (E->isSizeOf()) {
667 if (E->isArgumentType()) {
668 // sizeof(type) - make sure to emit the VLA size.
669 CGF.EmitVLASize(TypeToSize);
670 }
Anders Carlsson5d463152008-12-12 07:38:43 +0000671 return CGF.GetVLASize(VAT);
Anders Carlssonb50525b2008-12-21 03:33:21 +0000672 }
Anders Carlsson4a1424f2008-12-21 03:48:05 +0000673
674 // alignof
675 QualType BaseType = CGF.getContext().getBaseElementType(VAT);
676 uint64_t Align = CGF.getContext().getTypeAlign(BaseType);
677
678 Align /= 8; // Return alignment in bytes, not bits.
679 return llvm::ConstantInt::get(llvm::APInt(ResultWidth, Align));
Anders Carlsson5d463152008-12-12 07:38:43 +0000680 }
681
Chris Lattner98be4942008-03-05 18:54:05 +0000682 std::pair<uint64_t, unsigned> Info = CGF.getContext().getTypeInfo(TypeToSize);
Chris Lattner7f02f722007-08-24 05:35:26 +0000683
Sebastian Redl05189992008-11-11 17:56:53 +0000684 uint64_t Val = E->isSizeOf() ? Info.first : Info.second;
Chris Lattner7f02f722007-08-24 05:35:26 +0000685 Val /= 8; // Return size in bytes, not bits.
686
Chris Lattner7f02f722007-08-24 05:35:26 +0000687 return llvm::ConstantInt::get(llvm::APInt(ResultWidth, Val));
688}
689
Chris Lattner46f93d02007-08-24 21:20:17 +0000690Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
691 Expr *Op = E->getSubExpr();
Chris Lattner9b2dc282008-04-04 16:54:41 +0000692 if (Op->getType()->isAnyComplexType())
Chris Lattner46f93d02007-08-24 21:20:17 +0000693 return CGF.EmitComplexExpr(Op).first;
694 return Visit(Op);
695}
696Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
697 Expr *Op = E->getSubExpr();
Chris Lattner9b2dc282008-04-04 16:54:41 +0000698 if (Op->getType()->isAnyComplexType())
Chris Lattner46f93d02007-08-24 21:20:17 +0000699 return CGF.EmitComplexExpr(Op).second;
Chris Lattner36f84062007-08-26 05:29:21 +0000700
701 // __imag on a scalar returns zero. Emit it the subexpr to ensure side
702 // effects are evaluated.
703 CGF.EmitScalarExpr(Op);
704 return llvm::Constant::getNullValue(ConvertType(E->getType()));
Chris Lattner46f93d02007-08-24 21:20:17 +0000705}
706
Anders Carlsson5a1deb82008-01-29 15:56:48 +0000707Value *ScalarExprEmitter::VisitUnaryOffsetOf(const UnaryOperator *E)
708{
709 int64_t Val = E->evaluateOffsetOf(CGF.getContext());
710
711 assert(E->getType()->isIntegerType() && "Result type must be an integer!");
712
Chris Lattner98be4942008-03-05 18:54:05 +0000713 uint32_t ResultWidth =
714 static_cast<uint32_t>(CGF.getContext().getTypeSize(E->getType()));
Anders Carlsson5a1deb82008-01-29 15:56:48 +0000715 return llvm::ConstantInt::get(llvm::APInt(ResultWidth, Val));
716}
Chris Lattner46f93d02007-08-24 21:20:17 +0000717
Chris Lattner7f02f722007-08-24 05:35:26 +0000718//===----------------------------------------------------------------------===//
719// Binary Operators
720//===----------------------------------------------------------------------===//
721
722BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
723 BinOpInfo Result;
724 Result.LHS = Visit(E->getLHS());
725 Result.RHS = Visit(E->getRHS());
Chris Lattner1f1ded92007-08-24 21:00:35 +0000726 Result.Ty = E->getType();
Chris Lattner7f02f722007-08-24 05:35:26 +0000727 Result.E = E;
728 return Result;
729}
730
Chris Lattner3ccf7742007-08-26 21:41:21 +0000731Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
Chris Lattner1f1ded92007-08-24 21:00:35 +0000732 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
733 QualType LHSTy = E->getLHS()->getType(), RHSTy = E->getRHS()->getType();
734
735 BinOpInfo OpInfo;
736
737 // Load the LHS and RHS operands.
738 LValue LHSLV = EmitLValue(E->getLHS());
739 OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
Chris Lattner04dc7642007-08-26 22:37:40 +0000740
741 // Determine the computation type. If the RHS is complex, then this is one of
742 // the add/sub/mul/div operators. All of these operators can be computed in
743 // with just their real component even though the computation domain really is
744 // complex.
