blob: 012cb69c3290d1272bb1fdbc282dd40c3de8113c [file] [log] [blame]
Chris Lattner7f02f722007-08-24 05:35:26 +00001//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CodeGenModule.h"
16#include "clang/AST/AST.h"
17#include "llvm/Constants.h"
18#include "llvm/Function.h"
Anders Carlsson7c50aca2007-10-15 20:28:48 +000019#include "llvm/Intrinsics.h"
Chris Lattner7f02f722007-08-24 05:35:26 +000020#include "llvm/Support/Compiler.h"
21using namespace clang;
22using namespace CodeGen;
23using llvm::Value;
24
25//===----------------------------------------------------------------------===//
26// Scalar Expression Emitter
27//===----------------------------------------------------------------------===//
28
29struct BinOpInfo {
30 Value *LHS;
31 Value *RHS;
Chris Lattner1f1ded92007-08-24 21:00:35 +000032 QualType Ty; // Computation Type.
Chris Lattner7f02f722007-08-24 05:35:26 +000033 const BinaryOperator *E;
34};
35
36namespace {
37class VISIBILITY_HIDDEN ScalarExprEmitter
38 : public StmtVisitor<ScalarExprEmitter, Value*> {
39 CodeGenFunction &CGF;
Devang Patel50c90342007-10-09 19:49:58 +000040 llvm::LLVMFoldingBuilder &Builder;
Chris Lattner7f02f722007-08-24 05:35:26 +000041public:
42
43 ScalarExprEmitter(CodeGenFunction &cgf) : CGF(cgf), Builder(CGF.Builder) {
44 }
45
46
47 //===--------------------------------------------------------------------===//
48 // Utilities
49 //===--------------------------------------------------------------------===//
50
51 const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
52 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
53
54 Value *EmitLoadOfLValue(LValue LV, QualType T) {
Chris Lattner9b655512007-08-31 22:49:20 +000055 return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
Chris Lattner7f02f722007-08-24 05:35:26 +000056 }
57
58 /// EmitLoadOfLValue - Given an expression with complex type that represents a
59 /// value l-value, this method emits the address of the l-value, then loads
60 /// and returns the result.
61 Value *EmitLoadOfLValue(const Expr *E) {
62 // FIXME: Volatile
63 return EmitLoadOfLValue(EmitLValue(E), E->getType());
64 }
65
Chris Lattner9abc84e2007-08-26 16:42:57 +000066 /// EmitConversionToBool - Convert the specified expression value to a
Chris Lattner3420d0d2007-08-26 17:25:57 +000067 /// boolean (i1) truth value. This is equivalent to "Val != 0".
Chris Lattner9abc84e2007-08-26 16:42:57 +000068 Value *EmitConversionToBool(Value *Src, QualType DstTy);
69
Chris Lattner3707b252007-08-26 06:48:56 +000070 /// EmitScalarConversion - Emit a conversion from the specified type to the
71 /// specified destination type, both of which are LLVM scalar types.
Chris Lattner4f1a7b32007-08-26 16:34:22 +000072 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
73
74 /// EmitComplexToScalarConversion - Emit a conversion from the specified
75 /// complex type to the specified destination type, where the destination
76 /// type is an LLVM scalar type.
77 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
78 QualType SrcTy, QualType DstTy);
Chris Lattner3707b252007-08-26 06:48:56 +000079
Chris Lattner7f02f722007-08-24 05:35:26 +000080 //===--------------------------------------------------------------------===//
81 // Visitor Methods
82 //===--------------------------------------------------------------------===//
83
84 Value *VisitStmt(Stmt *S) {
Chris Lattner419ea7e2007-09-13 01:17:29 +000085 S->dump(CGF.getContext().SourceMgr);
Chris Lattner7f02f722007-08-24 05:35:26 +000086 assert(0 && "Stmt can't have complex result type!");
87 return 0;
88 }
89 Value *VisitExpr(Expr *S);
90 Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); }
91
92 // Leaves.
93 Value *VisitIntegerLiteral(const IntegerLiteral *E) {
94 return llvm::ConstantInt::get(E->getValue());
95 }
96 Value *VisitFloatingLiteral(const FloatingLiteral *E) {
Chris Lattnerc9bec4b2007-09-22 18:47:25 +000097 return llvm::ConstantFP::get(ConvertType(E->getType()), E->getValue());
Chris Lattner7f02f722007-08-24 05:35:26 +000098 }
99 Value *VisitCharacterLiteral(const CharacterLiteral *E) {
100 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
101 }
102 Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
103 return llvm::ConstantInt::get(ConvertType(E->getType()),
Steve Naroffec0550f2007-10-15 20:41:53 +0000104 CGF.getContext().typesAreCompatible(
105 E->getArgType1(), E->getArgType2()));
Chris Lattner7f02f722007-08-24 05:35:26 +0000106 }
107 Value *VisitSizeOfAlignOfTypeExpr(const SizeOfAlignOfTypeExpr *E) {
108 return EmitSizeAlignOf(E->getArgumentType(), E->getType(), E->isSizeOf());
109 }
110
111 // l-values.
