blob: 2f072f12ab0b4c2f676d545598bc9d5a2f672da6 [file] [log] [blame]
Chris Lattner4b009652007-07-25 00:24:17 +00001//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Decl.h"
17#include "clang/AST/Expr.h"
18#include "clang/Lex/Preprocessor.h"
19#include "clang/Lex/LiteralSupport.h"
20#include "clang/Basic/SourceManager.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/LangOptions.h"
23#include "clang/Basic/TargetInfo.h"
24#include "llvm/ADT/SmallString.h"
25using namespace clang;
26
27/// ParseStringLiteral - The specified tokens were lexed as pasted string
28/// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string
29/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
30/// multiple tokens. However, the common case is that StringToks points to one
31/// string.
32///
33Action::ExprResult
34Sema::ParseStringLiteral(const Token *StringToks, unsigned NumStringToks) {
35 assert(NumStringToks && "Must have at least one string!");
36
37 StringLiteralParser Literal(StringToks, NumStringToks, PP, Context.Target);
38 if (Literal.hadError)
39 return ExprResult(true);
40
41 llvm::SmallVector<SourceLocation, 4> StringTokLocs;
42 for (unsigned i = 0; i != NumStringToks; ++i)
43 StringTokLocs.push_back(StringToks[i].getLocation());
44
45 // FIXME: handle wchar_t
46 QualType t = Context.getPointerType(Context.CharTy);
47
48 // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
49 return new StringLiteral(Literal.GetString(), Literal.GetStringLength(),
50 Literal.AnyWide, t, StringToks[0].getLocation(),
51 StringToks[NumStringToks-1].getLocation());
52}
53
54
55/// ParseIdentifierExpr - The parser read an identifier in expression context,
56/// validate it per-C99 6.5.1. HasTrailingLParen indicates whether this
57/// identifier is used in an function call context.
58Sema::ExprResult Sema::ParseIdentifierExpr(Scope *S, SourceLocation Loc,
59 IdentifierInfo &II,
60 bool HasTrailingLParen) {
61 // Could be enum-constant or decl.
62 Decl *D = LookupScopedDecl(&II, Decl::IDNS_Ordinary, Loc, S);
63 if (D == 0) {
64 // Otherwise, this could be an implicitly declared function reference (legal
65 // in C90, extension in C99).
66 if (HasTrailingLParen &&
67 // Not in C++.
68 !getLangOptions().CPlusPlus)
69 D = ImplicitlyDefineFunction(Loc, II, S);
70 else {
71 // If this name wasn't predeclared and if this is not a function call,
72 // diagnose the problem.
73 return Diag(Loc, diag::err_undeclared_var_use, II.getName());
74 }
75 }
76
77 if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
78 return new DeclRefExpr(VD, VD->getType(), Loc);
79 if (isa<TypedefDecl>(D))
80 return Diag(Loc, diag::err_unexpected_typedef, II.getName());
81
82 assert(0 && "Invalid decl");
83 abort();
84}
85
86Sema::ExprResult Sema::ParsePreDefinedExpr(SourceLocation Loc,
87 tok::TokenKind Kind) {
88 PreDefinedExpr::IdentType IT;
89
90 switch (Kind) {
91 default:
92 assert(0 && "Unknown simple primary expr!");
93 case tok::kw___func__: // primary-expression: __func__ [C99 6.4.2.2]
94 IT = PreDefinedExpr::Func;
95 break;
96 case tok::kw___FUNCTION__: // primary-expression: __FUNCTION__ [GNU]
97 IT = PreDefinedExpr::Function;
98 break;
99 case tok::kw___PRETTY_FUNCTION__: // primary-expression: __P..Y_F..N__ [GNU]
100 IT = PreDefinedExpr::PrettyFunction;
101 break;
102 }
103
104 // Pre-defined identifiers are always of type char *.
105 return new PreDefinedExpr(Loc, Context.getPointerType(Context.CharTy), IT);
106}
107
108Sema::ExprResult Sema::ParseCharacterConstant(const Token &Tok) {
109 llvm::SmallString<16> CharBuffer;
110 CharBuffer.resize(Tok.getLength());
111 const char *ThisTokBegin = &CharBuffer[0];
112 unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
113
114 CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
115 Tok.getLocation(), PP);
116 if (Literal.hadError())
117 return ExprResult(true);
118 return new CharacterLiteral(Literal.getValue(), Context.IntTy,
119 Tok.getLocation());
120}
121
122Action::ExprResult Sema::ParseNumericConstant(const Token &Tok) {
123 // fast path for a single digit (which is quite common). A single digit
124 // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
125 if (Tok.getLength() == 1) {
126 const char *t = PP.getSourceManager().getCharacterData(Tok.getLocation());
127
128 unsigned IntSize = Context.getTypeSize(Context.IntTy, Tok.getLocation());
129 return ExprResult(new IntegerLiteral(llvm::APInt(IntSize, *t-'0'),
130 Context.IntTy,
131 Tok.getLocation()));
132 }
133 llvm::SmallString<512> IntegerBuffer;
134 IntegerBuffer.resize(Tok.getLength());
135 const char *ThisTokBegin = &IntegerBuffer[0];
136
137 // Get the spelling of the token, which eliminates trigraphs, etc.
138 unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
139 NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
140 Tok.getLocation(), PP);
141 if (Literal.hadError)
142 return ExprResult(true);
143
144 if (Literal.isIntegerLiteral()) {
145 QualType t;
146
147 // Get the value in the widest-possible width.
148 llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(Tok.getLocation()), 0);
149
150 if (Literal.GetIntegerValue(ResultVal)) {
151 // If this value didn't fit into uintmax_t, warn and force to ull.
152 Diag(Tok.getLocation(), diag::warn_integer_too_large);
153 t = Context.UnsignedLongLongTy;
154 assert(Context.getTypeSize(t, Tok.getLocation()) ==
155 ResultVal.getBitWidth() && "long long is not intmax_t?");
156 } else {
157 // If this value fits into a ULL, try to figure out what else it fits into
158 // according to the rules of C99 6.4.4.1p5.
159
160 // Octal, Hexadecimal, and integers with a U suffix are allowed to
161 // be an unsigned int.
162 bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
163
164 // Check from smallest to largest, picking the smallest type we can.
165 if (!Literal.isLong) { // Are int/unsigned possibilities?
166 unsigned IntSize = Context.getTypeSize(Context.IntTy,Tok.getLocation());
167 // Does it fit in a unsigned int?
168 if (ResultVal.isIntN(IntSize)) {
169 // Does it fit in a signed int?
170 if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
171 t = Context.IntTy;
172 else if (AllowUnsigned)
173 t = Context.UnsignedIntTy;
174 }
175
176 if (!t.isNull())
177 ResultVal.trunc(IntSize);
178 }
179
180 // Are long/unsigned long possibilities?
181 if (t.isNull() && !Literal.isLongLong) {
182 unsigned LongSize = Context.getTypeSize(Context.LongTy,
183 Tok.getLocation());
184
185 // Does it fit in a unsigned long?
186 if (ResultVal.isIntN(LongSize)) {
187 // Does it fit in a signed long?
188 if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
189 t = Context.LongTy;
190 else if (AllowUnsigned)
191 t = Context.UnsignedLongTy;
192 }
193 if (!t.isNull())
194 ResultVal.trunc(LongSize);
195 }
196
197 // Finally, check long long if needed.
198 if (t.isNull()) {
199 unsigned LongLongSize =
200 Context.getTypeSize(Context.LongLongTy, Tok.getLocation());
201
202 // Does it fit in a unsigned long long?
203 if (ResultVal.isIntN(LongLongSize)) {
204 // Does it fit in a signed long long?
205 if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
206 t = Context.LongLongTy;
207 else if (AllowUnsigned)
208 t = Context.UnsignedLongLongTy;
209 }
210 }
211
212 // If we still couldn't decide a type, we probably have something that
213 // does not fit in a signed long long, but has no U suffix.
214 if (t.isNull()) {
215 Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
216 t = Context.UnsignedLongLongTy;
217 }
218 }
219
220 return new IntegerLiteral(ResultVal, t, Tok.getLocation());
221 } else if (Literal.isFloatingLiteral()) {
222 // FIXME: handle float values > 32 (including compute the real type...).
223 return new FloatingLiteral(Literal.GetFloatValue(), Context.FloatTy,
224 Tok.getLocation());
225 }
226 return ExprResult(true);
227}
228
229Action::ExprResult Sema::ParseParenExpr(SourceLocation L, SourceLocation R,
230 ExprTy *Val) {
231 Expr *e = (Expr *)Val;
232 assert((e != 0) && "ParseParenExpr() missing expr");
233 return new ParenExpr(L, R, e);
234}
235
236/// The UsualUnaryConversions() function is *not* called by this routine.
237/// See C99 6.3.2.1p[2-4] for more details.
238QualType Sema::CheckSizeOfAlignOfOperand(QualType exprType,
239 SourceLocation OpLoc, bool isSizeof) {
240 // C99 6.5.3.4p1:
241 if (isa<FunctionType>(exprType) && isSizeof)
242 // alignof(function) is allowed.