Chris Lattner3ccf7742007-08-26 21:41:21 +0000745 QualType ComputeType = E->getComputationType();
Chris Lattner1f1ded92007-08-24 21:00:35 +0000746
Chris Lattner04dc7642007-08-26 22:37:40 +0000747 // If the computation type is complex, then the RHS is complex. Emit the RHS.
748 if (const ComplexType *CT = ComputeType->getAsComplexType()) {
749 ComputeType = CT->getElementType();
750
751 // Emit the RHS, only keeping the real component.
752 OpInfo.RHS = CGF.EmitComplexExpr(E->getRHS()).first;
753 RHSTy = RHSTy->getAsComplexType()->getElementType();
754 } else {
755 // Otherwise the RHS is a simple scalar value.
756 OpInfo.RHS = Visit(E->getRHS());
757 }
758
Daniel Dunbar8c6f57c2008-08-06 02:00:38 +0000759 QualType LComputeTy, RComputeTy, ResultTy;
760
761 // Compound assignment does not contain enough information about all
762 // the types involved for pointer arithmetic cases. Figure it out
763 // here for now.
764 if (E->getLHS()->getType()->isPointerType()) {
765 // Pointer arithmetic cases: ptr +=,-= int and ptr -= ptr,
766 assert((E->getOpcode() == BinaryOperator::AddAssign ||
767 E->getOpcode() == BinaryOperator::SubAssign) &&
768 "Invalid compound assignment operator on pointer type.");
769 LComputeTy = E->getLHS()->getType();
770
771 if (E->getRHS()->getType()->isPointerType()) {
772 // Degenerate case of (ptr -= ptr) allowed by GCC implicit cast
773 // extension, the conversion from the pointer difference back to
774 // the LHS type is handled at the end.
775 assert(E->getOpcode() == BinaryOperator::SubAssign &&
776 "Invalid compound assignment operator on pointer type.");
777 RComputeTy = E->getLHS()->getType();
778 ResultTy = CGF.getContext().getPointerDiffType();
779 } else {
780 RComputeTy = E->getRHS()->getType();
781 ResultTy = LComputeTy;
782 }
783 } else if (E->getRHS()->getType()->isPointerType()) {
784 // Degenerate case of (int += ptr) allowed by GCC implicit cast
785 // extension.
786 assert(E->getOpcode() == BinaryOperator::AddAssign &&
787 "Invalid compound assignment operator on pointer type.");
788 LComputeTy = E->getLHS()->getType();
789 RComputeTy = E->getRHS()->getType();
790 ResultTy = RComputeTy;
791 } else {
792 LComputeTy = RComputeTy = ResultTy = ComputeType;
Chris Lattner1f1ded92007-08-24 21:00:35 +0000793 }
Daniel Dunbar8c6f57c2008-08-06 02:00:38 +0000794
795 // Convert the LHS/RHS values to the computation type.
796 OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, LComputeTy);
797 OpInfo.RHS = EmitScalarConversion(OpInfo.RHS, RHSTy, RComputeTy);
798 OpInfo.Ty = ResultTy;
Chris Lattner1f1ded92007-08-24 21:00:35 +0000799 OpInfo.E = E;
800
801 // Expand the binary operator.
802 Value *Result = (this->*Func)(OpInfo);
803
Daniel Dunbar8c6f57c2008-08-06 02:00:38 +0000804 // Convert the result back to the LHS type.
805 Result = EmitScalarConversion(Result, ResultTy, LHSTy);
Chris Lattner1f1ded92007-08-24 21:00:35 +0000806
Daniel Dunbared3849b2008-11-19 09:36:46 +0000807 // Store the result value into the LHS lvalue. Bit-fields are
Daniel Dunbar371d16f2008-11-19 11:54:05 +0000808 // handled specially because the result is altered by the store,
809 // i.e., [C99 6.5.16p1] 'An assignment expression has the value of
810 // the left operand after the assignment...'.
Eli Friedman18491282008-05-25 14:13:57 +0000811 if (LHSLV.isBitfield())
Daniel Dunbared3849b2008-11-19 09:36:46 +0000812 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
813 &Result);
814 else
815 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
816
Chris Lattner1f1ded92007-08-24 21:00:35 +0000817 return Result;
818}
819
820
Chris Lattner7f02f722007-08-24 05:35:26 +0000821Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
Nate Begemanb3ab8dc2007-12-30 01:28:16 +0000822 if (Ops.LHS->getType()->isFPOrFPVector())
Chris Lattner7f02f722007-08-24 05:35:26 +0000823 return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
Chris Lattner1f1ded92007-08-24 21:00:35 +0000824 else if (Ops.Ty->isUnsignedIntegerType())
Chris Lattner7f02f722007-08-24 05:35:26 +0000825 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
826 else
827 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
828}
829
830Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
831 // Rem in C can't be a floating point type: C99 6.5.5p2.