112 Value *VisitDeclRefExpr(DeclRefExpr *E) {
113 if (const EnumConstantDecl *EC = dyn_cast<EnumConstantDecl>(E->getDecl()))
114 return llvm::ConstantInt::get(EC->getInitVal());
115 return EmitLoadOfLValue(E);
116 }
117 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
118 Value *VisitMemberExpr(Expr *E) { return EmitLoadOfLValue(E); }
119 Value *VisitOCUVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
120 Value *VisitStringLiteral(Expr *E) { return EmitLValue(E).getAddress(); }
121 Value *VisitPreDefinedExpr(Expr *E) { return EmitLValue(E).getAddress(); }
122
123 // FIXME: CompoundLiteralExpr
124 Value *VisitImplicitCastExpr(const ImplicitCastExpr *E);
125 Value *VisitCastExpr(const CastExpr *E) {
126 return EmitCastExpr(E->getSubExpr(), E->getType());
127 }
128 Value *EmitCastExpr(const Expr *E, QualType T);
129
130 Value *VisitCallExpr(const CallExpr *E) {
Chris Lattner9b655512007-08-31 22:49:20 +0000131 return CGF.EmitCallExpr(E).getScalarVal();
Chris Lattner7f02f722007-08-24 05:35:26 +0000132 }
133
Chris Lattner33793202007-08-31 22:09:40 +0000134 Value *VisitStmtExpr(const StmtExpr *E);
135
Chris Lattner7f02f722007-08-24 05:35:26 +0000136 // Unary Operators.
137 Value *VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre);
138 Value *VisitUnaryPostDec(const UnaryOperator *E) {
139 return VisitPrePostIncDec(E, false, false);
140 }
141 Value *VisitUnaryPostInc(const UnaryOperator *E) {
142 return VisitPrePostIncDec(E, true, false);
143 }
144 Value *VisitUnaryPreDec(const UnaryOperator *E) {
145 return VisitPrePostIncDec(E, false, true);
146 }
147 Value *VisitUnaryPreInc(const UnaryOperator *E) {
148 return VisitPrePostIncDec(E, true, true);
149 }
150 Value *VisitUnaryAddrOf(const UnaryOperator *E) {
151 return EmitLValue(E->getSubExpr()).getAddress();
152 }
153 Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
154 Value *VisitUnaryPlus(const UnaryOperator *E) {
155 return Visit(E->getSubExpr());
156 }
157 Value *VisitUnaryMinus (const UnaryOperator *E);
158 Value *VisitUnaryNot (const UnaryOperator *E);
159 Value *VisitUnaryLNot (const UnaryOperator *E);
160 Value *VisitUnarySizeOf (const UnaryOperator *E) {
161 return EmitSizeAlignOf(E->getSubExpr()->getType(), E->getType(), true);
162 }
163 Value *VisitUnaryAlignOf (const UnaryOperator *E) {
164 return EmitSizeAlignOf(E->getSubExpr()->getType(), E->getType(), false);
165 }
166 Value *EmitSizeAlignOf(QualType TypeToSize, QualType RetType,
167 bool isSizeOf);
Chris Lattner46f93d02007-08-24 21:20:17 +0000168 Value *VisitUnaryReal (const UnaryOperator *E);
169 Value *VisitUnaryImag (const UnaryOperator *E);
Chris Lattner7f02f722007-08-24 05:35:26 +0000170 Value *VisitUnaryExtension(const UnaryOperator *E) {
171 return Visit(E->getSubExpr());
172 }
173
174 // Binary Operators.
Chris Lattner7f02f722007-08-24 05:35:26 +0000175 Value *EmitMul(const BinOpInfo &Ops) {
176 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
177 }
178 Value *EmitDiv(const BinOpInfo &Ops);
179 Value *EmitRem(const BinOpInfo &Ops);
180 Value *EmitAdd(const BinOpInfo &Ops);
181 Value *EmitSub(const BinOpInfo &Ops);
182 Value *EmitShl(const BinOpInfo &Ops);
183 Value *EmitShr(const BinOpInfo &Ops);
184 Value *EmitAnd(const BinOpInfo &Ops) {
185 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
186 }
187 Value *EmitXor(const BinOpInfo &Ops) {
188 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
189 }
190 Value *EmitOr (const BinOpInfo &Ops) {
191 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
192 }
193
Chris Lattner1f1ded92007-08-24 21:00:35 +0000194 BinOpInfo EmitBinOps(const BinaryOperator *E);
Chris Lattner3ccf7742007-08-26 21:41:21 +0000195 Value *EmitCompoundAssign(const CompoundAssignOperator *E,
Chris Lattner1f1ded92007-08-24 21:00:35 +0000196 Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
197
198 // Binary operators and binary compound assignment operators.
199#define HANDLEBINOP(OP) \
Chris Lattner3ccf7742007-08-26 21:41:21 +0000200 Value *VisitBin ## OP(const BinaryOperator *E) { \
201 return Emit ## OP(EmitBinOps(E)); \
202 } \
203 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \
204 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \
Chris Lattner1f1ded92007-08-24 21:00:35 +0000205 }
206 HANDLEBINOP(Mul);
207 HANDLEBINOP(Div);
208 HANDLEBINOP(Rem);
209 HANDLEBINOP(Add);
210 // (Sub) - Sub is handled specially below for ptr-ptr subtract.
211 HANDLEBINOP(Shl);
212 HANDLEBINOP(Shr);
213 HANDLEBINOP(And);
214 HANDLEBINOP(Xor);
215 HANDLEBINOP(Or);
216#undef HANDLEBINOP
217 Value *VisitBinSub(const BinaryOperator *E);
Chris Lattner3ccf7742007-08-26 21:41:21 +0000218 Value *VisitBinSubAssign(const CompoundAssignOperator *E) {
Chris Lattner1f1ded92007-08-24 21:00:35 +0000219 return EmitCompoundAssign(E, &ScalarExprEmitter::EmitSub);
220 }
221
Chris Lattner7f02f722007-08-24 05:35:26 +0000222 // Comparisons.
