blob: bd0125d63915344a4542bff86dffcfd7504eab44 [file] [log] [blame]
Guy Benyei7f92f2d2012-12-18 14:30:41 +00001//===--- MicrosoftMangle.cpp - Microsoft Visual C++ Name Mangling ---------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This provides C++ name mangling targeting the Microsoft Visual C++ ABI.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/Mangle.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Attr.h"
17#include "clang/AST/CharUnits.h"
18#include "clang/AST/Decl.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/Basic/ABI.h"
24#include "clang/Basic/DiagnosticOptions.h"
25#include <map>
26
27using namespace clang;
28
29namespace {
30
31/// MicrosoftCXXNameMangler - Manage the mangling of a single name for the
32/// Microsoft Visual C++ ABI.
33class MicrosoftCXXNameMangler {
34 MangleContext &Context;
35 raw_ostream &Out;
36
37 // FIXME: audit the performance of BackRefMap as it might do way too many
38 // copying of strings.
39 typedef std::map<std::string, unsigned> BackRefMap;
40 BackRefMap NameBackReferences;
41 bool UseNameBackReferences;
42
43 typedef llvm::DenseMap<void*, unsigned> ArgBackRefMap;
44 ArgBackRefMap TypeBackReferences;
45
46 ASTContext &getASTContext() const { return Context.getASTContext(); }
47
48public:
49 MicrosoftCXXNameMangler(MangleContext &C, raw_ostream &Out_)
50 : Context(C), Out(Out_), UseNameBackReferences(true) { }
51
52 raw_ostream &getStream() const { return Out; }
53
54 void mangle(const NamedDecl *D, StringRef Prefix = "\01?");
55 void mangleName(const NamedDecl *ND);
56 void mangleFunctionEncoding(const FunctionDecl *FD);
57 void mangleVariableEncoding(const VarDecl *VD);
58 void mangleNumber(int64_t Number);
59 void mangleNumber(const llvm::APSInt &Value);
60 void mangleType(QualType T, SourceRange Range, bool MangleQualifiers = true);
61
62private:
63 void disableBackReferences() { UseNameBackReferences = false; }
64 void mangleUnqualifiedName(const NamedDecl *ND) {
65 mangleUnqualifiedName(ND, ND->getDeclName());
66 }
67 void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name);
68 void mangleSourceName(const IdentifierInfo *II);
69 void manglePostfix(const DeclContext *DC, bool NoFunction=false);
70 void mangleOperatorName(OverloadedOperatorKind OO, SourceLocation Loc);
71 void mangleQualifiers(Qualifiers Quals, bool IsMember);
72 void manglePointerQualifiers(Qualifiers Quals);
73
74 void mangleUnscopedTemplateName(const TemplateDecl *ND);
75 void mangleTemplateInstantiationName(const TemplateDecl *TD,
76 const SmallVectorImpl<TemplateArgumentLoc> &TemplateArgs);
77 void mangleObjCMethodName(const ObjCMethodDecl *MD);
78 void mangleLocalName(const FunctionDecl *FD);
79
80 void mangleArgumentType(QualType T, SourceRange Range);
81
82 // Declare manglers for every type class.
83#define ABSTRACT_TYPE(CLASS, PARENT)
84#define NON_CANONICAL_TYPE(CLASS, PARENT)
85#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T, \
86 SourceRange Range);
87#include "clang/AST/TypeNodes.def"
88#undef ABSTRACT_TYPE
89#undef NON_CANONICAL_TYPE
90#undef TYPE
91
92 void mangleType(const TagType*);
93 void mangleType(const FunctionType *T, const FunctionDecl *D,
94 bool IsStructor, bool IsInstMethod);
95 void mangleType(const ArrayType *T, bool IsGlobal);
96 void mangleExtraDimensions(QualType T);
97 void mangleFunctionClass(const FunctionDecl *FD);
98 void mangleCallingConvention(const FunctionType *T, bool IsInstMethod = false);
99 void mangleIntegerLiteral(const llvm::APSInt &Number, bool IsBoolean);
100 void mangleExpression(const Expr *E);
101 void mangleThrowSpecification(const FunctionProtoType *T);
102
103 void mangleTemplateArgs(
104 const SmallVectorImpl<TemplateArgumentLoc> &TemplateArgs);
105
106};
107
108/// MicrosoftMangleContext - Overrides the default MangleContext for the
109/// Microsoft Visual C++ ABI.