243 Diag(OpLoc, diag::ext_sizeof_function_type);
244 else if (exprType->isVoidType())
245 Diag(OpLoc, diag::ext_sizeof_void_type, isSizeof ? "sizeof" : "__alignof");
246 else if (exprType->isIncompleteType()) {
247 Diag(OpLoc, isSizeof ? diag::err_sizeof_incomplete_type :
248 diag::err_alignof_incomplete_type,
249 exprType.getAsString());
250 return QualType(); // error
251 }
252 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
253 return Context.getSizeType();
254}
255
256Action::ExprResult Sema::
257ParseSizeOfAlignOfTypeExpr(SourceLocation OpLoc, bool isSizeof,
258 SourceLocation LPLoc, TypeTy *Ty,
259 SourceLocation RPLoc) {
260 // If error parsing type, ignore.
261 if (Ty == 0) return true;
262
263 // Verify that this is a valid expression.
264 QualType ArgTy = QualType::getFromOpaquePtr(Ty);
265
266 QualType resultType = CheckSizeOfAlignOfOperand(ArgTy, OpLoc, isSizeof);
267
268 if (resultType.isNull())
269 return true;
270 return new SizeOfAlignOfTypeExpr(isSizeof, ArgTy, resultType, OpLoc, RPLoc);
271}
272
273
274Action::ExprResult Sema::ParsePostfixUnaryOp(SourceLocation OpLoc,
275 tok::TokenKind Kind,
276 ExprTy *Input) {
277 UnaryOperator::Opcode Opc;
278 switch (Kind) {
279 default: assert(0 && "Unknown unary op!");
280 case tok::plusplus: Opc = UnaryOperator::PostInc; break;
281 case tok::minusminus: Opc = UnaryOperator::PostDec; break;
282 }
283 QualType result = CheckIncrementDecrementOperand((Expr *)Input, OpLoc);
284 if (result.isNull())
285 return true;
286 return new UnaryOperator((Expr *)Input, Opc, result, OpLoc);
287}
288
289Action::ExprResult Sema::
290ParseArraySubscriptExpr(ExprTy *Base, SourceLocation LLoc,
291 ExprTy *Idx, SourceLocation RLoc) {
292 Expr *LHSExp = static_cast<Expr*>(Base), *RHSExp = static_cast<Expr*>(Idx);
293
294 // Perform default conversions.
295 DefaultFunctionArrayConversion(LHSExp);
296 DefaultFunctionArrayConversion(RHSExp);
297
298 QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
299
300 // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
301 // to the expression *((e1)+(e2)). This means the array "Base" may actually be
302 // in the subscript position. As a result, we need to derive the array base
303 // and index from the expression types.
304 Expr *BaseExpr, *IndexExpr;
305 QualType ResultType;
Chris Lattner7931f4a2007-07-31 16:53:04 +0000306 if (const PointerType *PTy = LHSTy->getAsPointerType()) {
Chris Lattner4b009652007-07-25 00:24:17 +0000307 BaseExpr = LHSExp;
308 IndexExpr = RHSExp;
309 // FIXME: need to deal with const...
310 ResultType = PTy->getPointeeType();
Chris Lattner7931f4a2007-07-31 16:53:04 +0000311 } else if (const PointerType *PTy = RHSTy->getAsPointerType()) {
Chris Lattner4b009652007-07-25 00:24:17 +0000312 // Handle the uncommon case of "123[Ptr]".
313 BaseExpr = RHSExp;
314 IndexExpr = LHSExp;
315 // FIXME: need to deal with const...
316 ResultType = PTy->getPointeeType();
Chris Lattnere35a1042007-07-31 19:29:30 +0000317 } else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
318 BaseExpr = LHSExp; // vectors: V[123]
Chris Lattner4b009652007-07-25 00:24:17 +0000319 IndexExpr = RHSExp;
320 // FIXME: need to deal with const...
321 ResultType = VTy->getElementType();
322 } else {
323 return Diag(LHSExp->getLocStart(), diag::err_typecheck_subscript_value,
324 RHSExp->getSourceRange());
325 }
326 // C99 6.5.2.1p1
327 if (!IndexExpr->getType()->isIntegerType())
328 return Diag(IndexExpr->getLocStart(), diag::err_typecheck_subscript,
329 IndexExpr->getSourceRange());
330
331 // C99 6.5.2.1p1: "shall have type "pointer to *object* type". In practice,
332 // the following check catches trying to index a pointer to a function (e.g.
333 // void (*)(int)). Functions are not objects in C99.
334 if (!ResultType->isObjectType())
335 return Diag(BaseExpr->getLocStart(),
336 diag::err_typecheck_subscript_not_object,
337 BaseExpr->getType().getAsString(), BaseExpr->getSourceRange());
338
339 return new ArraySubscriptExpr(LHSExp, RHSExp, ResultType, RLoc);
340}
341
Steve Naroff1b8a46c2007-07-27 22:15:19 +0000342QualType Sema::
343CheckOCUVectorComponent(QualType baseType, SourceLocation OpLoc,
344 IdentifierInfo &CompName, SourceLocation CompLoc) {
Chris Lattnere35a1042007-07-31 19:29:30 +0000345 const OCUVectorType *vecType = baseType->getAsOCUVectorType();
Steve Naroff1b8a46c2007-07-27 22:15:19 +0000346
347 // The vector accessor can't exceed the number of elements.
348 const char *compStr = CompName.getName();
349 if (strlen(compStr) > vecType->getNumElements()) {
350 Diag(OpLoc, diag::err_ocuvector_component_exceeds_length,
351 baseType.getAsString(), SourceRange(CompLoc));
352 return QualType();
353 }
354 // The component names must come from the same set.
Chris Lattner9096b792007-08-02 22:33:49 +0000355 if (vecType->getPointAccessorIdx(*compStr) != -1) {
356 do
357 compStr++;
358 while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
359 } else if (vecType->getColorAccessorIdx(*compStr) != -1) {
360 do
361 compStr++;
362 while (*compStr && vecType->getColorAccessorIdx(*compStr) != -1);
363 } else if (vecType->getTextureAccessorIdx(*compStr) != -1) {
364 do
365 compStr++;
366 while (*compStr && vecType->getTextureAccessorIdx(*compStr) != -1);
367 }
Steve Naroff1b8a46c2007-07-27 22:15:19 +0000368
369 if (*compStr) {
370 // We didn't get to the end of the string. This means the component names
371 // didn't come from the same set *or* we encountered an illegal name.
372 Diag(OpLoc, diag::err_ocuvector_component_name_illegal,
373 std::string(compStr,compStr+1), SourceRange(CompLoc));
374 return QualType();
375 }
376 // Each component accessor can't exceed the vector type.
377 compStr = CompName.getName();
378 while (*compStr) {
379 if (vecType->isAccessorWithinNumElements(*compStr))
380 compStr++;
381 else
382 break;
383 }
384 if (*compStr) {
385 // We didn't get to the end of the string. This means a component accessor
386 // exceeds the number of elements in the vector.
387 Diag(OpLoc, diag::err_ocuvector_component_exceeds_length,
388 baseType.getAsString(), SourceRange(CompLoc));
389 return QualType();
390 }
391 // The component accessor looks fine - now we need to compute the actual type.
392 // The vector type is implied by the component accessor. For example,
393 // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
394 unsigned CompSize = strlen(CompName.getName());
395 if (CompSize == 1)
396 return vecType->getElementType();
Steve Naroff82113e32007-07-29 16:33:31 +0000397
398 QualType VT = Context.getOCUVectorType(vecType->getElementType(), CompSize);
399 // Now look up the TypeDefDecl from the vector type. Without this,
400 // diagostics look bad. We want OCU vector types to appear built-in.
401 for (unsigned i = 0, e = OCUVectorDecls.size(); i != e; ++i) {
402 if (OCUVectorDecls[i]->getUnderlyingType() == VT)
403 return Context.getTypedefType(OCUVectorDecls[i]);
404 }
405 return VT; // should never get here (a typedef type should always be found).
Steve Naroff1b8a46c2007-07-27 22:15:19 +0000406}
407
Chris Lattner4b009652007-07-25 00:24:17 +0000408Action::ExprResult Sema::
409ParseMemberReferenceExpr(ExprTy *Base, SourceLocation OpLoc,
410 tok::TokenKind OpKind, SourceLocation MemberLoc,
411 IdentifierInfo &Member) {
Steve Naroff2cb66382007-07-26 03:11:44 +0000412 Expr *BaseExpr = static_cast<Expr *>(Base);
413 assert(BaseExpr && "no record expression");
Chris Lattner4b009652007-07-25 00:24:17 +0000414
Steve Naroff2cb66382007-07-26 03:11:44 +0000415 QualType BaseType = BaseExpr->getType();
416 assert(!BaseType.isNull() && "no type for member expression");
Chris Lattner4b009652007-07-25 00:24:17 +0000417
Chris Lattner4b009652007-07-25 00:24:17 +0000418 if (OpKind == tok::arrow) {
Chris Lattner7931f4a2007-07-31 16:53:04 +0000419 if (const PointerType *PT = BaseType->getAsPointerType())
Steve Naroff2cb66382007-07-26 03:11:44 +0000420 BaseType = PT->getPointeeType();
421 else
422 return Diag(OpLoc, diag::err_typecheck_member_reference_arrow,
423 SourceRange(MemberLoc));
Chris Lattner4b009652007-07-25 00:24:17 +0000424 }
Steve Naroff1b8a46c2007-07-27 22:15:19 +0000425 // The base type is either a record or an OCUVectorType.