223 Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
224 unsigned SICmpOpc, unsigned FCmpOpc);
225#define VISITCOMP(CODE, UI, SI, FP) \
226 Value *VisitBin##CODE(const BinaryOperator *E) { \
227 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
228 llvm::FCmpInst::FP); }
229 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT);
230 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT);
231 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE);
232 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE);
233 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ);
234 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE);
235#undef VISITCOMP
236
237 Value *VisitBinAssign (const BinaryOperator *E);
238
239 Value *VisitBinLAnd (const BinaryOperator *E);
240 Value *VisitBinLOr (const BinaryOperator *E);
Chris Lattner7f02f722007-08-24 05:35:26 +0000241 Value *VisitBinComma (const BinaryOperator *E);
242
243 // Other Operators.
244 Value *VisitConditionalOperator(const ConditionalOperator *CO);
245 Value *VisitChooseExpr(ChooseExpr *CE);
Anders Carlsson7c50aca2007-10-15 20:28:48 +0000246 Value *VisitVAArgExpr(VAArgExpr *VE);
Chris Lattner7f02f722007-08-24 05:35:26 +0000247 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
248 return CGF.EmitObjCStringLiteral(E);
249 }
250};
251} // end anonymous namespace.
252
253//===----------------------------------------------------------------------===//
254// Utilities
255//===----------------------------------------------------------------------===//
256
Chris Lattner9abc84e2007-08-26 16:42:57 +0000257/// EmitConversionToBool - Convert the specified expression value to a
Chris Lattner3420d0d2007-08-26 17:25:57 +0000258/// boolean (i1) truth value. This is equivalent to "Val != 0".
Chris Lattner9abc84e2007-08-26 16:42:57 +0000259Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
260 assert(SrcType->isCanonical() && "EmitScalarConversion strips typedefs");
261
262 if (SrcType->isRealFloatingType()) {
263 // Compare against 0.0 for fp scalars.
264 llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
Chris Lattner9abc84e2007-08-26 16:42:57 +0000265 return Builder.CreateFCmpUNE(Src, Zero, "tobool");
266 }
267
268 assert((SrcType->isIntegerType() || SrcType->isPointerType()) &&
269 "Unknown scalar type to convert");
270
271 // Because of the type rules of C, we often end up computing a logical value,
272 // then zero extending it to int, then wanting it as a logical value again.
273 // Optimize this common case.
274 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
275 if (ZI->getOperand(0)->getType() == llvm::Type::Int1Ty) {
276 Value *Result = ZI->getOperand(0);
277 ZI->eraseFromParent();
278 return Result;
279 }
280 }
281
282 // Compare against an integer or pointer null.
283 llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
284 return Builder.CreateICmpNE(Src, Zero, "tobool");
285}
286
Chris Lattner3707b252007-08-26 06:48:56 +0000287/// EmitScalarConversion - Emit a conversion from the specified type to the
288/// specified destination type, both of which are LLVM scalar types.
Chris Lattner4f1a7b32007-08-26 16:34:22 +0000289Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
290 QualType DstType) {
Chris Lattner3707b252007-08-26 06:48:56 +0000291 SrcType = SrcType.getCanonicalType();
292 DstType = DstType.getCanonicalType();
293 if (SrcType == DstType) return Src;
Chris Lattnercf289082007-08-26 07:21:11 +0000294
295 if (DstType->isVoidType()) return 0;
Chris Lattner3707b252007-08-26 06:48:56 +0000296
297 // Handle conversions to bool first, they are special: comparisons against 0.
Chris Lattnered70f0a2007-08-26 16:52:28 +0000298 if (DstType->isBooleanType())
299 return EmitConversionToBool(Src, SrcType);
Chris Lattner3707b252007-08-26 06:48:56 +0000300
301 const llvm::Type *DstTy = ConvertType(DstType);
302
303 // Ignore conversions like int -> uint.
304 if (Src->getType() == DstTy)
305 return Src;
306
307 // Handle pointer conversions next: pointers can only be converted to/from
308 // other pointers and integers.
309 if (isa<PointerType>(DstType)) {
310 // The source value may be an integer, or a pointer.
311 if (isa<llvm::PointerType>(Src->getType()))
312 return Builder.CreateBitCast(Src, DstTy, "conv");
313 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
314 return Builder.CreateIntToPtr(Src, DstTy, "conv");
315 }
316
317 if (isa<PointerType>(SrcType)) {
318 // Must be an ptr to int cast.
319 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
320 return Builder.CreateIntToPtr(Src, DstTy, "conv");
321 }
322
323 // Finally, we have the arithmetic types: real int/float.
324 if (isa<llvm::IntegerType>(Src->getType())) {
325 bool InputSigned = SrcType->isSignedIntegerType();
326 if (isa<llvm::IntegerType>(DstTy))
327 return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
328 else if (InputSigned)
329 return Builder.CreateSIToFP(Src, DstTy, "conv");
330 else
331 return Builder.CreateUIToFP(Src, DstTy, "conv");
332 }
333
334 assert(Src->getType()->isFloatingPoint() && "Unknown real conversion");
335 if (isa<llvm::IntegerType>(DstTy)) {
336 if (DstType->isSignedIntegerType())
337 return Builder.CreateFPToSI(Src, DstTy, "conv");
338 else
339 return Builder.CreateFPToUI(Src, DstTy, "conv");
340 }
341
342 assert(DstTy->isFloatingPoint() && "Unknown real conversion");
343 if (DstTy->getTypeID() < Src->getType()->getTypeID())
344 return Builder.CreateFPTrunc(Src, DstTy, "conv");
345 else
346 return Builder.CreateFPExt(Src, DstTy, "conv");
347}
348
Chris Lattner4f1a7b32007-08-26 16:34:22 +0000349/// EmitComplexToScalarConversion - Emit a conversion from the specified
350/// complex type to the specified destination type, where the destination
351/// type is an LLVM scalar type.