110class MicrosoftMangleContext : public MangleContext {
111public:
112 MicrosoftMangleContext(ASTContext &Context,
113 DiagnosticsEngine &Diags) : MangleContext(Context, Diags) { }
114 virtual bool shouldMangleDeclName(const NamedDecl *D);
115 virtual void mangleName(const NamedDecl *D, raw_ostream &Out);
116 virtual void mangleThunk(const CXXMethodDecl *MD,
117 const ThunkInfo &Thunk,
118 raw_ostream &);
119 virtual void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
120 const ThisAdjustment &ThisAdjustment,
121 raw_ostream &);
122 virtual void mangleCXXVTable(const CXXRecordDecl *RD,
123 raw_ostream &);
124 virtual void mangleCXXVTT(const CXXRecordDecl *RD,
125 raw_ostream &);
126 virtual void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
127 const CXXRecordDecl *Type,
128 raw_ostream &);
129 virtual void mangleCXXRTTI(QualType T, raw_ostream &);
130 virtual void mangleCXXRTTIName(QualType T, raw_ostream &);
131 virtual void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
132 raw_ostream &);
133 virtual void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
134 raw_ostream &);
135 virtual void mangleReferenceTemporary(const clang::VarDecl *,
136 raw_ostream &);
137};
138
139}
140
141static bool isInCLinkageSpecification(const Decl *D) {
142 D = D->getCanonicalDecl();
143 for (const DeclContext *DC = D->getDeclContext();
144 !DC->isTranslationUnit(); DC = DC->getParent()) {
145 if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC))
146 return Linkage->getLanguage() == LinkageSpecDecl::lang_c;
147 }
148
149 return false;
150}
151
152bool MicrosoftMangleContext::shouldMangleDeclName(const NamedDecl *D) {
153 // In C, functions with no attributes never need to be mangled. Fastpath them.
154 if (!getASTContext().getLangOpts().CPlusPlus && !D->hasAttrs())
155 return false;
156
157 // Any decl can be declared with __asm("foo") on it, and this takes precedence
158 // over all other naming in the .o file.
159 if (D->hasAttr<AsmLabelAttr>())
160 return true;
161
162 // Clang's "overloadable" attribute extension to C/C++ implies name mangling
163 // (always) as does passing a C++ member function and a function
164 // whose name is not a simple identifier.
165 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
166 if (FD && (FD->hasAttr<OverloadableAttr>() || isa<CXXMethodDecl>(FD) ||
167 !FD->getDeclName().isIdentifier()))
168 return true;
169
170 // Otherwise, no mangling is done outside C++ mode.
171 if (!getASTContext().getLangOpts().CPlusPlus)
172 return false;
173
174 // Variables at global scope with internal linkage are not mangled.
175 if (!FD) {
176 const DeclContext *DC = D->getDeclContext();
177 if (DC->isTranslationUnit() && D->getLinkage() == InternalLinkage)
178 return false;
179 }
180
181 // C functions and "main" are not mangled.
182 if ((FD && FD->isMain()) || isInCLinkageSpecification(D))
183 return false;
184
185 return true;
186}
187
188void MicrosoftCXXNameMangler::mangle(const NamedDecl *D,
189 StringRef Prefix) {
190 // MSVC doesn't mangle C++ names the same way it mangles extern "C" names.
191 // Therefore it's really important that we don't decorate the
192 // name with leading underscores or leading/trailing at signs. So, by
193 // default, we emit an asm marker at the start so we get the name right.
194 // Callers can override this with a custom prefix.
195
196 // Any decl can be declared with __asm("foo") on it, and this takes precedence
197 // over all other naming in the .o file.
198 if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) {
199 // If we have an asm name, then we use it as the mangling.
200 Out << '\01' << ALA->getLabel();
201 return;
202 }
203
204 // <mangled-name> ::= ? <name> <type-encoding>
205 Out << Prefix;
206 mangleName(D);
207 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
208 mangleFunctionEncoding(FD);
209 else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
210 mangleVariableEncoding(VD);
211 else {
212 // TODO: Fields? Can MSVC even mangle them?
213 // Issue a diagnostic for now.
214 DiagnosticsEngine &Diags = Context.getDiags();
215 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
216 "cannot mangle this declaration yet");
217 Diags.Report(D->getLocation(), DiagID)
218 << D->getSourceRange();
219 }
220}
221
222void MicrosoftCXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
223 // <type-encoding> ::= <function-class> <function-type>
224
225 // Don't mangle in the type if this isn't a decl we should typically mangle.