Chris Lattner1f1ded92007-08-24 21:00:35 +0000832 if (Ops.Ty->isUnsignedIntegerType())
Chris Lattner7f02f722007-08-24 05:35:26 +0000833 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
834 else
835 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
836}
837
838
839Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
Chris Lattner1f1ded92007-08-24 21:00:35 +0000840 if (!Ops.Ty->isPointerType())
Chris Lattner7f02f722007-08-24 05:35:26 +0000841 return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
Chris Lattner1f1ded92007-08-24 21:00:35 +0000842
843 // FIXME: What about a pointer to a VLA?
Chris Lattner8f925282008-01-03 06:36:51 +0000844 Value *Ptr, *Idx;
845 Expr *IdxExp;
846 if (isa<llvm::PointerType>(Ops.LHS->getType())) { // pointer + int
847 Ptr = Ops.LHS;
848 Idx = Ops.RHS;
849 IdxExp = Ops.E->getRHS();
850 } else { // int + pointer
851 Ptr = Ops.RHS;
852 Idx = Ops.LHS;
853 IdxExp = Ops.E->getLHS();
854 }
855
856 unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
857 if (Width < CGF.LLVMPointerWidth) {
858 // Zero or sign extend the pointer value based on whether the index is
859 // signed or not.
860 const llvm::Type *IdxType = llvm::IntegerType::get(CGF.LLVMPointerWidth);
Chris Lattner96196622008-07-26 22:37:01 +0000861 if (IdxExp->getType()->isSignedIntegerType())
Chris Lattner8f925282008-01-03 06:36:51 +0000862 Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
863 else
864 Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
865 }
866
867 return Builder.CreateGEP(Ptr, Idx, "add.ptr");
Chris Lattner7f02f722007-08-24 05:35:26 +0000868}
869
870Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
871 if (!isa<llvm::PointerType>(Ops.LHS->getType()))
872 return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
Chris Lattner1f1ded92007-08-24 21:00:35 +0000873
Daniel Dunbar8c6f57c2008-08-06 02:00:38 +0000874 if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
875 // pointer - int
876 Value *Idx = Ops.RHS;
877 unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
878 if (Width < CGF.LLVMPointerWidth) {
879 // Zero or sign extend the pointer value based on whether the index is
880 // signed or not.
881 const llvm::Type *IdxType = llvm::IntegerType::get(CGF.LLVMPointerWidth);
882 if (Ops.E->getRHS()->getType()->isSignedIntegerType())
883 Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
884 else
885 Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
886 }
887 Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
888
889 // FIXME: The pointer could point to a VLA.
890 // The GNU void* - int case is automatically handled here because
891 // our LLVM type for void* is i8*.
892 return Builder.CreateGEP(Ops.LHS, Idx, "sub.ptr");
Daniel Dunbar820b0332008-08-05 00:47:03 +0000893 } else {
Daniel Dunbar8c6f57c2008-08-06 02:00:38 +0000894 // pointer - pointer
895 Value *LHS = Ops.LHS;
896 Value *RHS = Ops.RHS;
Chris Lattner1f1ded92007-08-24 21:00:35 +0000897
Daniel Dunbar8c6f57c2008-08-06 02:00:38 +0000898 const QualType LHSType = Ops.E->getLHS()->getType();
899 const QualType LHSElementType = LHSType->getAsPointerType()->getPointeeType();
900 uint64_t ElementSize;
Daniel Dunbar820b0332008-08-05 00:47:03 +0000901
Daniel Dunbar8c6f57c2008-08-06 02:00:38 +0000902 // Handle GCC extension for pointer arithmetic on void* types.
903 if (LHSElementType->isVoidType()) {
904 ElementSize = 1;
905 } else {
906 ElementSize = CGF.getContext().getTypeSize(LHSElementType) / 8;
907 }
908
909 const llvm::Type *ResultType = ConvertType(Ops.Ty);
910 LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
911 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
912 Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
913
914 // HACK: LLVM doesn't have an divide instruction that 'knows' there is no
915 // remainder. As such, we handle common power-of-two cases here to generate
916 // better code. See PR2247.
917 if (llvm::isPowerOf2_64(ElementSize)) {
918 Value *ShAmt =
919 llvm::ConstantInt::get(ResultType, llvm::Log2_64(ElementSize));
920 return Builder.CreateAShr(BytesBetween, ShAmt, "sub.ptr.shr");
921 }
922
923 // Otherwise, do a full sdiv.
924 Value *BytesPerElt = llvm::ConstantInt::get(ResultType, ElementSize);
925 return Builder.CreateSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
Chris Lattner7f02f722007-08-24 05:35:26 +0000926 }
Chris Lattner7f02f722007-08-24 05:35:26 +0000927}
928
929Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
930 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
931 // RHS to the same size as the LHS.