352Value *ScalarExprEmitter::
353EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
354 QualType SrcTy, QualType DstTy) {
Chris Lattnered70f0a2007-08-26 16:52:28 +0000355 // Get the source element type.
356 SrcTy = cast<ComplexType>(SrcTy.getCanonicalType())->getElementType();
357
358 // Handle conversions to bool first, they are special: comparisons against 0.
359 if (DstTy->isBooleanType()) {
360 // Complex != 0 -> (Real != 0) | (Imag != 0)
361 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy);
362 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
363 return Builder.CreateOr(Src.first, Src.second, "tobool");
364 }
365
Chris Lattner4f1a7b32007-08-26 16:34:22 +0000366 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
367 // the imaginary part of the complex value is discarded and the value of the
368 // real part is converted according to the conversion rules for the
369 // corresponding real type.
Chris Lattner4f1a7b32007-08-26 16:34:22 +0000370 return EmitScalarConversion(Src.first, SrcTy, DstTy);
371}
372
373
Chris Lattner7f02f722007-08-24 05:35:26 +0000374//===----------------------------------------------------------------------===//
375// Visitor Methods
376//===----------------------------------------------------------------------===//
377
378Value *ScalarExprEmitter::VisitExpr(Expr *E) {
379 fprintf(stderr, "Unimplemented scalar expr!\n");
Chris Lattner419ea7e2007-09-13 01:17:29 +0000380 E->dump(CGF.getContext().SourceMgr);
Chris Lattner7f02f722007-08-24 05:35:26 +0000381 if (E->getType()->isVoidType())
382 return 0;
383 return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
384}
385
386Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
387 // Emit subscript expressions in rvalue context's. For most cases, this just
388 // loads the lvalue formed by the subscript expr. However, we have to be
389 // careful, because the base of a vector subscript is occasionally an rvalue,
390 // so we can't get it as an lvalue.
391 if (!E->getBase()->getType()->isVectorType())
392 return EmitLoadOfLValue(E);
393
394 // Handle the vector case. The base must be a vector, the index must be an
395 // integer value.
396 Value *Base = Visit(E->getBase());
397 Value *Idx = Visit(E->getIdx());
398
399 // FIXME: Convert Idx to i32 type.
400 return Builder.CreateExtractElement(Base, Idx, "vecext");
401}
402
403/// VisitImplicitCastExpr - Implicit casts are the same as normal casts, but
404/// also handle things like function to pointer-to-function decay, and array to
405/// pointer decay.
406Value *ScalarExprEmitter::VisitImplicitCastExpr(const ImplicitCastExpr *E) {
407 const Expr *Op = E->getSubExpr();
408
409 // If this is due to array->pointer conversion, emit the array expression as
410 // an l-value.
411 if (Op->getType()->isArrayType()) {
412 // FIXME: For now we assume that all source arrays map to LLVM arrays. This
413 // will not true when we add support for VLAs.
Chris Lattner4f1a7b32007-08-26 16:34:22 +0000414 Value *V = EmitLValue(Op).getAddress(); // Bitfields can't be arrays.
Chris Lattner7f02f722007-08-24 05:35:26 +0000415
416 assert(isa<llvm::PointerType>(V->getType()) &&
417 isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
418 ->getElementType()) &&
419 "Doesn't support VLAs yet!");
420 llvm::Constant *Idx0 = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
Ted Kremenekd6278892007-09-04 17:20:08 +0000421
422 llvm::Value *Ops[] = {Idx0, Idx0};
423 return Builder.CreateGEP(V, Ops, Ops+2, "arraydecay");
Anders Carlsson793680e2007-10-12 23:56:29 +0000424 } else if (E->getType()->isReferenceType()) {
Anders Carlsson23af9f22007-10-13 05:52:34 +0000425 assert(cast<ReferenceType>(E->getType().getCanonicalType())->
426 getReferenceeType() ==
427 Op->getType().getCanonicalType() && "Incompatible types!");
Anders Carlsson793680e2007-10-12 23:56:29 +0000428
429 return EmitLValue(Op).getAddress();
Chris Lattner7f02f722007-08-24 05:35:26 +0000430 }
431
432 return EmitCastExpr(Op, E->getType());
433}
434
435
436// VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
437// have to handle a more broad range of conversions than explicit casts, as they
438// handle things like function to ptr-to-function decay etc.
439Value *ScalarExprEmitter::EmitCastExpr(const Expr *E, QualType DestTy) {
Chris Lattner58a2e942007-08-26 07:26:12 +0000440 // Handle cases where the source is an non-complex type.
Chris Lattner4f1a7b32007-08-26 16:34:22 +0000441 if (!E->getType()->isComplexType()) {
Chris Lattner3707b252007-08-26 06:48:56 +0000442 Value *Src = Visit(const_cast<Expr*>(E));
443
Chris Lattner3707b252007-08-26 06:48:56 +0000444 // Use EmitScalarConversion to perform the conversion.
445 return EmitScalarConversion(Src, E->getType(), DestTy);
446 }
Chris Lattner10b00cf2007-08-26 07:16:41 +0000447
Chris Lattner58a2e942007-08-26 07:26:12 +0000448 // Handle cases where the source is a complex type.