226 if (!Context.shouldMangleDeclName(FD))
227 return;
228
229 // We should never ever see a FunctionNoProtoType at this point.
230 // We don't even know how to mangle their types anyway :).
231 const FunctionProtoType *FT = FD->getType()->castAs<FunctionProtoType>();
232
233 bool InStructor = false, InInstMethod = false;
234 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
235 if (MD) {
236 if (MD->isInstance())
237 InInstMethod = true;
238 if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))
239 InStructor = true;
240 }
241
242 // First, the function class.
243 mangleFunctionClass(FD);
244
245 mangleType(FT, FD, InStructor, InInstMethod);
246}
247
248void MicrosoftCXXNameMangler::mangleVariableEncoding(const VarDecl *VD) {
249 // <type-encoding> ::= <storage-class> <variable-type>
250 // <storage-class> ::= 0 # private static member
251 // ::= 1 # protected static member
252 // ::= 2 # public static member
253 // ::= 3 # global
254 // ::= 4 # static local
255
256 // The first character in the encoding (after the name) is the storage class.
257 if (VD->isStaticDataMember()) {
258 // If it's a static member, it also encodes the access level.
259 switch (VD->getAccess()) {
260 default:
261 case AS_private: Out << '0'; break;
262 case AS_protected: Out << '1'; break;
263 case AS_public: Out << '2'; break;
264 }
265 }
266 else if (!VD->isStaticLocal())
267 Out << '3';
268 else
269 Out << '4';
270 // Now mangle the type.
271 // <variable-type> ::= <type> <cvr-qualifiers>
272 // ::= <type> <pointee-cvr-qualifiers> # pointers, references
273 // Pointers and references are odd. The type of 'int * const foo;' gets
274 // mangled as 'QAHA' instead of 'PAHB', for example.
275 TypeLoc TL = VD->getTypeSourceInfo()->getTypeLoc();
276 QualType Ty = TL.getType();
277 if (Ty->isPointerType() || Ty->isReferenceType()) {
278 mangleType(Ty, TL.getSourceRange());
279 mangleQualifiers(Ty->getPointeeType().getQualifiers(), false);
280 } else if (const ArrayType *AT = getASTContext().getAsArrayType(Ty)) {
281 // Global arrays are funny, too.
282 mangleType(AT, true);
283 mangleQualifiers(Ty.getQualifiers(), false);
284 } else {
285 mangleType(Ty.getLocalUnqualifiedType(), TL.getSourceRange());
286 mangleQualifiers(Ty.getLocalQualifiers(), false);
287 }
288}
289
290void MicrosoftCXXNameMangler::mangleName(const NamedDecl *ND) {
291 // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @
292 const DeclContext *DC = ND->getDeclContext();
293
294 // Always start with the unqualified name.
295 mangleUnqualifiedName(ND);
296
297 // If this is an extern variable declared locally, the relevant DeclContext
298 // is that of the containing namespace, or the translation unit.
299 if (isa<FunctionDecl>(DC) && ND->hasLinkage())
300 while (!DC->isNamespace() && !DC->isTranslationUnit())
301 DC = DC->getParent();
302
303 manglePostfix(DC);
304
305 // Terminate the whole name with an '@'.
306 Out << '@';
307}
308
309void MicrosoftCXXNameMangler::mangleNumber(int64_t Number) {
310 llvm::APSInt APSNumber(/*BitWidth=*/64, /*isUnsigned=*/false);
311 APSNumber = Number;
312 mangleNumber(APSNumber);
313}
314
315void MicrosoftCXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
316 // <number> ::= [?] <decimal digit> # 1 <= Number <= 10
317 // ::= [?] <hex digit>+ @ # 0 or > 9; A = 0, B = 1, etc...
318 // ::= [?] @ # 0 (alternate mangling, not emitted by VC)
319 if (Value.isSigned() && Value.isNegative()) {
320 Out << '?';
321 mangleNumber(llvm::APSInt(Value.abs()));
322 return;
323 }
324 llvm::APSInt Temp(Value);
325 // There's a special shorter mangling for 0, but Microsoft
326 // chose not to use it. Instead, 0 gets mangled as "A@". Oh well...
327 if (Value.uge(1) && Value.ule(10)) {
328 --Temp;
329 Temp.print(Out, false);
330 } else {
331 // We have to build up the encoding in reverse order, so it will come
332 // out right when we write it out.