932 Value *RHS = Ops.RHS;
933 if (Ops.LHS->getType() != RHS->getType())
934 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
935
936 return Builder.CreateShl(Ops.LHS, RHS, "shl");
937}
938
939Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
940 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
941 // RHS to the same size as the LHS.
942 Value *RHS = Ops.RHS;
943 if (Ops.LHS->getType() != RHS->getType())
944 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
945
Chris Lattner1f1ded92007-08-24 21:00:35 +0000946 if (Ops.Ty->isUnsignedIntegerType())
Chris Lattner7f02f722007-08-24 05:35:26 +0000947 return Builder.CreateLShr(Ops.LHS, RHS, "shr");
948 return Builder.CreateAShr(Ops.LHS, RHS, "shr");
949}
950
951Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
952 unsigned SICmpOpc, unsigned FCmpOpc) {
Chris Lattner4f1a7b32007-08-26 16:34:22 +0000953 Value *Result;
Chris Lattner7f02f722007-08-24 05:35:26 +0000954 QualType LHSTy = E->getLHS()->getType();
Nate Begeman7a66d7b2008-07-25 20:16:05 +0000955 if (!LHSTy->isAnyComplexType() && !LHSTy->isVectorType()) {
Chris Lattner7f02f722007-08-24 05:35:26 +0000956 Value *LHS = Visit(E->getLHS());
957 Value *RHS = Visit(E->getRHS());
958
959 if (LHS->getType()->isFloatingPoint()) {
Nate Begeman7a66d7b2008-07-25 20:16:05 +0000960 Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
Chris Lattner7f02f722007-08-24 05:35:26 +0000961 LHS, RHS, "cmp");
Eli Friedmanec2c1262008-05-29 15:09:15 +0000962 } else if (LHSTy->isSignedIntegerType()) {
963 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
Chris Lattner7f02f722007-08-24 05:35:26 +0000964 LHS, RHS, "cmp");
965 } else {
Eli Friedmanec2c1262008-05-29 15:09:15 +0000966 // Unsigned integers and pointers.
967 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
Chris Lattner7f02f722007-08-24 05:35:26 +0000968 LHS, RHS, "cmp");
969 }
Nate Begeman7a66d7b2008-07-25 20:16:05 +0000970 } else if (LHSTy->isVectorType()) {
971 Value *LHS = Visit(E->getLHS());
972 Value *RHS = Visit(E->getRHS());
973
974 if (LHS->getType()->isFPOrFPVector()) {
975 Result = Builder.CreateVFCmp((llvm::CmpInst::Predicate)FCmpOpc,
976 LHS, RHS, "cmp");
977 } else if (LHSTy->isUnsignedIntegerType()) {
978 Result = Builder.CreateVICmp((llvm::CmpInst::Predicate)UICmpOpc,
979 LHS, RHS, "cmp");
980 } else {
981 // Signed integers and pointers.
982 Result = Builder.CreateVICmp((llvm::CmpInst::Predicate)SICmpOpc,
983 LHS, RHS, "cmp");
984 }
985 return Result;
Chris Lattner7f02f722007-08-24 05:35:26 +0000986 } else {
987 // Complex Comparison: can only be an equality comparison.
988 CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
989 CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
990
Chris Lattner96196622008-07-26 22:37:01 +0000991 QualType CETy = LHSTy->getAsComplexType()->getElementType();
Chris Lattner7f02f722007-08-24 05:35:26 +0000992
Chris Lattner4f1a7b32007-08-26 16:34:22 +0000993 Value *ResultR, *ResultI;
Chris Lattner7f02f722007-08-24 05:35:26 +0000994 if (CETy->isRealFloatingType()) {
995 ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
996 LHS.first, RHS.first, "cmp.r");
997 ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
998 LHS.second, RHS.second, "cmp.i");
999 } else {
1000 // Complex comparisons can only be equality comparisons. As such, signed
1001 // and unsigned opcodes are the same.
1002 ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1003 LHS.first, RHS.first, "cmp.r");
1004 ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1005 LHS.second, RHS.second, "cmp.i");
1006 }
1007
1008 if (E->getOpcode() == BinaryOperator::EQ) {
1009 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
1010 } else {
1011 assert(E->getOpcode() == BinaryOperator::NE &&
1012 "Complex comparison other than == or != ?");
1013 Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
1014 }
1015 }
1016
1017 // ZExt result to int.
1018 return Builder.CreateZExt(Result, CGF.LLVMIntTy, "cmp.ext");
1019}
1020
1021Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1022 LValue LHS = EmitLValue(E->getLHS());
1023 Value *RHS = Visit(E->getRHS());
1024
Daniel Dunbared3849b2008-11-19 09:36:46 +00001025 // Store the value into the LHS. Bit-fields are handled specially
Daniel Dunbar371d16f2008-11-19 11:54:05 +00001026 // because the result is altered by the store, i.e., [C99 6.5.16p1]
1027 // 'An assignment expression has the value of the left operand after
1028 // the assignment...'.