Chris Lattnere35a1042007-07-31 19:29:30 +0000426 if (const RecordType *RTy = BaseType->getAsRecordType()) {
Steve Naroff2cb66382007-07-26 03:11:44 +0000427 RecordDecl *RDecl = RTy->getDecl();
428 if (RTy->isIncompleteType())
429 return Diag(OpLoc, diag::err_typecheck_incomplete_tag, RDecl->getName(),
430 BaseExpr->getSourceRange());
431 // The record definition is complete, now make sure the member is valid.
Steve Naroff1b8a46c2007-07-27 22:15:19 +0000432 FieldDecl *MemberDecl = RDecl->getMember(&Member);
433 if (!MemberDecl)
Steve Naroff2cb66382007-07-26 03:11:44 +0000434 return Diag(OpLoc, diag::err_typecheck_no_member, Member.getName(),
435 SourceRange(MemberLoc));
Steve Naroff1b8a46c2007-07-27 22:15:19 +0000436 return new MemberExpr(BaseExpr, OpKind==tok::arrow, MemberDecl, MemberLoc);
437 } else if (BaseType->isOCUVectorType() && OpKind == tok::period) {
438 QualType ret = CheckOCUVectorComponent(BaseType, OpLoc, Member, MemberLoc);
439 if (ret.isNull())
440 return true;
Chris Lattnera0d03a72007-08-03 17:31:20 +0000441 return new OCUVectorElementExpr(ret, BaseExpr, Member, MemberLoc);
Steve Naroff2cb66382007-07-26 03:11:44 +0000442 } else
443 return Diag(OpLoc, diag::err_typecheck_member_reference_structUnion,
444 SourceRange(MemberLoc));
Chris Lattner4b009652007-07-25 00:24:17 +0000445}
446
447/// ParseCallExpr - Handle a call to Fn with the specified array of arguments.
448/// This provides the location of the left/right parens and a list of comma
449/// locations.
450Action::ExprResult Sema::
451ParseCallExpr(ExprTy *fn, SourceLocation LParenLoc,
452 ExprTy **args, unsigned NumArgsInCall,
453 SourceLocation *CommaLocs, SourceLocation RParenLoc) {
454 Expr *Fn = static_cast<Expr *>(fn);
455 Expr **Args = reinterpret_cast<Expr**>(args);
456 assert(Fn && "no function call expression");
457
458 UsualUnaryConversions(Fn);
459 QualType funcType = Fn->getType();
460
461 // C99 6.5.2.2p1 - "The expression that denotes the called function shall have
462 // type pointer to function".
Chris Lattner71225142007-07-31 21:27:01 +0000463 const PointerType *PT = funcType->getAsPointerType();
Chris Lattner4b009652007-07-25 00:24:17 +0000464 if (PT == 0)
465 return Diag(Fn->getLocStart(), diag::err_typecheck_call_not_function,
466 SourceRange(Fn->getLocStart(), RParenLoc));
467
Chris Lattner71225142007-07-31 21:27:01 +0000468 const FunctionType *funcT = PT->getPointeeType()->getAsFunctionType();
Chris Lattner4b009652007-07-25 00:24:17 +0000469 if (funcT == 0)
470 return Diag(Fn->getLocStart(), diag::err_typecheck_call_not_function,
471 SourceRange(Fn->getLocStart(), RParenLoc));
472
473 // If a prototype isn't declared, the parser implicitly defines a func decl
474 QualType resultType = funcT->getResultType();
475
476 if (const FunctionTypeProto *proto = dyn_cast<FunctionTypeProto>(funcT)) {
477 // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
478 // assignment, to the types of the corresponding parameter, ...
479
480 unsigned NumArgsInProto = proto->getNumArgs();
481 unsigned NumArgsToCheck = NumArgsInCall;
482
483 if (NumArgsInCall < NumArgsInProto)
484 Diag(RParenLoc, diag::err_typecheck_call_too_few_args,
485 Fn->getSourceRange());
486 else if (NumArgsInCall > NumArgsInProto) {
487 if (!proto->isVariadic()) {
488 Diag(Args[NumArgsInProto]->getLocStart(),
489 diag::err_typecheck_call_too_many_args, Fn->getSourceRange(),
490 SourceRange(Args[NumArgsInProto]->getLocStart(),
491 Args[NumArgsInCall-1]->getLocEnd()));
492 }
493 NumArgsToCheck = NumArgsInProto;
494 }
495 // Continue to check argument types (even if we have too few/many args).
496 for (unsigned i = 0; i < NumArgsToCheck; i++) {
497 Expr *argExpr = Args[i];
498 assert(argExpr && "ParseCallExpr(): missing argument expression");
499
500 QualType lhsType = proto->getArgType(i);
501 QualType rhsType = argExpr->getType();
502
Steve Naroff75644062007-07-25 20:45:33 +0000503 // If necessary, apply function/array conversion. C99 6.7.5.3p[7,8].
Chris Lattnere35a1042007-07-31 19:29:30 +0000504 if (const ArrayType *ary = lhsType->getAsArrayType())
Chris Lattner4b009652007-07-25 00:24:17 +0000505 lhsType = Context.getPointerType(ary->getElementType());
Steve Naroff75644062007-07-25 20:45:33 +0000506 else if (lhsType->isFunctionType())
Chris Lattner4b009652007-07-25 00:24:17 +0000507 lhsType = Context.getPointerType(lhsType);
508
509 AssignmentCheckResult result = CheckSingleAssignmentConstraints(lhsType,
510 argExpr);
511 SourceLocation l = argExpr->getLocStart();
512
513 // decode the result (notice that AST's are still created for extensions).
514 switch (result) {
515 case Compatible:
516 break;
517 case PointerFromInt:
518 // check for null pointer constant (C99 6.3.2.3p3)
519 if (!argExpr->isNullPointerConstant(Context)) {
520 Diag(l, diag::ext_typecheck_passing_pointer_int,
521 lhsType.getAsString(), rhsType.getAsString(),
522 Fn->getSourceRange(), argExpr->getSourceRange());
523 }
524 break;
525 case IntFromPointer:
526 Diag(l, diag::ext_typecheck_passing_pointer_int,
527 lhsType.getAsString(), rhsType.getAsString(),
528 Fn->getSourceRange(), argExpr->getSourceRange());
529 break;
530 case IncompatiblePointer:
531 Diag(l, diag::ext_typecheck_passing_incompatible_pointer,
532 rhsType.getAsString(), lhsType.getAsString(),
533 Fn->getSourceRange(), argExpr->getSourceRange());
534 break;
535 case CompatiblePointerDiscardsQualifiers:
536 Diag(l, diag::ext_typecheck_passing_discards_qualifiers,
537 rhsType.getAsString(), lhsType.getAsString(),
538 Fn->getSourceRange(), argExpr->getSourceRange());
539 break;
540 case Incompatible:
541 return Diag(l, diag::err_typecheck_passing_incompatible,
542 rhsType.getAsString(), lhsType.getAsString(),
543 Fn->getSourceRange(), argExpr->getSourceRange());
544 }
545 }
546 // Even if the types checked, bail if we had the wrong number of arguments.
547 if (NumArgsInCall != NumArgsInProto && !proto->isVariadic())
548 return true;
549 }
550 return new CallExpr(Fn, Args, NumArgsInCall, resultType, RParenLoc);
551}
552
553Action::ExprResult Sema::
554ParseCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
555 SourceLocation RParenLoc, ExprTy *InitExpr) {
556 assert((Ty != 0) && "ParseCompoundLiteral(): missing type");
557 QualType literalType = QualType::getFromOpaquePtr(Ty);
558 // FIXME: put back this assert when initializers are worked out.
559 //assert((InitExpr != 0) && "ParseCompoundLiteral(): missing expression");
560 Expr *literalExpr = static_cast<Expr*>(InitExpr);
561
562 // FIXME: add semantic analysis (C99 6.5.2.5).
563 return new CompoundLiteralExpr(literalType, literalExpr);
564}
565
566Action::ExprResult Sema::
567ParseInitList(SourceLocation LParenLoc, ExprTy **InitList, unsigned NumInit,
568 SourceLocation RParenLoc) {
569 // FIXME: add semantic analysis (C99 6.7.8). This involves
570 // knowledge of the object being intialized. As a result, the code for
571 // doing the semantic analysis will likely be located elsewhere (i.e. in
572 // consumers of InitListExpr (e.g. ParseDeclarator, ParseCompoundLiteral).
573 return false; // FIXME instantiate an InitListExpr.
574}
575
576Action::ExprResult Sema::
577ParseCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
578 SourceLocation RParenLoc, ExprTy *Op) {
579 assert((Ty != 0) && (Op != 0) && "ParseCastExpr(): missing type or expr");
580
581 Expr *castExpr = static_cast<Expr*>(Op);
582 QualType castType = QualType::getFromOpaquePtr(Ty);
583
584 // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
585 // type needs to be scalar.