333 char Encoding[64];
334 char *EndPtr = Encoding+sizeof(Encoding);
335 char *CurPtr = EndPtr;
336 llvm::APSInt NibbleMask(Value.getBitWidth(), Value.isUnsigned());
337 NibbleMask = 0xf;
338 do {
339 *--CurPtr = 'A' + Temp.And(NibbleMask).getLimitedValue(0xf);
340 Temp = Temp.lshr(4);
341 } while (Temp != 0);
342 Out.write(CurPtr, EndPtr-CurPtr);
343 Out << '@';
344 }
345}
346
347static const TemplateDecl *
348isTemplate(const NamedDecl *ND,
349 SmallVectorImpl<TemplateArgumentLoc> &TemplateArgs) {
350 // Check if we have a function template.
351 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
352 if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
353 if (FD->getTemplateSpecializationArgsAsWritten()) {
354 const ASTTemplateArgumentListInfo *ArgList =
355 FD->getTemplateSpecializationArgsAsWritten();
356 TemplateArgs.append(ArgList->getTemplateArgs(),
357 ArgList->getTemplateArgs() +
358 ArgList->NumTemplateArgs);
359 } else {
360 const TemplateArgumentList *ArgList =
361 FD->getTemplateSpecializationArgs();
362 TemplateArgumentListInfo LI;
363 for (unsigned i = 0, e = ArgList->size(); i != e; ++i)
364 TemplateArgs.push_back(TemplateArgumentLoc(ArgList->get(i),
365 FD->getTypeSourceInfo()));
366 }
367 return TD;
368 }
369 }
370
371 // Check if we have a class template.
372 if (const ClassTemplateSpecializationDecl *Spec =
373 dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
374 TypeSourceInfo *TSI = Spec->getTypeAsWritten();
375 if (TSI) {
376 TemplateSpecializationTypeLoc TSTL =
377 cast<TemplateSpecializationTypeLoc>(TSI->getTypeLoc());
378 TemplateArgumentListInfo LI(TSTL.getLAngleLoc(), TSTL.getRAngleLoc());
379 for (unsigned i = 0, e = TSTL.getNumArgs(); i != e; ++i)
380 TemplateArgs.push_back(TSTL.getArgLoc(i));
381 } else {
382 TemplateArgumentListInfo LI;
383 const TemplateArgumentList &ArgList =
384 Spec->getTemplateArgs();
385 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
386 TemplateArgs.push_back(TemplateArgumentLoc(ArgList[i],
387 TemplateArgumentLocInfo()));
388 }
389 return Spec->getSpecializedTemplate();
390 }
391
392 return 0;
393}
394
395void
396MicrosoftCXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
397 DeclarationName Name) {
398 // <unqualified-name> ::= <operator-name>
399 // ::= <ctor-dtor-name>
400 // ::= <source-name>
401 // ::= <template-name>
402 SmallVector<TemplateArgumentLoc, 2> TemplateArgs;
403 // Check if we have a template.
404 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
405 // We have a template.
406 // Here comes the tricky thing: if we need to mangle something like
407 // void foo(A::X<Y>, B::X<Y>),
408 // the X<Y> part is aliased. However, if you need to mangle
409 // void foo(A::X<A::Y>, A::X<B::Y>),
410 // the A::X<> part is not aliased.
411 // That said, from the mangler's perspective we have a structure like this:
412 // namespace[s] -> type[ -> template-parameters]
413 // but from the Clang perspective we have
414 // type [ -> template-parameters]
415 // \-> namespace[s]
416 // What we do is we create a new mangler, mangle the same type (without
417 // a namespace suffix) using the extra mangler with back references
418 // disabled (to avoid infinite recursion) and then use the mangled type
419 // name as a key to check the mangling of different types for aliasing.
420
421 std::string BackReferenceKey;
422 BackRefMap::iterator Found;
423 if (UseNameBackReferences) {
424 llvm::raw_string_ostream Stream(BackReferenceKey);
425 MicrosoftCXXNameMangler Extra(Context, Stream);
426 Extra.disableBackReferences();
427 Extra.mangleUnqualifiedName(ND, Name);
428 Stream.flush();
429
430 Found = NameBackReferences.find(BackReferenceKey);
431 }
432 if (!UseNameBackReferences || Found == NameBackReferences.end()) {
433 mangleTemplateInstantiationName(TD, TemplateArgs);
434 if (UseNameBackReferences && NameBackReferences.size() < 10) {
435 size_t Size = NameBackReferences.size();
436 NameBackReferences[BackReferenceKey] = Size;
437 }
438 } else {
439 Out << Found->second;
440 }
441 return;
442 }
443
444 switch (Name.getNameKind()) {
445 case DeclarationName::Identifier: {
446 if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
447 mangleSourceName(II);
448 break;
449 }
450
451 // Otherwise, an anonymous entity. We must have a declaration.