Chris Lattner7f02f722007-08-24 05:35:26 +00001029 // FIXME: Volatility!
Eli Friedman18491282008-05-25 14:13:57 +00001030 if (LHS.isBitfield())
Daniel Dunbared3849b2008-11-19 09:36:46 +00001031 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(),
1032 &RHS);
1033 else
1034 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
Daniel Dunbar85c59ed2008-08-29 08:11:39 +00001035
Chris Lattner7f02f722007-08-24 05:35:26 +00001036 // Return the RHS.
1037 return RHS;
1038}
1039
1040Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
Chris Lattner20eb09d2008-11-12 08:26:50 +00001041 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
1042 // If we have 1 && X, just emit X without inserting the control flow.
1043 if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1044 if (Cond == 1) { // If we have 1 && X, just emit X.
Chris Lattner0946ccd2008-11-11 07:41:27 +00001045 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1046 // ZExt result to int.
1047 return Builder.CreateZExt(RHSCond, CGF.LLVMIntTy, "land.ext");
1048 }
Chris Lattner20eb09d2008-11-12 08:26:50 +00001049
1050 // 0 && RHS: If it is safe, just elide the RHS, and return 0.
1051 if (!CGF.ContainsLabel(E->getRHS()))
1052 return llvm::Constant::getNullValue(CGF.LLVMIntTy);
Chris Lattner0946ccd2008-11-11 07:41:27 +00001053 }
1054
Daniel Dunbar9615ecb2008-11-13 01:38:36 +00001055 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
1056 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs");
Chris Lattner20eb09d2008-11-12 08:26:50 +00001057
Chris Lattnerf7b5ea92008-11-12 08:38:24 +00001058 // Branch on the LHS first. If it is false, go to the failure (cont) block.
1059 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
1060
1061 // Any edges into the ContBlock are now from an (indeterminate number of)
1062 // edges from this first condition. All of these values will be false. Start
1063 // setting up the PHI node in the Cont Block for this.
1064 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::Int1Ty, "", ContBlock);
1065 PN->reserveOperandSpace(2); // Normal case, two inputs.
1066 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1067 PI != PE; ++PI)
1068 PN->addIncoming(llvm::ConstantInt::getFalse(), *PI);
Chris Lattner7f02f722007-08-24 05:35:26 +00001069
1070 CGF.EmitBlock(RHSBlock);
1071 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1072
1073 // Reaquire the RHS block, as there may be subblocks inserted.
1074 RHSBlock = Builder.GetInsertBlock();
Chris Lattnerf7b5ea92008-11-12 08:38:24 +00001075
1076 // Emit an unconditional branch from this block to ContBlock. Insert an entry
1077 // into the phi node for the edge with the value of RHSCond.
Chris Lattner7f02f722007-08-24 05:35:26 +00001078 CGF.EmitBlock(ContBlock);
Chris Lattner7f02f722007-08-24 05:35:26 +00001079 PN->addIncoming(RHSCond, RHSBlock);
1080
1081 // ZExt result to int.
1082 return Builder.CreateZExt(PN, CGF.LLVMIntTy, "land.ext");
1083}
1084
1085Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
Chris Lattner20eb09d2008-11-12 08:26:50 +00001086 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
1087 // If we have 0 || X, just emit X without inserting the control flow.
1088 if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1089 if (Cond == -1) { // If we have 0 || X, just emit X.
Chris Lattner0946ccd2008-11-11 07:41:27 +00001090 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1091 // ZExt result to int.
1092 return Builder.CreateZExt(RHSCond, CGF.LLVMIntTy, "lor.ext");
1093 }
Chris Lattner20eb09d2008-11-12 08:26:50 +00001094
Eli Friedman8de8d1d2008-12-02 16:02:46 +00001095 // 1 || RHS: If it is safe, just elide the RHS, and return 1.
Chris Lattner20eb09d2008-11-12 08:26:50 +00001096 if (!CGF.ContainsLabel(E->getRHS()))
Eli Friedman8de8d1d2008-12-02 16:02:46 +00001097 return llvm::ConstantInt::get(CGF.LLVMIntTy, 1);
Chris Lattner0946ccd2008-11-11 07:41:27 +00001098 }
1099
Daniel Dunbar9615ecb2008-11-13 01:38:36 +00001100 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
1101 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
Chris Lattner7f02f722007-08-24 05:35:26 +00001102
Chris Lattnerf7b5ea92008-11-12 08:38:24 +00001103 // Branch on the LHS first. If it is true, go to the success (cont) block.
1104 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
1105
1106 // Any edges into the ContBlock are now from an (indeterminate number of)
1107 // edges from this first condition. All of these values will be true. Start
1108 // setting up the PHI node in the Cont Block for this.