586 if (!castType->isScalarType() && !castType->isVoidType()) {
587 return Diag(LParenLoc, diag::err_typecheck_cond_expect_scalar,
588 castType.getAsString(), SourceRange(LParenLoc, RParenLoc));
589 }
590 if (!castExpr->getType()->isScalarType()) {
591 return Diag(castExpr->getLocStart(),
592 diag::err_typecheck_expect_scalar_operand,
593 castExpr->getType().getAsString(), castExpr->getSourceRange());
594 }
595 return new CastExpr(castType, castExpr, LParenLoc);
596}
597
598inline QualType Sema::CheckConditionalOperands( // C99 6.5.15
599 Expr *&cond, Expr *&lex, Expr *&rex, SourceLocation questionLoc) {
600 UsualUnaryConversions(cond);
601 UsualUnaryConversions(lex);
602 UsualUnaryConversions(rex);
603 QualType condT = cond->getType();
604 QualType lexT = lex->getType();
605 QualType rexT = rex->getType();
606
607 // first, check the condition.
608 if (!condT->isScalarType()) { // C99 6.5.15p2
609 Diag(cond->getLocStart(), diag::err_typecheck_cond_expect_scalar,
610 condT.getAsString());
611 return QualType();
612 }
613 // now check the two expressions.
614 if (lexT->isArithmeticType() && rexT->isArithmeticType()) { // C99 6.5.15p3,5
615 UsualArithmeticConversions(lex, rex);
616 return lex->getType();
617 }
Chris Lattner71225142007-07-31 21:27:01 +0000618 if (const RecordType *LHSRT = lexT->getAsRecordType()) { // C99 6.5.15p3
619 if (const RecordType *RHSRT = rexT->getAsRecordType()) {
620
621 if (LHSRT->getDecl()->getIdentifier() ==RHSRT->getDecl()->getIdentifier())
622 return lexT;
623
Chris Lattner4b009652007-07-25 00:24:17 +0000624 Diag(questionLoc, diag::err_typecheck_cond_incompatible_operands,
625 lexT.getAsString(), rexT.getAsString(),
626 lex->getSourceRange(), rex->getSourceRange());
627 return QualType();
628 }
629 }
630 // C99 6.5.15p3
631 if (lexT->isPointerType() && rex->isNullPointerConstant(Context))
632 return lexT;
633 if (rexT->isPointerType() && lex->isNullPointerConstant(Context))
634 return rexT;
635
Chris Lattner71225142007-07-31 21:27:01 +0000636 if (const PointerType *LHSPT = lexT->getAsPointerType()) { // C99 6.5.15p3,6
637 if (const PointerType *RHSPT = rexT->getAsPointerType()) {
638 // get the "pointed to" types
639 QualType lhptee = LHSPT->getPointeeType();
640 QualType rhptee = RHSPT->getPointeeType();
Chris Lattner4b009652007-07-25 00:24:17 +0000641
Chris Lattner71225142007-07-31 21:27:01 +0000642 // ignore qualifiers on void (C99 6.5.15p3, clause 6)
643 if (lhptee->isVoidType() &&
644 (rhptee->isObjectType() || rhptee->isIncompleteType()))
645 return lexT;
646 if (rhptee->isVoidType() &&
647 (lhptee->isObjectType() || lhptee->isIncompleteType()))
648 return rexT;
Chris Lattner4b009652007-07-25 00:24:17 +0000649
Chris Lattner71225142007-07-31 21:27:01 +0000650 if (!Type::typesAreCompatible(lhptee.getUnqualifiedType(),
651 rhptee.getUnqualifiedType())) {
652 Diag(questionLoc, diag::ext_typecheck_cond_incompatible_pointers,
653 lexT.getAsString(), rexT.getAsString(),
654 lex->getSourceRange(), rex->getSourceRange());
655 return lexT; // FIXME: this is an _ext - is this return o.k?
656 }
657 // The pointer types are compatible.
658 // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
659 // differently qualified versions of compatible types, the result type is a
660 // pointer to an appropriately qualified version of the *composite* type.
661 return lexT; // FIXME: Need to return the composite type.
Chris Lattner4b009652007-07-25 00:24:17 +0000662 }
Chris Lattner4b009652007-07-25 00:24:17 +0000663 }
Chris Lattner71225142007-07-31 21:27:01 +0000664
Chris Lattner4b009652007-07-25 00:24:17 +0000665 if (lexT->isVoidType() && rexT->isVoidType()) // C99 6.5.15p3
666 return lexT;
667
668 Diag(questionLoc, diag::err_typecheck_cond_incompatible_operands,
669 lexT.getAsString(), rexT.getAsString(),
670 lex->getSourceRange(), rex->getSourceRange());
671 return QualType();
672}
673
674/// ParseConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
675/// in the case of a the GNU conditional expr extension.
676Action::ExprResult Sema::ParseConditionalOp(SourceLocation QuestionLoc,
677 SourceLocation ColonLoc,
678 ExprTy *Cond, ExprTy *LHS,
679 ExprTy *RHS) {
680 Expr *CondExpr = (Expr *) Cond;
681 Expr *LHSExpr = (Expr *) LHS, *RHSExpr = (Expr *) RHS;
682 QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
683 RHSExpr, QuestionLoc);
684 if (result.isNull())
685 return true;
686 return new ConditionalOperator(CondExpr, LHSExpr, RHSExpr, result);
687}
688
689// promoteExprToType - a helper function to ensure we create exactly one
690// ImplicitCastExpr. As a convenience (to the caller), we return the type.
691static void promoteExprToType(Expr *&expr, QualType type) {
692 if (ImplicitCastExpr *impCast = dyn_cast<ImplicitCastExpr>(expr))
693 impCast->setType(type);
694 else
695 expr = new ImplicitCastExpr(type, expr);
696 return;
697}
698
699/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
700void Sema::DefaultFunctionArrayConversion(Expr *&e) {
701 QualType t = e->getType();
702 assert(!t.isNull() && "DefaultFunctionArrayConversion - missing type");
703
Chris Lattnerf0c4a0a2007-07-31 16:56:34 +0000704 if (const ReferenceType *ref = t->getAsReferenceType()) {
Chris Lattner4b009652007-07-25 00:24:17 +0000705 promoteExprToType(e, ref->getReferenceeType()); // C++ [expr]
706 t = e->getType();
707 }
708 if (t->isFunctionType())
709 promoteExprToType(e, Context.getPointerType(t));
Chris Lattnere35a1042007-07-31 19:29:30 +0000710 else if (const ArrayType *ary = t->getAsArrayType())
Chris Lattner4b009652007-07-25 00:24:17 +0000711 promoteExprToType(e, Context.getPointerType(ary->getElementType()));
712}
713
714/// UsualUnaryConversion - Performs various conversions that are common to most
715/// operators (C99 6.3). The conversions of array and function types are
716/// sometimes surpressed. For example, the array->pointer conversion doesn't
717/// apply if the array is an argument to the sizeof or address (&) operators.
718/// In these instances, this routine should *not* be called.
719void Sema::UsualUnaryConversions(Expr *&expr) {
720 QualType t = expr->getType();
721 assert(!t.isNull() && "UsualUnaryConversions - missing type");
722
Chris Lattnerf0c4a0a2007-07-31 16:56:34 +0000723 if (const ReferenceType *ref = t->getAsReferenceType()) {
Chris Lattner4b009652007-07-25 00:24:17 +0000724 promoteExprToType(expr, ref->getReferenceeType()); // C++ [expr]
725 t = expr->getType();
726 }
727 if (t->isPromotableIntegerType()) // C99 6.3.1.1p2
728 promoteExprToType(expr, Context.IntTy);
729 else
730 DefaultFunctionArrayConversion(expr);
731}
732
733/// UsualArithmeticConversions - Performs various conversions that are common to
734/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
735/// routine returns the first non-arithmetic type found. The client is
736/// responsible for emitting appropriate error diagnostics.
737void Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr) {
738 UsualUnaryConversions(lhsExpr);
739 UsualUnaryConversions(rhsExpr);
740
741 QualType lhs = lhsExpr->getType();
742 QualType rhs = rhsExpr->getType();
743
744 // If both types are identical, no conversion is needed.
745 if (lhs == rhs)
746 return;
747
748 // If either side is a non-arithmetic type (e.g. a pointer), we are done.
749 // The caller can deal with this (e.g. pointer + int).
750 if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
751 return;
752
753 // At this point, we have two different arithmetic types.
754
755 // Handle complex types first (C99 6.3.1.8p1).
756 if (lhs->isComplexType() || rhs->isComplexType()) {
757 // if we have an integer operand, the result is the complex type.
758 if (rhs->isIntegerType()) { // convert the rhs to the lhs complex type.
759 promoteExprToType(rhsExpr, lhs);
760 return;
761 }
762 if (lhs->isIntegerType()) { // convert the lhs to the rhs complex type.
763 promoteExprToType(lhsExpr, rhs);
764 return;
765 }
766 // Two complex types. Convert the smaller operand to the bigger result.