Chris Lattner4f1a7b32007-08-26 16:34:22 +0000449 return EmitComplexToScalarConversion(CGF.EmitComplexExpr(E), E->getType(),
450 DestTy);
Chris Lattner7f02f722007-08-24 05:35:26 +0000451}
452
Chris Lattner33793202007-08-31 22:09:40 +0000453Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
Chris Lattner9b655512007-08-31 22:49:20 +0000454 return CGF.EmitCompoundStmt(*E->getSubStmt(), true).getScalarVal();
Chris Lattner33793202007-08-31 22:09:40 +0000455}
456
457
Chris Lattner7f02f722007-08-24 05:35:26 +0000458//===----------------------------------------------------------------------===//
459// Unary Operators
460//===----------------------------------------------------------------------===//
461
462Value *ScalarExprEmitter::VisitPrePostIncDec(const UnaryOperator *E,
Chris Lattnerdfce2a52007-08-24 16:24:49 +0000463 bool isInc, bool isPre) {
Chris Lattner7f02f722007-08-24 05:35:26 +0000464 LValue LV = EmitLValue(E->getSubExpr());
465 // FIXME: Handle volatile!
Chris Lattnere936cc82007-08-26 05:10:16 +0000466 Value *InVal = CGF.EmitLoadOfLValue(LV, // false
Chris Lattner9b655512007-08-31 22:49:20 +0000467 E->getSubExpr()->getType()).getScalarVal();
Chris Lattner7f02f722007-08-24 05:35:26 +0000468
469 int AmountVal = isInc ? 1 : -1;
470
471 Value *NextVal;
Chris Lattnere936cc82007-08-26 05:10:16 +0000472 if (isa<llvm::PointerType>(InVal->getType())) {
473 // FIXME: This isn't right for VLAs.
474 NextVal = llvm::ConstantInt::get(llvm::Type::Int32Ty, AmountVal);
475 NextVal = Builder.CreateGEP(InVal, NextVal);
476 } else {
477 // Add the inc/dec to the real part.
478 if (isa<llvm::IntegerType>(InVal->getType()))
479 NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);
Chris Lattnerca2617c2007-09-13 06:19:18 +0000480 else if (InVal->getType() == llvm::Type::FloatTy)
481 // FIXME: Handle long double.
482 NextVal = llvm::ConstantFP::get(InVal->getType(),
483 llvm::APFloat(static_cast<float>(AmountVal)));
484 else {
485 // FIXME: Handle long double.
486 assert(InVal->getType() == llvm::Type::DoubleTy);
487 NextVal = llvm::ConstantFP::get(InVal->getType(),
488 llvm::APFloat(static_cast<double>(AmountVal)));
489 }
Chris Lattnere936cc82007-08-26 05:10:16 +0000490 NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
491 }
Chris Lattner7f02f722007-08-24 05:35:26 +0000492
493 // Store the updated result through the lvalue.
494 CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV,
495 E->getSubExpr()->getType());
496
497 // If this is a postinc, return the value read from memory, otherwise use the
498 // updated value.
499 return isPre ? NextVal : InVal;
500}
501
502
503Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
504 Value *Op = Visit(E->getSubExpr());
505 return Builder.CreateNeg(Op, "neg");
506}
507
508Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
509 Value *Op = Visit(E->getSubExpr());
510 return Builder.CreateNot(Op, "neg");
511}
512
513Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
514 // Compare operand to zero.
515 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
516
517 // Invert value.
518 // TODO: Could dynamically modify easy computations here. For example, if
519 // the operand is an icmp ne, turn into icmp eq.
520 BoolVal = Builder.CreateNot(BoolVal, "lnot");
521
522 // ZExt result to int.
523 return Builder.CreateZExt(BoolVal, CGF.LLVMIntTy, "lnot.ext");
524}
525
526/// EmitSizeAlignOf - Return the size or alignment of the 'TypeToSize' type as
527/// an integer (RetType).
528Value *ScalarExprEmitter::EmitSizeAlignOf(QualType TypeToSize,
Chris Lattner46f93d02007-08-24 21:20:17 +0000529 QualType RetType,bool isSizeOf){
Chris Lattner7f02f722007-08-24 05:35:26 +0000530 /// FIXME: This doesn't handle VLAs yet!
531 std::pair<uint64_t, unsigned> Info =
532 CGF.getContext().getTypeInfo(TypeToSize, SourceLocation());
533
534 uint64_t Val = isSizeOf ? Info.first : Info.second;
535 Val /= 8; // Return size in bytes, not bits.
536
537 assert(RetType->isIntegerType() && "Result type must be an integer!");
538
Hartmut Kaiser7b660002007-10-17 15:00:17 +0000539 uint32_t ResultWidth = static_cast<uint32_t>(
540 CGF.getContext().getTypeSize(RetType, SourceLocation()));
Chris Lattner7f02f722007-08-24 05:35:26 +0000541 return llvm::ConstantInt::get(llvm::APInt(ResultWidth, Val));
542}
543
Chris Lattner46f93d02007-08-24 21:20:17 +0000544Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
545 Expr *Op = E->getSubExpr();
546 if (Op->getType()->isComplexType())
547 return CGF.EmitComplexExpr(Op).first;
548 return Visit(Op);
549}
550Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
551 Expr *Op = E->getSubExpr();
552 if (Op->getType()->isComplexType())
553 return CGF.EmitComplexExpr(Op).second;
Chris Lattner36f84062007-08-26 05:29:21 +0000554
555 // __imag on a scalar returns zero. Emit it the subexpr to ensure side
556 // effects are evaluated.