1109 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::Int1Ty, "", ContBlock);
1110 PN->reserveOperandSpace(2); // Normal case, two inputs.
1111 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1112 PI != PE; ++PI)
1113 PN->addIncoming(llvm::ConstantInt::getTrue(), *PI);
1114
1115 // Emit the RHS condition as a bool value.
Chris Lattner7f02f722007-08-24 05:35:26 +00001116 CGF.EmitBlock(RHSBlock);
1117 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1118
1119 // Reaquire the RHS block, as there may be subblocks inserted.
1120 RHSBlock = Builder.GetInsertBlock();
Chris Lattner7f02f722007-08-24 05:35:26 +00001121
Chris Lattnerf7b5ea92008-11-12 08:38:24 +00001122 // Emit an unconditional branch from this block to ContBlock. Insert an entry
1123 // into the phi node for the edge with the value of RHSCond.
1124 CGF.EmitBlock(ContBlock);
Chris Lattner7f02f722007-08-24 05:35:26 +00001125 PN->addIncoming(RHSCond, RHSBlock);
1126
1127 // ZExt result to int.
1128 return Builder.CreateZExt(PN, CGF.LLVMIntTy, "lor.ext");
1129}
1130
1131Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
1132 CGF.EmitStmt(E->getLHS());
Daniel Dunbara448fb22008-11-11 23:11:34 +00001133 CGF.EnsureInsertPoint();
Chris Lattner7f02f722007-08-24 05:35:26 +00001134 return Visit(E->getRHS());
1135}
1136
1137//===----------------------------------------------------------------------===//
1138// Other Operators
1139//===----------------------------------------------------------------------===//
1140
Chris Lattner9802a512008-11-12 08:55:54 +00001141/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
1142/// expression is cheap enough and side-effect-free enough to evaluate
1143/// unconditionally instead of conditionally. This is used to convert control
1144/// flow into selects in some cases.
1145static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E) {
1146 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
1147 return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr());
1148
1149 // TODO: Allow anything we can constant fold to an integer or fp constant.
1150 if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) ||
1151 isa<FloatingLiteral>(E))
1152 return true;
1153
1154 // Non-volatile automatic variables too, to get "cond ? X : Y" where
1155 // X and Y are local variables.
1156 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
1157 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
1158 if (VD->hasLocalStorage() && !VD->getType().isVolatileQualified())
1159 return true;
1160
1161 return false;
1162}
1163
1164
Chris Lattner7f02f722007-08-24 05:35:26 +00001165Value *ScalarExprEmitter::
1166VisitConditionalOperator(const ConditionalOperator *E) {
Chris Lattner31a09842008-11-12 08:04:58 +00001167 // If the condition constant folds and can be elided, try to avoid emitting
1168 // the condition and the dead arm.
1169 if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getCond())){
Chris Lattnerc657e922008-11-11 18:56:45 +00001170 Expr *Live = E->getLHS(), *Dead = E->getRHS();
Chris Lattner31a09842008-11-12 08:04:58 +00001171 if (Cond == -1)
Chris Lattnerc657e922008-11-11 18:56:45 +00001172 std::swap(Live, Dead);
Chris Lattner31a09842008-11-12 08:04:58 +00001173
1174 // If the dead side doesn't have labels we need, and if the Live side isn't
1175 // the gnu missing ?: extension (which we could handle, but don't bother
1176 // to), just emit the Live part.
1177 if ((!Dead || !CGF.ContainsLabel(Dead)) && // No labels in dead part
1178 Live) // Live part isn't missing.
1179 return Visit(Live);
Chris Lattnerc657e922008-11-11 18:56:45 +00001180 }
1181
Chris Lattner9802a512008-11-12 08:55:54 +00001182
1183 // If this is a really simple expression (like x ? 4 : 5), emit this as a
1184 // select instead of as control flow. We can only do this if it is cheap and
Chris Lattner531a5502008-11-16 06:16:27 +00001185 // safe to evaluate the LHS and RHS unconditionally.
Chris Lattner9802a512008-11-12 08:55:54 +00001186 if (E->getLHS() && isCheapEnoughToEvaluateUnconditionally(E->getLHS()) &&
1187 isCheapEnoughToEvaluateUnconditionally(E->getRHS())) {
1188 llvm::Value *CondV = CGF.EvaluateExprAsBool(E->getCond());
1189 llvm::Value *LHS = Visit(E->getLHS());
1190 llvm::Value *RHS = Visit(E->getRHS());
1191 return Builder.CreateSelect(CondV, LHS, RHS, "cond");
1192 }
1193
1194
Daniel Dunbarbe65abc2008-11-12 10:13:37 +00001195 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1196 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
Daniel Dunbar9615ecb2008-11-13 01:38:36 +00001197 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
Chris Lattner035cf422008-11-12 08:08:13 +00001198 Value *CondVal = 0;
Chris Lattner31a09842008-11-12 08:04:58 +00001199
Chris Lattner035cf422008-11-12 08:08:13 +00001200 // If we have the GNU missing condition extension, evaluate the conditional
1201 // and then convert it to bool the hard way. We do this explicitly
1202 // because we need the unconverted value for the missing middle value of
1203 // the ?:.