452 assert(ND && "mangling empty name without declaration");
453
454 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
455 if (NS->isAnonymousNamespace()) {
456 Out << "?A@";
457 break;
458 }
459 }
460
461 // We must have an anonymous struct.
462 const TagDecl *TD = cast<TagDecl>(ND);
463 if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
464 assert(TD->getDeclContext() == D->getDeclContext() &&
465 "Typedef should not be in another decl context!");
466 assert(D->getDeclName().getAsIdentifierInfo() &&
467 "Typedef was not named!");
468 mangleSourceName(D->getDeclName().getAsIdentifierInfo());
469 break;
470 }
471
472 // When VC encounters an anonymous type with no tag and no typedef,
473 // it literally emits '<unnamed-tag>'.
474 Out << "<unnamed-tag>";
475 break;
476 }
477
478 case DeclarationName::ObjCZeroArgSelector:
479 case DeclarationName::ObjCOneArgSelector:
480 case DeclarationName::ObjCMultiArgSelector:
481 llvm_unreachable("Can't mangle Objective-C selector names here!");
482
483 case DeclarationName::CXXConstructorName:
484 Out << "?0";
485 break;
486
487 case DeclarationName::CXXDestructorName:
488 Out << "?1";
489 break;
490
491 case DeclarationName::CXXConversionFunctionName:
492 // <operator-name> ::= ?B # (cast)
493 // The target type is encoded as the return type.
494 Out << "?B";
495 break;
496
497 case DeclarationName::CXXOperatorName:
498 mangleOperatorName(Name.getCXXOverloadedOperator(), ND->getLocation());
499 break;
500
501 case DeclarationName::CXXLiteralOperatorName: {
502 // FIXME: Was this added in VS2010? Does MS even know how to mangle this?
503 DiagnosticsEngine Diags = Context.getDiags();
504 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
505 "cannot mangle this literal operator yet");
506 Diags.Report(ND->getLocation(), DiagID);
507 break;
508 }
509
510 case DeclarationName::CXXUsingDirective:
511 llvm_unreachable("Can't mangle a using directive name!");
512 }
513}
514
515void MicrosoftCXXNameMangler::manglePostfix(const DeclContext *DC,
516 bool NoFunction) {
517 // <postfix> ::= <unqualified-name> [<postfix>]
518 // ::= <substitution> [<postfix>]
519
520 if (!DC) return;
521
522 while (isa<LinkageSpecDecl>(DC))
523 DC = DC->getParent();
524
525 if (DC->isTranslationUnit())
526 return;
527
528 if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
529 Context.mangleBlock(BD, Out);
530 Out << '@';
531 return manglePostfix(DC->getParent(), NoFunction);
532 }
533
534 if (NoFunction && (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)))
535 return;
536 else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC))
537 mangleObjCMethodName(Method);
538 else if (const FunctionDecl *Func = dyn_cast<FunctionDecl>(DC))
539 mangleLocalName(Func);
540 else {
541 mangleUnqualifiedName(cast<NamedDecl>(DC));
542 manglePostfix(DC->getParent(), NoFunction);
543 }
544}
545
546void MicrosoftCXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO,
547 SourceLocation Loc) {
548 switch (OO) {
549 // ?0 # constructor
550 // ?1 # destructor
551 // <operator-name> ::= ?2 # new
552 case OO_New: Out << "?2"; break;
553 // <operator-name> ::= ?3 # delete
554 case OO_Delete: Out << "?3"; break;
555 // <operator-name> ::= ?4 # =
556 case OO_Equal: Out << "?4"; break;
557 // <operator-name> ::= ?5 # >>
558 case OO_GreaterGreater: Out << "?5"; break;
559 // <operator-name> ::= ?6 # <<
560 case OO_LessLess: Out << "?6"; break;
561 // <operator-name> ::= ?7 # !