767 if (Context.maxComplexType(lhs, rhs) == lhs) { // convert the rhs
768 promoteExprToType(rhsExpr, lhs);
769 return;
770 }
771 promoteExprToType(lhsExpr, rhs); // convert the lhs
772 return;
773 }
774 // Now handle "real" floating types (i.e. float, double, long double).
775 if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
776 // if we have an integer operand, the result is the real floating type.
777 if (rhs->isIntegerType()) { // convert rhs to the lhs floating point type.
778 promoteExprToType(rhsExpr, lhs);
779 return;
780 }
781 if (lhs->isIntegerType()) { // convert lhs to the rhs floating point type.
782 promoteExprToType(lhsExpr, rhs);
783 return;
784 }
785 // We have two real floating types, float/complex combos were handled above.
786 // Convert the smaller operand to the bigger result.
787 if (Context.maxFloatingType(lhs, rhs) == lhs) { // convert the rhs
788 promoteExprToType(rhsExpr, lhs);
789 return;
790 }
791 promoteExprToType(lhsExpr, rhs); // convert the lhs
792 return;
793 }
794 // Finally, we have two differing integer types.
795 if (Context.maxIntegerType(lhs, rhs) == lhs) { // convert the rhs
796 promoteExprToType(rhsExpr, lhs);
797 return;
798 }
799 promoteExprToType(lhsExpr, rhs); // convert the lhs
800 return;
801}
802
803// CheckPointerTypesForAssignment - This is a very tricky routine (despite
804// being closely modeled after the C99 spec:-). The odd characteristic of this
805// routine is it effectively iqnores the qualifiers on the top level pointee.
806// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
807// FIXME: add a couple examples in this comment.
808Sema::AssignmentCheckResult
809Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
810 QualType lhptee, rhptee;
811
812 // get the "pointed to" type (ignoring qualifiers at the top level)
Chris Lattner71225142007-07-31 21:27:01 +0000813 lhptee = lhsType->getAsPointerType()->getPointeeType();
814 rhptee = rhsType->getAsPointerType()->getPointeeType();
Chris Lattner4b009652007-07-25 00:24:17 +0000815
816 // make sure we operate on the canonical type
817 lhptee = lhptee.getCanonicalType();
818 rhptee = rhptee.getCanonicalType();
819
820 AssignmentCheckResult r = Compatible;
821
822 // C99 6.5.16.1p1: This following citation is common to constraints
823 // 3 & 4 (below). ...and the type *pointed to* by the left has all the
824 // qualifiers of the type *pointed to* by the right;
825 if ((lhptee.getQualifiers() & rhptee.getQualifiers()) !=
826 rhptee.getQualifiers())
827 r = CompatiblePointerDiscardsQualifiers;
828
829 // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
830 // incomplete type and the other is a pointer to a qualified or unqualified
831 // version of void...
832 if (lhptee.getUnqualifiedType()->isVoidType() &&
833 (rhptee->isObjectType() || rhptee->isIncompleteType()))
834 ;
835 else if (rhptee.getUnqualifiedType()->isVoidType() &&
836 (lhptee->isObjectType() || lhptee->isIncompleteType()))
837 ;
838 // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
839 // unqualified versions of compatible types, ...
840 else if (!Type::typesAreCompatible(lhptee.getUnqualifiedType(),
841 rhptee.getUnqualifiedType()))
842 r = IncompatiblePointer; // this "trumps" PointerAssignDiscardsQualifiers
843 return r;
844}
845
846/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
847/// has code to accommodate several GCC extensions when type checking
848/// pointers. Here are some objectionable examples that GCC considers warnings:
849///
850/// int a, *pint;
851/// short *pshort;
852/// struct foo *pfoo;
853///
854/// pint = pshort; // warning: assignment from incompatible pointer type
855/// a = pint; // warning: assignment makes integer from pointer without a cast
856/// pint = a; // warning: assignment makes pointer from integer without a cast
857/// pint = pfoo; // warning: assignment from incompatible pointer type
858///
859/// As a result, the code for dealing with pointers is more complex than the
860/// C99 spec dictates.
861/// Note: the warning above turn into errors when -pedantic-errors is enabled.
862///
863Sema::AssignmentCheckResult
864Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
865 if (lhsType == rhsType) // common case, fast path...
866 return Compatible;
867
868 if (lhsType->isArithmeticType() && rhsType->isArithmeticType()) {
869 if (lhsType->isVectorType() || rhsType->isVectorType()) {
870 if (lhsType.getCanonicalType() != rhsType.getCanonicalType())
871 return Incompatible;
872 }
873 return Compatible;
874 } else if (lhsType->isPointerType()) {
875 if (rhsType->isIntegerType())
876 return PointerFromInt;
877
878 if (rhsType->isPointerType())
879 return CheckPointerTypesForAssignment(lhsType, rhsType);
880 } else if (rhsType->isPointerType()) {
881 // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
882 if ((lhsType->isIntegerType()) && (lhsType != Context.BoolTy))
883 return IntFromPointer;
884
885 if (lhsType->isPointerType())
886 return CheckPointerTypesForAssignment(lhsType, rhsType);
887 } else if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
888 if (Type::tagTypesAreCompatible(lhsType, rhsType))
889 return Compatible;
890 } else if (lhsType->isReferenceType() || rhsType->isReferenceType()) {
891 if (Type::referenceTypesAreCompatible(lhsType, rhsType))
892 return Compatible;
893 }
894 return Incompatible;
895}
896
897Sema::AssignmentCheckResult
898Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
899 // This check seems unnatural, however it is necessary to insure the proper
900 // conversion of functions/arrays. If the conversion were done for all
901 // DeclExpr's (created by ParseIdentifierExpr), it would mess up the unary
902 // expressions that surpress this implicit conversion (&, sizeof).
903 DefaultFunctionArrayConversion(rExpr);
904
905 return CheckAssignmentConstraints(lhsType, rExpr->getType());
906}
907
908Sema::AssignmentCheckResult
909Sema::CheckCompoundAssignmentConstraints(QualType lhsType, QualType rhsType) {
910 return CheckAssignmentConstraints(lhsType, rhsType);
911}
912
913inline void Sema::InvalidOperands(SourceLocation loc, Expr *&lex, Expr *&rex) {
914 Diag(loc, diag::err_typecheck_invalid_operands,
915 lex->getType().getAsString(), rex->getType().getAsString(),
916 lex->getSourceRange(), rex->getSourceRange());
917}
918
919inline QualType Sema::CheckVectorOperands(SourceLocation loc, Expr *&lex,
920 Expr *&rex) {
921 QualType lhsType = lex->getType(), rhsType = rex->getType();
922
923 // make sure the vector types are identical.
924 if (lhsType == rhsType)
925 return lhsType;
926 // You cannot convert between vector values of different size.
927 Diag(loc, diag::err_typecheck_vector_not_convertable,
928 lex->getType().getAsString(), rex->getType().getAsString(),
929 lex->getSourceRange(), rex->getSourceRange());
930 return QualType();
931}
932
933inline QualType Sema::CheckMultiplyDivideOperands(
934 Expr *&lex, Expr *&rex, SourceLocation loc)
935{
936 QualType lhsType = lex->getType(), rhsType = rex->getType();
937
938 if (lhsType->isVectorType() || rhsType->isVectorType())
939 return CheckVectorOperands(loc, lex, rex);
940
941 UsualArithmeticConversions(lex, rex);
942
943 // handle the common case first (both operands are arithmetic).
944 if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
945 return lex->getType();
946 InvalidOperands(loc, lex, rex);
947 return QualType();
948}
949
950inline QualType Sema::CheckRemainderOperands(
951 Expr *&lex, Expr *&rex, SourceLocation loc)
952{
953 QualType lhsType = lex->getType(), rhsType = rex->getType();
954
955 UsualArithmeticConversions(lex, rex);
956
957 // handle the common case first (both operands are arithmetic).
958 if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
959 return lex->getType();
960 InvalidOperands(loc, lex, rex);
961 return QualType();
962}
963
964inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
965 Expr *&lex, Expr *&rex, SourceLocation loc)
966{
967 if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
968 return CheckVectorOperands(loc, lex, rex);
969
970 UsualArithmeticConversions(lex, rex);
971
972 // handle the common case first (both operands are arithmetic).
973 if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
974 return lex->getType();
975
976 if (lex->getType()->isPointerType() && rex->getType()->isIntegerType())
977 return lex->getType();
978 if (lex->getType()->isIntegerType() && rex->getType()->isPointerType())
979 return rex->getType();
980 InvalidOperands(loc, lex, rex);
981 return QualType();
982}
983
984inline QualType Sema::CheckSubtractionOperands( // C99 6.5.6
985 Expr *&lex, Expr *&rex, SourceLocation loc)
986{
987 if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
988 return CheckVectorOperands(loc, lex, rex);
989
990 UsualArithmeticConversions(lex, rex);
991
992 // handle the common case first (both operands are arithmetic).