1204 if (E->getLHS() == 0) {
1205 CondVal = CGF.EmitScalarExpr(E->getCond());
1206 Value *CondBoolVal =
1207 CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
1208 CGF.getContext().BoolTy);
1209 Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock);
1210 } else {
1211 // Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for
1212 // the branch on bool.
1213 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
1214 }
Chris Lattner7f02f722007-08-24 05:35:26 +00001215
1216 CGF.EmitBlock(LHSBlock);
1217
1218 // Handle the GNU extension for missing LHS.
Chris Lattnera21ddb32007-11-26 01:40:58 +00001219 Value *LHS;
1220 if (E->getLHS())
Eli Friedman856226c2008-05-16 20:38:39 +00001221 LHS = Visit(E->getLHS());
Chris Lattnera21ddb32007-11-26 01:40:58 +00001222 else // Perform promotions, to handle cases like "short ?: int"
1223 LHS = EmitScalarConversion(CondVal, E->getCond()->getType(), E->getType());
1224
Chris Lattner7f02f722007-08-24 05:35:26 +00001225 LHSBlock = Builder.GetInsertBlock();
Daniel Dunbard57a8712008-11-11 09:41:28 +00001226 CGF.EmitBranch(ContBlock);
Chris Lattner7f02f722007-08-24 05:35:26 +00001227
1228 CGF.EmitBlock(RHSBlock);
1229
Eli Friedman856226c2008-05-16 20:38:39 +00001230 Value *RHS = Visit(E->getRHS());
Chris Lattner7f02f722007-08-24 05:35:26 +00001231 RHSBlock = Builder.GetInsertBlock();
Daniel Dunbard57a8712008-11-11 09:41:28 +00001232 CGF.EmitBranch(ContBlock);
Chris Lattner7f02f722007-08-24 05:35:26 +00001233
1234 CGF.EmitBlock(ContBlock);
1235
Nuno Lopes108f55d2008-06-04 19:15:45 +00001236 if (!LHS || !RHS) {
Chris Lattner2202bce2007-11-30 17:56:23 +00001237 assert(E->getType()->isVoidType() && "Non-void value should have a value");
1238 return 0;
1239 }
1240
Chris Lattner7f02f722007-08-24 05:35:26 +00001241 // Create a PHI node for the real part.
1242 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
1243 PN->reserveOperandSpace(2);
1244 PN->addIncoming(LHS, LHSBlock);
1245 PN->addIncoming(RHS, RHSBlock);
1246 return PN;
1247}
1248
1249Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
Chris Lattner7f02f722007-08-24 05:35:26 +00001250 // Emit the LHS or RHS as appropriate.
Devang Patele9b8c0a2007-10-30 20:59:40 +00001251 return
1252 Visit(E->isConditionTrue(CGF.getContext()) ? E->getLHS() : E->getRHS());
Chris Lattner7f02f722007-08-24 05:35:26 +00001253}
1254
Nate Begemane2ce1d92008-01-17 17:46:27 +00001255Value *ScalarExprEmitter::VisitOverloadExpr(OverloadExpr *E) {
Nate Begeman67295d02008-01-30 20:50:20 +00001256 return CGF.EmitCallExpr(E->getFn(), E->arg_begin(),
Ted Kremenek55499762008-06-17 02:43:46 +00001257 E->arg_end(CGF.getContext())).getScalarVal();
Nate Begemane2ce1d92008-01-17 17:46:27 +00001258}
1259
Chris Lattner2202bce2007-11-30 17:56:23 +00001260Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
Anders Carlsson7c50aca2007-10-15 20:28:48 +00001261 llvm::Value *ArgValue = EmitLValue(VE->getSubExpr()).getAddress();
1262
Anders Carlssonddf7cac2008-11-04 05:30:00 +00001263 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
1264
1265 // If EmitVAArg fails, we fall back to the LLVM instruction.
1266 if (!ArgPtr)
1267 return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
1268
1269 // FIXME: volatile?