562 case OO_Exclaim: Out << "?7"; break;
563 // <operator-name> ::= ?8 # ==
564 case OO_EqualEqual: Out << "?8"; break;
565 // <operator-name> ::= ?9 # !=
566 case OO_ExclaimEqual: Out << "?9"; break;
567 // <operator-name> ::= ?A # []
568 case OO_Subscript: Out << "?A"; break;
569 // ?B # conversion
570 // <operator-name> ::= ?C # ->
571 case OO_Arrow: Out << "?C"; break;
572 // <operator-name> ::= ?D # *
573 case OO_Star: Out << "?D"; break;
574 // <operator-name> ::= ?E # ++
575 case OO_PlusPlus: Out << "?E"; break;
576 // <operator-name> ::= ?F # --
577 case OO_MinusMinus: Out << "?F"; break;
578 // <operator-name> ::= ?G # -
579 case OO_Minus: Out << "?G"; break;
580 // <operator-name> ::= ?H # +
581 case OO_Plus: Out << "?H"; break;
582 // <operator-name> ::= ?I # &
583 case OO_Amp: Out << "?I"; break;
584 // <operator-name> ::= ?J # ->*
585 case OO_ArrowStar: Out << "?J"; break;
586 // <operator-name> ::= ?K # /
587 case OO_Slash: Out << "?K"; break;
588 // <operator-name> ::= ?L # %
589 case OO_Percent: Out << "?L"; break;
590 // <operator-name> ::= ?M # <
591 case OO_Less: Out << "?M"; break;
592 // <operator-name> ::= ?N # <=
593 case OO_LessEqual: Out << "?N"; break;
594 // <operator-name> ::= ?O # >
595 case OO_Greater: Out << "?O"; break;
596 // <operator-name> ::= ?P # >=
597 case OO_GreaterEqual: Out << "?P"; break;
598 // <operator-name> ::= ?Q # ,
599 case OO_Comma: Out << "?Q"; break;
600 // <operator-name> ::= ?R # ()
601 case OO_Call: Out << "?R"; break;
602 // <operator-name> ::= ?S # ~
603 case OO_Tilde: Out << "?S"; break;
604 // <operator-name> ::= ?T # ^
605 case OO_Caret: Out << "?T"; break;
606 // <operator-name> ::= ?U # |
607 case OO_Pipe: Out << "?U"; break;
608 // <operator-name> ::= ?V # &&
609 case OO_AmpAmp: Out << "?V"; break;
610 // <operator-name> ::= ?W # ||
611 case OO_PipePipe: Out << "?W"; break;
612 // <operator-name> ::= ?X # *=
613 case OO_StarEqual: Out << "?X"; break;
614 // <operator-name> ::= ?Y # +=
615 case OO_PlusEqual: Out << "?Y"; break;
616 // <operator-name> ::= ?Z # -=
617 case OO_MinusEqual: Out << "?Z"; break;
618 // <operator-name> ::= ?_0 # /=
619 case OO_SlashEqual: Out << "?_0"; break;
620 // <operator-name> ::= ?_1 # %=
621 case OO_PercentEqual: Out << "?_1"; break;
622 // <operator-name> ::= ?_2 # >>=
623 case OO_GreaterGreaterEqual: Out << "?_2"; break;
624 // <operator-name> ::= ?_3 # <<=
625 case OO_LessLessEqual: Out << "?_3"; break;
626 // <operator-name> ::= ?_4 # &=
627 case OO_AmpEqual: Out << "?_4"; break;
628 // <operator-name> ::= ?_5 # |=
629 case OO_PipeEqual: Out << "?_5"; break;
630 // <operator-name> ::= ?_6 # ^=
631 case OO_CaretEqual: Out << "?_6"; break;
632 // ?_7 # vftable
633 // ?_8 # vbtable
634 // ?_9 # vcall
635 // ?_A # typeof
636 // ?_B # local static guard
637 // ?_C # string
638 // ?_D # vbase destructor
639 // ?_E # vector deleting destructor
640 // ?_F # default constructor closure
641 // ?_G # scalar deleting destructor
642 // ?_H # vector constructor iterator
643 // ?_I # vector destructor iterator
644 // ?_J # vector vbase constructor iterator
645 // ?_K # virtual displacement map
646 // ?_L # eh vector constructor iterator
647 // ?_M # eh vector destructor iterator
648 // ?_N # eh vector vbase constructor iterator
649 // ?_O # copy constructor closure
650 // ?_P<name> # udt returning <name>
651 // ?_Q # <unknown>
652 // ?_R0 # RTTI Type Descriptor
653 // ?_R1 # RTTI Base Class Descriptor at (a,b,c,d)
654 // ?_R2 # RTTI Base Class Array
655 // ?_R3 # RTTI Class Hierarchy Descriptor
656 // ?_R4 # RTTI Complete Object Locator
657 // ?_S # local vftable
658 // ?_T # local vftable constructor closure
659 // <operator-name> ::= ?_U # new[]
660 case OO_Array_New: Out << "?_U"; break;
661 // <operator-name> ::= ?_V # delete[]
662 case OO_Array_Delete: Out << "?_V"; break;
663