557 CGF.EmitScalarExpr(Op);
558 return llvm::Constant::getNullValue(ConvertType(E->getType()));
Chris Lattner46f93d02007-08-24 21:20:17 +0000559}
560
561
Chris Lattner7f02f722007-08-24 05:35:26 +0000562//===----------------------------------------------------------------------===//
563// Binary Operators
564//===----------------------------------------------------------------------===//
565
566BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
567 BinOpInfo Result;
568 Result.LHS = Visit(E->getLHS());
569 Result.RHS = Visit(E->getRHS());
Chris Lattner1f1ded92007-08-24 21:00:35 +0000570 Result.Ty = E->getType();
Chris Lattner7f02f722007-08-24 05:35:26 +0000571 Result.E = E;
572 return Result;
573}
574
Chris Lattner3ccf7742007-08-26 21:41:21 +0000575Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
Chris Lattner1f1ded92007-08-24 21:00:35 +0000576 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
577 QualType LHSTy = E->getLHS()->getType(), RHSTy = E->getRHS()->getType();
578
579 BinOpInfo OpInfo;
580
581 // Load the LHS and RHS operands.
582 LValue LHSLV = EmitLValue(E->getLHS());
583 OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
Chris Lattner04dc7642007-08-26 22:37:40 +0000584
585 // Determine the computation type. If the RHS is complex, then this is one of
586 // the add/sub/mul/div operators. All of these operators can be computed in
587 // with just their real component even though the computation domain really is
588 // complex.
Chris Lattner3ccf7742007-08-26 21:41:21 +0000589 QualType ComputeType = E->getComputationType();
Chris Lattner1f1ded92007-08-24 21:00:35 +0000590
Chris Lattner04dc7642007-08-26 22:37:40 +0000591 // If the computation type is complex, then the RHS is complex. Emit the RHS.
592 if (const ComplexType *CT = ComputeType->getAsComplexType()) {
593 ComputeType = CT->getElementType();
594
595 // Emit the RHS, only keeping the real component.
596 OpInfo.RHS = CGF.EmitComplexExpr(E->getRHS()).first;
597 RHSTy = RHSTy->getAsComplexType()->getElementType();
598 } else {
599 // Otherwise the RHS is a simple scalar value.
600 OpInfo.RHS = Visit(E->getRHS());
601 }
602
603 // Convert the LHS/RHS values to the computation type.
Chris Lattnere9377122007-08-26 07:08:39 +0000604 OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, ComputeType);
Chris Lattner1f1ded92007-08-24 21:00:35 +0000605
606 // Do not merge types for -= where the LHS is a pointer.
Chris Lattner3b44b572007-08-25 21:56:20 +0000607 if (E->getOpcode() != BinaryOperator::SubAssign ||
608 !E->getLHS()->getType()->isPointerType()) {
Chris Lattnere9377122007-08-26 07:08:39 +0000609 OpInfo.RHS = EmitScalarConversion(OpInfo.RHS, RHSTy, ComputeType);
Chris Lattner1f1ded92007-08-24 21:00:35 +0000610 }
611 OpInfo.Ty = ComputeType;
612 OpInfo.E = E;
613
614 // Expand the binary operator.
615 Value *Result = (this->*Func)(OpInfo);
616
617 // Truncate the result back to the LHS type.
Chris Lattnere9377122007-08-26 07:08:39 +0000618 Result = EmitScalarConversion(Result, ComputeType, LHSTy);
Chris Lattner1f1ded92007-08-24 21:00:35 +0000619
620 // Store the result value into the LHS lvalue.
621 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, E->getType());
622
623 return Result;
624}
625
626
Chris Lattner7f02f722007-08-24 05:35:26 +0000627Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
628 if (Ops.LHS->getType()->isFloatingPoint())
629 return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
Chris Lattner1f1ded92007-08-24 21:00:35 +0000630 else if (Ops.Ty->isUnsignedIntegerType())
Chris Lattner7f02f722007-08-24 05:35:26 +0000631 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
632 else
633 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
634}
635
636Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
637 // Rem in C can't be a floating point type: C99 6.5.5p2.
Chris Lattner1f1ded92007-08-24 21:00:35 +0000638 if (Ops.Ty->isUnsignedIntegerType())
Chris Lattner7f02f722007-08-24 05:35:26 +0000639 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
640 else
641 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
642}
643
644
645Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
Chris Lattner1f1ded92007-08-24 21:00:35 +0000646 if (!Ops.Ty->isPointerType())
Chris Lattner7f02f722007-08-24 05:35:26 +0000647 return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
Chris Lattner1f1ded92007-08-24 21:00:35 +0000648
649 // FIXME: What about a pointer to a VLA?
Chris Lattner7f02f722007-08-24 05:35:26 +0000650 if (isa<llvm::PointerType>(Ops.LHS->getType())) // pointer + int
651 return Builder.CreateGEP(Ops.LHS, Ops.RHS, "add.ptr");
652 // int + pointer
653 return Builder.CreateGEP(Ops.RHS, Ops.LHS, "add.ptr");
654}
655
656Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
657 if (!isa<llvm::PointerType>(Ops.LHS->getType()))
658 return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
659
Chris Lattner1f1ded92007-08-24 21:00:35 +0000660 // pointer - int
661 assert(!isa<llvm::PointerType>(Ops.RHS->getType()) &&
662 "ptr-ptr shouldn't get here");
663 // FIXME: The pointer could point to a VLA.
664 Value *NegatedRHS = Builder.CreateNeg(Ops.RHS, "sub.ptr.neg");
665 return Builder.CreateGEP(Ops.LHS, NegatedRHS, "sub.ptr");
666}
667
668Value *ScalarExprEmitter::VisitBinSub(const BinaryOperator *E) {
669 // "X - Y" is different from "X -= Y" in one case: when Y is a pointer. In
670 // the compound assignment case it is invalid, so just handle it here.