993 if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
994 return lex->getType();
995
996 if (lex->getType()->isPointerType() && rex->getType()->isIntegerType())
997 return lex->getType();
998 if (lex->getType()->isPointerType() && rex->getType()->isPointerType())
999 return Context.getPointerDiffType();
1000 InvalidOperands(loc, lex, rex);
1001 return QualType();
1002}
1003
1004inline QualType Sema::CheckShiftOperands( // C99 6.5.7
1005 Expr *&lex, Expr *&rex, SourceLocation loc)
1006{
1007 // FIXME: Shifts don't perform usual arithmetic conversions. This is wrong
1008 // for int << longlong -> the result type should be int, not long long.
1009 UsualArithmeticConversions(lex, rex);
1010
1011 // handle the common case first (both operands are arithmetic).
1012 if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
1013 return lex->getType();
1014 InvalidOperands(loc, lex, rex);
1015 return QualType();
1016}
1017
1018inline QualType Sema::CheckRelationalOperands( // C99 6.5.8
1019 Expr *&lex, Expr *&rex, SourceLocation loc)
1020{
1021 UsualUnaryConversions(lex);
1022 UsualUnaryConversions(rex);
1023 QualType lType = lex->getType();
1024 QualType rType = rex->getType();
1025
1026 if (lType->isRealType() && rType->isRealType())
1027 return Context.IntTy;
1028
1029 if (lType->isPointerType()) {
1030 if (rType->isPointerType())
1031 return Context.IntTy;
1032 if (rType->isIntegerType()) {
1033 if (!rex->isNullPointerConstant(Context))
1034 Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
1035 lex->getSourceRange(), rex->getSourceRange());
1036 return Context.IntTy; // the previous diagnostic is a GCC extension.
1037 }
1038 } else if (rType->isPointerType()) {
1039 if (lType->isIntegerType()) {
1040 if (!lex->isNullPointerConstant(Context))
1041 Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
1042 lex->getSourceRange(), rex->getSourceRange());
1043 return Context.IntTy; // the previous diagnostic is a GCC extension.
1044 }
1045 }
1046 InvalidOperands(loc, lex, rex);
1047 return QualType();
1048}
1049
1050inline QualType Sema::CheckEqualityOperands( // C99 6.5.9
1051 Expr *&lex, Expr *&rex, SourceLocation loc)
1052{
1053 UsualUnaryConversions(lex);
1054 UsualUnaryConversions(rex);
1055 QualType lType = lex->getType();
1056 QualType rType = rex->getType();
1057
1058 if (lType->isArithmeticType() && rType->isArithmeticType())
1059 return Context.IntTy;
1060
1061 if (lType->isPointerType()) {
1062 if (rType->isPointerType())
1063 return Context.IntTy;
1064 if (rType->isIntegerType()) {
1065 if (!rex->isNullPointerConstant(Context))
1066 Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
1067 lex->getSourceRange(), rex->getSourceRange());
1068 return Context.IntTy; // the previous diagnostic is a GCC extension.
1069 }
1070 } else if (rType->isPointerType()) {
1071 if (lType->isIntegerType()) {
1072 if (!lex->isNullPointerConstant(Context))
1073 Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
1074 lex->getSourceRange(), rex->getSourceRange());
1075 return Context.IntTy; // the previous diagnostic is a GCC extension.
1076 }
1077 }
1078 InvalidOperands(loc, lex, rex);
1079 return QualType();
1080}
1081
1082inline QualType Sema::CheckBitwiseOperands(
1083 Expr *&lex, Expr *&rex, SourceLocation loc)
1084{
1085 if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
1086 return CheckVectorOperands(loc, lex, rex);
1087
1088 UsualArithmeticConversions(lex, rex);
1089
1090 if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
1091 return lex->getType();
1092 InvalidOperands(loc, lex, rex);
1093 return QualType();
1094}
1095
1096inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
1097 Expr *&lex, Expr *&rex, SourceLocation loc)
1098{
1099 UsualUnaryConversions(lex);
1100 UsualUnaryConversions(rex);
1101
1102 if (lex->getType()->isScalarType() || rex->getType()->isScalarType())
1103 return Context.IntTy;
1104 InvalidOperands(loc, lex, rex);
1105 return QualType();
1106}
1107
1108inline QualType Sema::CheckAssignmentOperands( // C99 6.5.16.1
1109 Expr *lex, Expr *rex, SourceLocation loc, QualType compoundType)
1110{
1111 QualType lhsType = lex->getType();
1112 QualType rhsType = compoundType.isNull() ? rex->getType() : compoundType;
1113 bool hadError = false;
1114 Expr::isModifiableLvalueResult mlval = lex->isModifiableLvalue();
1115
1116 switch (mlval) { // C99 6.5.16p2
1117 case Expr::MLV_Valid:
1118 break;
1119 case Expr::MLV_ConstQualified:
1120 Diag(loc, diag::err_typecheck_assign_const, lex->getSourceRange());
1121 hadError = true;
1122 break;
1123 case Expr::MLV_ArrayType:
1124 Diag(loc, diag::err_typecheck_array_not_modifiable_lvalue,
1125 lhsType.getAsString(), lex->getSourceRange());
1126 return QualType();
1127 case Expr::MLV_NotObjectType:
1128 Diag(loc, diag::err_typecheck_non_object_not_modifiable_lvalue,
1129 lhsType.getAsString(), lex->getSourceRange());
1130 return QualType();
1131 case Expr::MLV_InvalidExpression:
1132 Diag(loc, diag::err_typecheck_expression_not_modifiable_lvalue,
1133 lex->getSourceRange());
1134 return QualType();
1135 case Expr::MLV_IncompleteType:
1136 case Expr::MLV_IncompleteVoidType:
1137 Diag(loc, diag::err_typecheck_incomplete_type_not_modifiable_lvalue,
1138 lhsType.getAsString(), lex->getSourceRange());
1139 return QualType();
Steve Naroffba67f692007-07-30 03:29:09 +00001140 case Expr::MLV_DuplicateVectorComponents:
1141 Diag(loc, diag::err_typecheck_duplicate_vector_components_not_mlvalue,
1142 lex->getSourceRange());
1143 return QualType();
Chris Lattner4b009652007-07-25 00:24:17 +00001144 }
1145 AssignmentCheckResult result;
1146
1147 if (compoundType.isNull())
1148 result = CheckSingleAssignmentConstraints(lhsType, rex);
1149 else
1150 result = CheckCompoundAssignmentConstraints(lhsType, rhsType);
Steve Naroff7cbb1462007-07-31 12:34:36 +00001151
Chris Lattner4b009652007-07-25 00:24:17 +00001152 // decode the result (notice that extensions still return a type).
1153 switch (result) {
1154 case Compatible:
1155 break;
1156 case Incompatible:
1157 Diag(loc, diag::err_typecheck_assign_incompatible,
1158 lhsType.getAsString(), rhsType.getAsString(),
1159 lex->getSourceRange(), rex->getSourceRange());
1160 hadError = true;
1161 break;
1162 case PointerFromInt:
1163 // check for null pointer constant (C99 6.3.2.3p3)
1164 if (compoundType.isNull() && !rex->isNullPointerConstant(Context)) {
1165 Diag(loc, diag::ext_typecheck_assign_pointer_int,
1166 lhsType.getAsString(), rhsType.getAsString(),
1167 lex->getSourceRange(), rex->getSourceRange());
1168 }
1169 break;
1170 case IntFromPointer:
1171 Diag(loc, diag::ext_typecheck_assign_pointer_int,
1172 lhsType.getAsString(), rhsType.getAsString(),
1173 lex->getSourceRange(), rex->getSourceRange());
1174 break;
1175 case IncompatiblePointer:
1176 Diag(loc, diag::ext_typecheck_assign_incompatible_pointer,
1177 lhsType.getAsString(), rhsType.getAsString(),
1178 lex->getSourceRange(), rex->getSourceRange());
1179 break;
1180 case CompatiblePointerDiscardsQualifiers:
1181 Diag(loc, diag::ext_typecheck_assign_discards_qualifiers,
1182 lhsType.getAsString(), rhsType.getAsString(),
1183 lex->getSourceRange(), rex->getSourceRange());
1184 break;
1185 }
1186 // C99 6.5.16p3: The type of an assignment expression is the type of the
1187 // left operand unless the left operand has qualified type, in which case
1188 // it is the unqualified version of the type of the left operand.
1189 // C99 6.5.16.1p2: In simple assignment, the value of the right operand
1190 // is converted to the type of the assignment expression (above).
1191 // C++ 5.17p1: the type of the assignment expression is that of its left oprdu.
1192 return hadError ? QualType() : lhsType.getUnqualifiedType();
1193}
1194
1195inline QualType Sema::CheckCommaOperands( // C99 6.5.17
1196 Expr *&lex, Expr *&rex, SourceLocation loc) {
1197 UsualUnaryConversions(rex);
1198 return rex->getType();
1199}
1200
1201/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
1202/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
1203QualType Sema::CheckIncrementDecrementOperand(Expr *op, SourceLocation OpLoc) {
1204 QualType resType = op->getType();
1205 assert(!resType.isNull() && "no type for increment/decrement expression");
1206
1207 // C99 6.5.2.4p1
1208 if (const PointerType *pt = dyn_cast<PointerType>(resType)) {
1209 if (!pt->getPointeeType()->isObjectType()) { // C99 6.5.2.4p2, 6.5.6p2
1210 Diag(OpLoc, diag::err_typecheck_arithmetic_incomplete_type,
1211 resType.getAsString(), op->getSourceRange());
1212 return QualType();
1213 }
1214 } else if (!resType->isRealType()) {
1215 // FIXME: Allow Complex as a GCC extension.