664 case OO_Conditional: {
665 DiagnosticsEngine &Diags = Context.getDiags();
666 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
667 "cannot mangle this conditional operator yet");
668 Diags.Report(Loc, DiagID);
669 break;
670 }
671
672 case OO_None:
673 case NUM_OVERLOADED_OPERATORS:
674 llvm_unreachable("Not an overloaded operator");
675 }
676}
677
678void MicrosoftCXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
679 // <source name> ::= <identifier> @
680 std::string key = II->getNameStart();
681 BackRefMap::iterator Found;
682 if (UseNameBackReferences)
683 Found = NameBackReferences.find(key);
684 if (!UseNameBackReferences || Found == NameBackReferences.end()) {
685 Out << II->getName() << '@';
686 if (UseNameBackReferences && NameBackReferences.size() < 10) {
687 size_t Size = NameBackReferences.size();
688 NameBackReferences[key] = Size;
689 }
690 } else {
691 Out << Found->second;
692 }
693}
694
695void MicrosoftCXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
696 Context.mangleObjCMethodName(MD, Out);
697}
698
699// Find out how many function decls live above this one and return an integer
700// suitable for use as the number in a numbered anonymous scope.
701// TODO: Memoize.
702static unsigned getLocalNestingLevel(const FunctionDecl *FD) {
703 const DeclContext *DC = FD->getParent();
704 int level = 1;
705
706 while (DC && !DC->isTranslationUnit()) {
707 if (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)) level++;
708 DC = DC->getParent();
709 }
710
711 return 2*level;
712}
713
714void MicrosoftCXXNameMangler::mangleLocalName(const FunctionDecl *FD) {
715 // <nested-name> ::= <numbered-anonymous-scope> ? <mangled-name>
716 // <numbered-anonymous-scope> ::= ? <number>
717 // Even though the name is rendered in reverse order (e.g.
718 // A::B::C is rendered as C@B@A), VC numbers the scopes from outermost to
719 // innermost. So a method bar in class C local to function foo gets mangled
720 // as something like:
721 // ?bar@C@?1??foo@@YAXXZ@QAEXXZ
722 // This is more apparent when you have a type nested inside a method of a
723 // type nested inside a function. A method baz in class D local to method
724 // bar of class C local to function foo gets mangled as:
725 // ?baz@D@?3??bar@C@?1??foo@@YAXXZ@QAEXXZ@QAEXXZ
726 // This scheme is general enough to support GCC-style nested
727 // functions. You could have a method baz of class C inside a function bar
728 // inside a function foo, like so:
729 // ?baz@C@?3??bar@?1??foo@@YAXXZ@YAXXZ@QAEXXZ
730 int NestLevel = getLocalNestingLevel(FD);
731 Out << '?';
732 mangleNumber(NestLevel);
733 Out << '?';
734 mangle(FD, "?");
735}
736
737void MicrosoftCXXNameMangler::mangleTemplateInstantiationName(
738 const TemplateDecl *TD,
739 const SmallVectorImpl<TemplateArgumentLoc> &TemplateArgs) {
740 // <template-name> ::= <unscoped-template-name> <template-args>
741 // ::= <substitution>
742 // Always start with the unqualified name.
743
744 // Templates have their own context for back references.
745 ArgBackRefMap OuterArgsContext;
746 BackRefMap OuterTemplateContext;
747 NameBackReferences.swap(OuterTemplateContext);
748 TypeBackReferences.swap(OuterArgsContext);
749
750 mangleUnscopedTemplateName(TD);
751 mangleTemplateArgs(TemplateArgs);
752
753 // Restore the previous back reference contexts.
754 NameBackReferences.swap(OuterTemplateContext);
755 TypeBackReferences.swap(OuterArgsContext);
756}
757
758void
759MicrosoftCXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *TD) {
760 // <unscoped-template-name> ::= ?$ <unqualified-name>
761 Out << "?$";
762 mangleUnqualifiedName(TD);
763}
764
765void
766MicrosoftCXXNameMangler::mangleIntegerLiteral(const llvm::APSInt &Value,
767 bool IsBoolean) {
768 // <integer-literal> ::= $0 <number>
769 Out << "$0";
770 // Make sure booleans are encoded as 0/1.