1270 return Builder.CreateLoad(ArgPtr);
Anders Carlsson7c50aca2007-10-15 20:28:48 +00001271}
1272
Chris Lattner2202bce2007-11-30 17:56:23 +00001273Value *ScalarExprEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
Anders Carlsson85f9bce2007-10-29 05:01:08 +00001274 std::string str;
Daniel Dunbar0d504c12008-10-17 20:21:44 +00001275 CGF.getContext().getObjCEncodingForType(E->getEncodedType(), str);
Anders Carlsson85f9bce2007-10-29 05:01:08 +00001276
1277 llvm::Constant *C = llvm::ConstantArray::get(str);
1278 C = new llvm::GlobalVariable(C->getType(), true,
1279 llvm::GlobalValue::InternalLinkage,
1280 C, ".str", &CGF.CGM.getModule());
1281 llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
1282 llvm::Constant *Zeros[] = { Zero, Zero };
1283 C = llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2);
1284
1285 return C;
1286}
1287
Chris Lattner7f02f722007-08-24 05:35:26 +00001288//===----------------------------------------------------------------------===//
1289// Entry Point into this File
1290//===----------------------------------------------------------------------===//
1291
1292/// EmitComplexExpr - Emit the computation of the specified expression of
1293/// complex type, ignoring the result.
1294Value *CodeGenFunction::EmitScalarExpr(const Expr *E) {
1295 assert(E && !hasAggregateLLVMType(E->getType()) &&
1296 "Invalid scalar expression to emit");
1297
1298 return ScalarExprEmitter(*this).Visit(const_cast<Expr*>(E));
1299}
Chris Lattner3707b252007-08-26 06:48:56 +00001300
1301/// EmitScalarConversion - Emit a conversion from the specified type to the
1302/// specified destination type, both of which are LLVM scalar types.
Chris Lattner4f1a7b32007-08-26 16:34:22 +00001303Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
1304 QualType DstTy) {
Chris Lattner3707b252007-08-26 06:48:56 +00001305 assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
1306 "Invalid scalar expression to emit");
1307 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
1308}
Chris Lattner4f1a7b32007-08-26 16:34:22 +00001309
1310/// EmitComplexToScalarConversion - Emit a conversion from the specified
1311/// complex type to the specified destination type, where the destination
1312/// type is an LLVM scalar type.
1313Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
1314 QualType SrcTy,
1315 QualType DstTy) {
Chris Lattner9b2dc282008-04-04 16:54:41 +00001316 assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
Chris Lattner4f1a7b32007-08-26 16:34:22 +00001317 "Invalid complex -> scalar conversion");
1318 return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
1319 DstTy);
1320}
Anders Carlssoncc23aca2007-12-10 19:35:18 +00001321
1322Value *CodeGenFunction::EmitShuffleVector(Value* V1, Value *V2, ...) {
1323 assert(V1->getType() == V2->getType() &&
1324 "Vector operands must be of the same type");
Anders Carlssoncc23aca2007-12-10 19:35:18 +00001325 unsigned NumElements =
1326 cast<llvm::VectorType>(V1->getType())->getNumElements();
1327
1328 va_list va;
1329 va_start(va, V2);
1330
1331 llvm::SmallVector<llvm::Constant*, 16> Args;
Anders Carlssoncc23aca2007-12-10 19:35:18 +00001332 for (unsigned i = 0; i < NumElements; i++) {
1333 int n = va_arg(va, int);
Anders Carlssoncc23aca2007-12-10 19:35:18 +00001334 assert(n >= 0 && n < (int)NumElements * 2 &&
1335 "Vector shuffle index out of bounds!");
Anders Carlssoncc23aca2007-12-10 19:35:18 +00001336 Args.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, n));
1337 }
1338
1339 const char *Name = va_arg(va, const char *);
1340 va_end(va);
1341
1342 llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
1343
1344 return Builder.CreateShuffleVector(V1, V2, Mask, Name);
1345}
1346
Anders Carlsson6086bbd2007-12-15 21:23:30 +00001347llvm::Value *CodeGenFunction::EmitVector(llvm::Value * const *Vals,
Chris Lattner345f7202008-07-26 20:15:14 +00001348 unsigned NumVals, bool isSplat) {
Anders Carlsson6086bbd2007-12-15 21:23:30 +00001349 llvm::Value *Vec
Chris Lattner345f7202008-07-26 20:15:14 +00001350 = llvm::UndefValue::get(llvm::VectorType::get(Vals[0]->getType(), NumVals));
Anders Carlsson6086bbd2007-12-15 21:23:30 +00001351
Chris Lattner345f7202008-07-26 20:15:14 +00001352 for (unsigned i = 0, e = NumVals; i != e; ++i) {
Nate Begeman4119d1a2007-12-30 02:59:45 +00001353 llvm::Value *Val = isSplat ? Vals[0] : Vals[i];
Anders Carlsson6086bbd2007-12-15 21:23:30 +00001354 llvm::Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
Nate Begeman4119d1a2007-12-30 02:59:45 +00001355 Vec = Builder.CreateInsertElement(Vec, Val, Idx, "tmp");
Anders Carlsson6086bbd2007-12-15 21:23:30 +00001356 }
1357
1358 return Vec;
1359}