671 if (!E->getRHS()->getType()->isPointerType())
672 return EmitSub(EmitBinOps(E));
Chris Lattner7f02f722007-08-24 05:35:26 +0000673
674 // pointer - pointer
Chris Lattner1f1ded92007-08-24 21:00:35 +0000675 Value *LHS = Visit(E->getLHS());
676 Value *RHS = Visit(E->getRHS());
677
678 const PointerType *LHSPtrType = E->getLHS()->getType()->getAsPointerType();
679 assert(LHSPtrType == E->getRHS()->getType()->getAsPointerType() &&
680 "Can't subtract different pointer types");
681
Chris Lattner7f02f722007-08-24 05:35:26 +0000682 QualType LHSElementType = LHSPtrType->getPointeeType();
Chris Lattner7f02f722007-08-24 05:35:26 +0000683 uint64_t ElementSize = CGF.getContext().getTypeSize(LHSElementType,
684 SourceLocation()) / 8;
Chris Lattner1f1ded92007-08-24 21:00:35 +0000685
686 const llvm::Type *ResultType = ConvertType(E->getType());
687 LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
688 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
689 Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
Chris Lattner7f02f722007-08-24 05:35:26 +0000690
691 // HACK: LLVM doesn't have an divide instruction that 'knows' there is no
692 // remainder. As such, we handle common power-of-two cases here to generate
693 // better code.
694 if (llvm::isPowerOf2_64(ElementSize)) {
695 Value *ShAmt =
696 llvm::ConstantInt::get(ResultType, llvm::Log2_64(ElementSize));
697 return Builder.CreateAShr(BytesBetween, ShAmt, "sub.ptr.shr");
698 }
Chris Lattner1f1ded92007-08-24 21:00:35 +0000699
Chris Lattner7f02f722007-08-24 05:35:26 +0000700 // Otherwise, do a full sdiv.
701 Value *BytesPerElt = llvm::ConstantInt::get(ResultType, ElementSize);
702 return Builder.CreateSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
703}
704
Chris Lattner1f1ded92007-08-24 21:00:35 +0000705
Chris Lattner7f02f722007-08-24 05:35:26 +0000706Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
707 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
708 // RHS to the same size as the LHS.
709 Value *RHS = Ops.RHS;
710 if (Ops.LHS->getType() != RHS->getType())
711 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
712
713 return Builder.CreateShl(Ops.LHS, RHS, "shl");
714}
715
716Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
717 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
718 // RHS to the same size as the LHS.
719 Value *RHS = Ops.RHS;
720 if (Ops.LHS->getType() != RHS->getType())
721 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
722
Chris Lattner1f1ded92007-08-24 21:00:35 +0000723 if (Ops.Ty->isUnsignedIntegerType())
Chris Lattner7f02f722007-08-24 05:35:26 +0000724 return Builder.CreateLShr(Ops.LHS, RHS, "shr");
725 return Builder.CreateAShr(Ops.LHS, RHS, "shr");
726}
727
728Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
729 unsigned SICmpOpc, unsigned FCmpOpc) {
Chris Lattner4f1a7b32007-08-26 16:34:22 +0000730 Value *Result;
Chris Lattner7f02f722007-08-24 05:35:26 +0000731 QualType LHSTy = E->getLHS()->getType();
732 if (!LHSTy->isComplexType()) {
733 Value *LHS = Visit(E->getLHS());
734 Value *RHS = Visit(E->getRHS());
735
736 if (LHS->getType()->isFloatingPoint()) {
737 Result = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
738 LHS, RHS, "cmp");
739 } else if (LHSTy->isUnsignedIntegerType()) {
740 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
741 LHS, RHS, "cmp");
742 } else {
743 // Signed integers and pointers.
744 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
745 LHS, RHS, "cmp");
746 }
747 } else {
748 // Complex Comparison: can only be an equality comparison.
749 CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
750 CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
751
752 QualType CETy =
753 cast<ComplexType>(LHSTy.getCanonicalType())->getElementType();
754
Chris Lattner4f1a7b32007-08-26 16:34:22 +0000755 Value *ResultR, *ResultI;
Chris Lattner7f02f722007-08-24 05:35:26 +0000756 if (CETy->isRealFloatingType()) {
757 ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
758 LHS.first, RHS.first, "cmp.r");
759 ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
760 LHS.second, RHS.second, "cmp.i");
761 } else {
762 // Complex comparisons can only be equality comparisons. As such, signed
763 // and unsigned opcodes are the same.
764 ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
765 LHS.first, RHS.first, "cmp.r");
766 ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
767 LHS.second, RHS.second, "cmp.i");
768 }
769
770 if (E->getOpcode() == BinaryOperator::EQ) {
771 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
772 } else {
773 assert(E->getOpcode() == BinaryOperator::NE &&
774 "Complex comparison other than == or != ?");
775 Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
776 }
777 }
778
779 // ZExt result to int.
780 return Builder.CreateZExt(Result, CGF.LLVMIntTy, "cmp.ext");
781}
782
783Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
784 LValue LHS = EmitLValue(E->getLHS());
785 Value *RHS = Visit(E->getRHS());
786
787 // Store the value into the LHS.
788 // FIXME: Volatility!
789 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
790
791 // Return the RHS.
792 return RHS;
793}
794
795Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
796 Value *LHSCond = CGF.EvaluateExprAsBool(E->getLHS());
797
798 llvm::BasicBlock *ContBlock = new llvm::BasicBlock("land_cont");
799 llvm::BasicBlock *RHSBlock = new llvm::BasicBlock("land_rhs");
800
801 llvm::BasicBlock *OrigBlock = Builder.GetInsertBlock();
802 Builder.CreateCondBr(LHSCond, RHSBlock, ContBlock);
803
804 CGF.EmitBlock(RHSBlock);
805 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
806
807 // Reaquire the RHS block, as there may be subblocks inserted.
808 RHSBlock = Builder.GetInsertBlock();
809 CGF.EmitBlock(ContBlock);
810
811 // Create a PHI node. If we just evaluted the LHS condition, the result is
812 // false. If we evaluated both, the result is the RHS condition.