1216 Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement,
1217 resType.getAsString(), op->getSourceRange());
1218 return QualType();
1219 }
1220 // At this point, we know we have a real or pointer type. Now make sure
1221 // the operand is a modifiable lvalue.
1222 Expr::isModifiableLvalueResult mlval = op->isModifiableLvalue();
1223 if (mlval != Expr::MLV_Valid) {
1224 // FIXME: emit a more precise diagnostic...
1225 Diag(OpLoc, diag::err_typecheck_invalid_lvalue_incr_decr,
1226 op->getSourceRange());
1227 return QualType();
1228 }
1229 return resType;
1230}
1231
1232/// getPrimaryDeclaration - Helper function for CheckAddressOfOperand().
1233/// This routine allows us to typecheck complex/recursive expressions
1234/// where the declaration is needed for type checking. Here are some
1235/// examples: &s.xx, &s.zz[1].yy, &(1+2), &(XX), &"123"[2].
1236static Decl *getPrimaryDeclaration(Expr *e) {
1237 switch (e->getStmtClass()) {
1238 case Stmt::DeclRefExprClass:
1239 return cast<DeclRefExpr>(e)->getDecl();
1240 case Stmt::MemberExprClass:
1241 return getPrimaryDeclaration(cast<MemberExpr>(e)->getBase());
1242 case Stmt::ArraySubscriptExprClass:
1243 return getPrimaryDeclaration(cast<ArraySubscriptExpr>(e)->getBase());
1244 case Stmt::CallExprClass:
1245 return getPrimaryDeclaration(cast<CallExpr>(e)->getCallee());
1246 case Stmt::UnaryOperatorClass:
1247 return getPrimaryDeclaration(cast<UnaryOperator>(e)->getSubExpr());
1248 case Stmt::ParenExprClass:
1249 return getPrimaryDeclaration(cast<ParenExpr>(e)->getSubExpr());
1250 default:
1251 return 0;
1252 }
1253}
1254
1255/// CheckAddressOfOperand - The operand of & must be either a function
1256/// designator or an lvalue designating an object. If it is an lvalue, the
1257/// object cannot be declared with storage class register or be a bit field.
1258/// Note: The usual conversions are *not* applied to the operand of the &
1259/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
1260QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
1261 Decl *dcl = getPrimaryDeclaration(op);
1262 Expr::isLvalueResult lval = op->isLvalue();
1263
1264 if (lval != Expr::LV_Valid) { // C99 6.5.3.2p1
1265 if (dcl && isa<FunctionDecl>(dcl)) // allow function designators
1266 ;
1267 else { // FIXME: emit more specific diag...
1268 Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof,
1269 op->getSourceRange());
1270 return QualType();
1271 }
1272 } else if (dcl) {
1273 // We have an lvalue with a decl. Make sure the decl is not declared
1274 // with the register storage-class specifier.
1275 if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
1276 if (vd->getStorageClass() == VarDecl::Register) {
1277 Diag(OpLoc, diag::err_typecheck_address_of_register,
1278 op->getSourceRange());
1279 return QualType();
1280 }
1281 } else
1282 assert(0 && "Unknown/unexpected decl type");
1283
1284 // FIXME: add check for bitfields!
1285 }
1286 // If the operand has type "type", the result has type "pointer to type".
1287 return Context.getPointerType(op->getType());
1288}
1289
1290QualType Sema::CheckIndirectionOperand(Expr *op, SourceLocation OpLoc) {
1291 UsualUnaryConversions(op);
1292 QualType qType = op->getType();
1293
Chris Lattner7931f4a2007-07-31 16:53:04 +00001294 if (const PointerType *PT = qType->getAsPointerType()) {
Chris Lattner4b009652007-07-25 00:24:17 +00001295 QualType ptype = PT->getPointeeType();
1296 // C99 6.5.3.2p4. "if it points to an object,...".
1297 if (ptype->isIncompleteType()) { // An incomplete type is not an object
1298 // GCC compat: special case 'void *' (treat as warning).
1299 if (ptype->isVoidType()) {
1300 Diag(OpLoc, diag::ext_typecheck_deref_ptr_to_void,
1301 qType.getAsString(), op->getSourceRange());
1302 } else {
1303 Diag(OpLoc, diag::err_typecheck_deref_incomplete_type,
1304 ptype.getAsString(), op->getSourceRange());
1305 return QualType();
1306 }
1307 }
1308 return ptype;
1309 }
1310 Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer,
1311 qType.getAsString(), op->getSourceRange());
1312 return QualType();
1313}
1314
1315static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
1316 tok::TokenKind Kind) {
1317 BinaryOperator::Opcode Opc;
1318 switch (Kind) {
1319 default: assert(0 && "Unknown binop!");
1320 case tok::star: Opc = BinaryOperator::Mul; break;
1321 case tok::slash: Opc = BinaryOperator::Div; break;
1322 case tok::percent: Opc = BinaryOperator::Rem; break;
1323 case tok::plus: Opc = BinaryOperator::Add; break;
1324 case tok::minus: Opc = BinaryOperator::Sub; break;
1325 case tok::lessless: Opc = BinaryOperator::Shl; break;
1326 case tok::greatergreater: Opc = BinaryOperator::Shr; break;
1327 case tok::lessequal: Opc = BinaryOperator::LE; break;
1328 case tok::less: Opc = BinaryOperator::LT; break;
1329 case tok::greaterequal: Opc = BinaryOperator::GE; break;
1330 case tok::greater: Opc = BinaryOperator::GT; break;
1331 case tok::exclaimequal: Opc = BinaryOperator::NE; break;
1332 case tok::equalequal: Opc = BinaryOperator::EQ; break;
1333 case tok::amp: Opc = BinaryOperator::And; break;
1334 case tok::caret: Opc = BinaryOperator::Xor; break;
1335 case tok::pipe: Opc = BinaryOperator::Or; break;
1336 case tok::ampamp: Opc = BinaryOperator::LAnd; break;
1337 case tok::pipepipe: Opc = BinaryOperator::LOr; break;
1338 case tok::equal: Opc = BinaryOperator::Assign; break;
1339 case tok::starequal: Opc = BinaryOperator::MulAssign; break;
1340 case tok::slashequal: Opc = BinaryOperator::DivAssign; break;
1341 case tok::percentequal: Opc = BinaryOperator::RemAssign; break;
1342 case tok::plusequal: Opc = BinaryOperator::AddAssign; break;
1343 case tok::minusequal: Opc = BinaryOperator::SubAssign; break;
1344 case tok::lesslessequal: Opc = BinaryOperator::ShlAssign; break;
1345 case tok::greatergreaterequal: Opc = BinaryOperator::ShrAssign; break;
1346 case tok::ampequal: Opc = BinaryOperator::AndAssign; break;
1347 case tok::caretequal: Opc = BinaryOperator::XorAssign; break;
1348 case tok::pipeequal: Opc = BinaryOperator::OrAssign; break;
1349 case tok::comma: Opc = BinaryOperator::Comma; break;
1350 }
1351 return Opc;
1352}
1353
1354static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
1355 tok::TokenKind Kind) {
1356 UnaryOperator::Opcode Opc;
1357 switch (Kind) {
1358 default: assert(0 && "Unknown unary op!");
1359 case tok::plusplus: Opc = UnaryOperator::PreInc; break;
1360 case tok::minusminus: Opc = UnaryOperator::PreDec; break;
1361 case tok::amp: Opc = UnaryOperator::AddrOf; break;
1362 case tok::star: Opc = UnaryOperator::Deref; break;
1363 case tok::plus: Opc = UnaryOperator::Plus; break;
1364 case tok::minus: Opc = UnaryOperator::Minus; break;
1365 case tok::tilde: Opc = UnaryOperator::Not; break;
1366 case tok::exclaim: Opc = UnaryOperator::LNot; break;
1367 case tok::kw_sizeof: Opc = UnaryOperator::SizeOf; break;
1368 case tok::kw___alignof: Opc = UnaryOperator::AlignOf; break;
1369 case tok::kw___real: Opc = UnaryOperator::Real; break;
1370 case tok::kw___imag: Opc = UnaryOperator::Imag; break;
1371 case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
1372 }
1373 return Opc;
1374}
1375
1376// Binary Operators. 'Tok' is the token for the operator.