813 llvm::PHINode *PN = Builder.CreatePHI(llvm::Type::Int1Ty, "land");
814 PN->reserveOperandSpace(2);
815 PN->addIncoming(llvm::ConstantInt::getFalse(), OrigBlock);
816 PN->addIncoming(RHSCond, RHSBlock);
817
818 // ZExt result to int.
819 return Builder.CreateZExt(PN, CGF.LLVMIntTy, "land.ext");
820}
821
822Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
823 Value *LHSCond = CGF.EvaluateExprAsBool(E->getLHS());
824
825 llvm::BasicBlock *ContBlock = new llvm::BasicBlock("lor_cont");
826 llvm::BasicBlock *RHSBlock = new llvm::BasicBlock("lor_rhs");
827
828 llvm::BasicBlock *OrigBlock = Builder.GetInsertBlock();
829 Builder.CreateCondBr(LHSCond, ContBlock, RHSBlock);
830
831 CGF.EmitBlock(RHSBlock);
832 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
833
834 // Reaquire the RHS block, as there may be subblocks inserted.
835 RHSBlock = Builder.GetInsertBlock();
836 CGF.EmitBlock(ContBlock);
837
838 // Create a PHI node. If we just evaluted the LHS condition, the result is
839 // true. If we evaluated both, the result is the RHS condition.
840 llvm::PHINode *PN = Builder.CreatePHI(llvm::Type::Int1Ty, "lor");
841 PN->reserveOperandSpace(2);
842 PN->addIncoming(llvm::ConstantInt::getTrue(), OrigBlock);
843 PN->addIncoming(RHSCond, RHSBlock);
844
845 // ZExt result to int.
846 return Builder.CreateZExt(PN, CGF.LLVMIntTy, "lor.ext");
847}
848
849Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
850 CGF.EmitStmt(E->getLHS());
851 return Visit(E->getRHS());
852}
853
854//===----------------------------------------------------------------------===//
855// Other Operators
856//===----------------------------------------------------------------------===//
857
858Value *ScalarExprEmitter::
859VisitConditionalOperator(const ConditionalOperator *E) {
860 llvm::BasicBlock *LHSBlock = new llvm::BasicBlock("cond.?");
861 llvm::BasicBlock *RHSBlock = new llvm::BasicBlock("cond.:");
862 llvm::BasicBlock *ContBlock = new llvm::BasicBlock("cond.cont");
863
864 Value *Cond = CGF.EvaluateExprAsBool(E->getCond());
865 Builder.CreateCondBr(Cond, LHSBlock, RHSBlock);
866
867 CGF.EmitBlock(LHSBlock);
868
869 // Handle the GNU extension for missing LHS.
870 Value *LHS = E->getLHS() ? Visit(E->getLHS()) : Cond;
871 Builder.CreateBr(ContBlock);
872 LHSBlock = Builder.GetInsertBlock();
873
874 CGF.EmitBlock(RHSBlock);
875
876 Value *RHS = Visit(E->getRHS());
877 Builder.CreateBr(ContBlock);
878 RHSBlock = Builder.GetInsertBlock();
879
880 CGF.EmitBlock(ContBlock);
881
882 // Create a PHI node for the real part.
883 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
884 PN->reserveOperandSpace(2);
885 PN->addIncoming(LHS, LHSBlock);
886 PN->addIncoming(RHS, RHSBlock);
887 return PN;
888}
889
890Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
891 llvm::APSInt CondVal(32);
892 bool IsConst = E->getCond()->isIntegerConstantExpr(CondVal, CGF.getContext());
893 assert(IsConst && "Condition of choose expr must be i-c-e"); IsConst=IsConst;
894
895 // Emit the LHS or RHS as appropriate.
896 return Visit(CondVal != 0 ? E->getLHS() : E->getRHS());
897}
898
Anders Carlsson7c50aca2007-10-15 20:28:48 +0000899Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE)
900{
901 llvm::Value *ArgValue = EmitLValue(VE->getSubExpr()).getAddress();
902
903 llvm::Value *V = Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
904 return V;
905}
906
Chris Lattner7f02f722007-08-24 05:35:26 +0000907//===----------------------------------------------------------------------===//
908// Entry Point into this File
909//===----------------------------------------------------------------------===//
910
911/// EmitComplexExpr - Emit the computation of the specified expression of
912/// complex type, ignoring the result.
913Value *CodeGenFunction::EmitScalarExpr(const Expr *E) {
914 assert(E && !hasAggregateLLVMType(E->getType()) &&
915 "Invalid scalar expression to emit");
916
917 return ScalarExprEmitter(*this).Visit(const_cast<Expr*>(E));
918}
Chris Lattner3707b252007-08-26 06:48:56 +0000919
920/// EmitScalarConversion - Emit a conversion from the specified type to the
921/// specified destination type, both of which are LLVM scalar types.
Chris Lattner4f1a7b32007-08-26 16:34:22 +0000922Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
923 QualType DstTy) {
Chris Lattner3707b252007-08-26 06:48:56 +0000924 assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
925 "Invalid scalar expression to emit");
926 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
927}
Chris Lattner4f1a7b32007-08-26 16:34:22 +0000928
929/// EmitComplexToScalarConversion - Emit a conversion from the specified
930/// complex type to the specified destination type, where the destination
931/// type is an LLVM scalar type.
932Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
933 QualType SrcTy,
934 QualType DstTy) {
935 assert(SrcTy->isComplexType() && !hasAggregateLLVMType(DstTy) &&
936 "Invalid complex -> scalar conversion");
937 return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
938 DstTy);
939}