1377Action::ExprResult Sema::ParseBinOp(SourceLocation TokLoc, tok::TokenKind Kind,
1378 ExprTy *LHS, ExprTy *RHS) {
1379 BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
1380 Expr *lhs = (Expr *)LHS, *rhs = (Expr*)RHS;
1381
1382 assert((lhs != 0) && "ParseBinOp(): missing left expression");
1383 assert((rhs != 0) && "ParseBinOp(): missing right expression");
1384
1385 QualType ResultTy; // Result type of the binary operator.
1386 QualType CompTy; // Computation type for compound assignments (e.g. '+=')
1387
1388 switch (Opc) {
1389 default:
1390 assert(0 && "Unknown binary expr!");
1391 case BinaryOperator::Assign:
1392 ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, QualType());
1393 break;
1394 case BinaryOperator::Mul:
1395 case BinaryOperator::Div:
1396 ResultTy = CheckMultiplyDivideOperands(lhs, rhs, TokLoc);
1397 break;
1398 case BinaryOperator::Rem:
1399 ResultTy = CheckRemainderOperands(lhs, rhs, TokLoc);
1400 break;
1401 case BinaryOperator::Add:
1402 ResultTy = CheckAdditionOperands(lhs, rhs, TokLoc);
1403 break;
1404 case BinaryOperator::Sub:
1405 ResultTy = CheckSubtractionOperands(lhs, rhs, TokLoc);
1406 break;
1407 case BinaryOperator::Shl:
1408 case BinaryOperator::Shr:
1409 ResultTy = CheckShiftOperands(lhs, rhs, TokLoc);
1410 break;
1411 case BinaryOperator::LE:
1412 case BinaryOperator::LT:
1413 case BinaryOperator::GE:
1414 case BinaryOperator::GT:
1415 ResultTy = CheckRelationalOperands(lhs, rhs, TokLoc);
1416 break;
1417 case BinaryOperator::EQ:
1418 case BinaryOperator::NE:
1419 ResultTy = CheckEqualityOperands(lhs, rhs, TokLoc);
1420 break;
1421 case BinaryOperator::And:
1422 case BinaryOperator::Xor:
1423 case BinaryOperator::Or:
1424 ResultTy = CheckBitwiseOperands(lhs, rhs, TokLoc);
1425 break;
1426 case BinaryOperator::LAnd:
1427 case BinaryOperator::LOr:
1428 ResultTy = CheckLogicalOperands(lhs, rhs, TokLoc);
1429 break;
1430 case BinaryOperator::MulAssign:
1431 case BinaryOperator::DivAssign:
1432 CompTy = CheckMultiplyDivideOperands(lhs, rhs, TokLoc);
1433 if (!CompTy.isNull())
1434 ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
1435 break;
1436 case BinaryOperator::RemAssign:
1437 CompTy = CheckRemainderOperands(lhs, rhs, TokLoc);
1438 if (!CompTy.isNull())
1439 ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
1440 break;
1441 case BinaryOperator::AddAssign:
1442 CompTy = CheckAdditionOperands(lhs, rhs, TokLoc);
1443 if (!CompTy.isNull())
1444 ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
1445 break;
1446 case BinaryOperator::SubAssign:
1447 CompTy = CheckSubtractionOperands(lhs, rhs, TokLoc);
1448 if (!CompTy.isNull())
1449 ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
1450 break;
1451 case BinaryOperator::ShlAssign:
1452 case BinaryOperator::ShrAssign:
1453 CompTy = CheckShiftOperands(lhs, rhs, TokLoc);
1454 if (!CompTy.isNull())
1455 ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
1456 break;
1457 case BinaryOperator::AndAssign:
1458 case BinaryOperator::XorAssign:
1459 case BinaryOperator::OrAssign:
1460 CompTy = CheckBitwiseOperands(lhs, rhs, TokLoc);
1461 if (!CompTy.isNull())
1462 ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
1463 break;
1464 case BinaryOperator::Comma:
1465 ResultTy = CheckCommaOperands(lhs, rhs, TokLoc);
1466 break;
1467 }
1468 if (ResultTy.isNull())
1469 return true;
1470 if (CompTy.isNull())
1471 return new BinaryOperator(lhs, rhs, Opc, ResultTy);
1472 else
1473 return new CompoundAssignOperator(lhs, rhs, Opc, ResultTy, CompTy);
1474}
1475
1476// Unary Operators. 'Tok' is the token for the operator.
1477Action::ExprResult Sema::ParseUnaryOp(SourceLocation OpLoc, tok::TokenKind Op,
1478 ExprTy *input) {
1479 Expr *Input = (Expr*)input;
1480 UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
1481 QualType resultType;
1482 switch (Opc) {
1483 default:
1484 assert(0 && "Unimplemented unary expr!");
1485 case UnaryOperator::PreInc:
1486 case UnaryOperator::PreDec:
1487 resultType = CheckIncrementDecrementOperand(Input, OpLoc);
1488 break;
1489 case UnaryOperator::AddrOf:
1490 resultType = CheckAddressOfOperand(Input, OpLoc);
1491 break;
1492 case UnaryOperator::Deref:
1493 resultType = CheckIndirectionOperand(Input, OpLoc);
1494 break;
1495 case UnaryOperator::Plus:
1496 case UnaryOperator::Minus:
1497 UsualUnaryConversions(Input);
1498 resultType = Input->getType();
1499 if (!resultType->isArithmeticType()) // C99 6.5.3.3p1
1500 return Diag(OpLoc, diag::err_typecheck_unary_expr,
1501 resultType.getAsString());
1502 break;
1503 case UnaryOperator::Not: // bitwise complement
1504 UsualUnaryConversions(Input);
1505 resultType = Input->getType();
1506 if (!resultType->isIntegerType()) // C99 6.5.3.3p1
1507 return Diag(OpLoc, diag::err_typecheck_unary_expr,
1508 resultType.getAsString());
1509 break;
1510 case UnaryOperator::LNot: // logical negation
1511 // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
1512 DefaultFunctionArrayConversion(Input);
1513 resultType = Input->getType();
1514 if (!resultType->isScalarType()) // C99 6.5.3.3p1
1515 return Diag(OpLoc, diag::err_typecheck_unary_expr,
1516 resultType.getAsString());
1517 // LNot always has type int. C99 6.5.3.3p5.
1518 resultType = Context.IntTy;
1519 break;
1520 case UnaryOperator::SizeOf:
1521 resultType = CheckSizeOfAlignOfOperand(Input->getType(), OpLoc, true);
1522 break;
1523 case UnaryOperator::AlignOf:
1524 resultType = CheckSizeOfAlignOfOperand(Input->getType(), OpLoc, false);
1525 break;
1526 case UnaryOperator::Extension:
1527 // FIXME: does __extension__ cause any promotions? I would think not.
1528 resultType = Input->getType();
1529 break;
1530 }
1531 if (resultType.isNull())
1532 return true;
1533 return new UnaryOperator(Input, Opc, resultType, OpLoc);
1534}
1535
1536/// ParseAddrLabel - Parse the GNU address of label extension: "&&foo".
1537Sema::ExprResult Sema::ParseAddrLabel(SourceLocation OpLoc,
1538 SourceLocation LabLoc,
1539 IdentifierInfo *LabelII) {
1540 // Look up the record for this label identifier.
1541 LabelStmt *&LabelDecl = LabelMap[LabelII];
1542
1543 // If we haven't seen this label yet, create a forward reference.
1544 if (LabelDecl == 0)
1545 LabelDecl = new LabelStmt(LabLoc, LabelII, 0);
1546
1547 // Create the AST node. The address of a label always has type 'void*'.
Chris Lattnera0d03a72007-08-03 17:31:20 +00001548 return new AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
1549 Context.getPointerType(Context.VoidTy));
Chris Lattner4b009652007-07-25 00:24:17 +00001550}
1551
1552Sema::ExprResult Sema::ParseStmtExpr(SourceLocation LPLoc, StmtTy *substmt,
1553 SourceLocation RPLoc) { // "({..})"
1554 Stmt *SubStmt = static_cast<Stmt*>(substmt);
1555 assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
1556 CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
1557
1558 // FIXME: there are a variety of strange constraints to enforce here, for
1559 // example, it is not possible to goto into a stmt expression apparently.
1560 // More semantic analysis is needed.
1561
1562 // FIXME: the last statement in the compount stmt has its value used. We
1563 // should not warn about it being unused.
1564
1565 // If there are sub stmts in the compound stmt, take the type of the last one
1566 // as the type of the stmtexpr.
1567 QualType Ty = Context.VoidTy;
1568
1569 if (!Compound->body_empty())
1570 if (Expr *LastExpr = dyn_cast<Expr>(Compound->body_back()))
1571 Ty = LastExpr->getType();
1572
1573 return new StmtExpr(Compound, Ty, LPLoc, RPLoc);
1574}
Steve Naroff63bad2d2007-08-01 22:05:33 +00001575
Steve Naroff5b528922007-08-01 23:45:51 +00001576Sema::ExprResult Sema::ParseTypesCompatibleExpr(SourceLocation BuiltinLoc,
Steve Naroff63bad2d2007-08-01 22:05:33 +00001577 TypeTy *arg1, TypeTy *arg2,
1578 SourceLocation RPLoc) {
1579 QualType argT1 = QualType::getFromOpaquePtr(arg1);
1580 QualType argT2 = QualType::getFromOpaquePtr(arg2);
1581
1582 assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
1583
Steve Naroff5b528922007-08-01 23:45:51 +00001584 return new TypesCompatibleExpr(Context.IntTy, BuiltinLoc, argT1, argT2, RPLoc);
Steve Naroff63bad2d2007-08-01 22:05:33 +00001585}
1586