771 if (IsBoolean && Value.getBoolValue())
772 mangleNumber(1);
773 else
774 mangleNumber(Value);
775}
776
777void
778MicrosoftCXXNameMangler::mangleExpression(const Expr *E) {
779 // See if this is a constant expression.
780 llvm::APSInt Value;
781 if (E->isIntegerConstantExpr(Value, Context.getASTContext())) {
782 mangleIntegerLiteral(Value, E->getType()->isBooleanType());
783 return;
784 }
785
786 // As bad as this diagnostic is, it's better than crashing.
787 DiagnosticsEngine &Diags = Context.getDiags();
788 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
789 "cannot yet mangle expression type %0");
790 Diags.Report(E->getExprLoc(), DiagID)
791 << E->getStmtClassName() << E->getSourceRange();
792}
793
794void
795MicrosoftCXXNameMangler::mangleTemplateArgs(
796 const SmallVectorImpl<TemplateArgumentLoc> &TemplateArgs) {
797 // <template-args> ::= {<type> | <integer-literal>}+ @
798 unsigned NumTemplateArgs = TemplateArgs.size();
799 for (unsigned i = 0; i < NumTemplateArgs; ++i) {
800 const TemplateArgumentLoc &TAL = TemplateArgs[i];
801 const TemplateArgument &TA = TAL.getArgument();
802 switch (TA.getKind()) {
803 case TemplateArgument::Null:
804 llvm_unreachable("Can't mangle null template arguments!");
805 case TemplateArgument::Type:
806 mangleType(TA.getAsType(), TAL.getSourceRange());
807 break;
808 case TemplateArgument::Integral:
809 mangleIntegerLiteral(TA.getAsIntegral(),
810 TA.getIntegralType()->isBooleanType());
811 break;
812 case TemplateArgument::Expression:
813 mangleExpression(TA.getAsExpr());
814 break;
815 case TemplateArgument::Template:
816 case TemplateArgument::TemplateExpansion:
817 case TemplateArgument::Declaration:
818 case TemplateArgument::NullPtr:
819 case TemplateArgument::Pack: {
820 // Issue a diagnostic.
821 DiagnosticsEngine &Diags = Context.getDiags();
822 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
823 "cannot mangle this %select{ERROR|ERROR|pointer/reference|nullptr|"
824 "integral|template|template pack expansion|ERROR|parameter pack}0 "
825 "template argument yet");
826 Diags.Report(TAL.getLocation(), DiagID)
827 << TA.getKind()
828 << TAL.getSourceRange();
829 }
830 }
831 }
832 Out << '@';
833}
834
835void MicrosoftCXXNameMangler::mangleQualifiers(Qualifiers Quals,
836 bool IsMember) {
837 // <cvr-qualifiers> ::= [E] [F] [I] <base-cvr-qualifiers>
838 // 'E' means __ptr64 (32-bit only); 'F' means __unaligned (32/64-bit only);
839 // 'I' means __restrict (32/64-bit).
840 // Note that the MSVC __restrict keyword isn't the same as the C99 restrict
841 // keyword!
842 // <base-cvr-qualifiers> ::= A # near
843 // ::= B # near const
844 // ::= C # near volatile
845 // ::= D # near const volatile
846 // ::= E # far (16-bit)
847 // ::= F # far const (16-bit)
848 // ::= G # far volatile (16-bit)
849 // ::= H # far const volatile (16-bit)
850 // ::= I # huge (16-bit)
851 // ::= J # huge const (16-bit)
852 // ::= K # huge volatile (16-bit)
853 // ::= L # huge const volatile (16-bit)
854 // ::= M <basis> # based
855 // ::= N <basis> # based const
856 // ::= O <basis> # based volatile
857 // ::= P <basis> # based const volatile
858 // ::= Q # near member
859 // ::= R # near const member
860 // ::= S # near volatile member
861 // ::= T # near const volatile member
862 // ::= U # far member (16-bit)
863 // ::= V # far const member (16-bit)
864 // ::= W # far volatile member (16-bit)
865 // ::= X # far const volatile member (16-bit)
866 // ::= Y # huge member (16-bit)
867 // ::= Z # huge const member (16-bit)
868 // ::= 0 # huge volatile member (16-bit)
869 // ::= 1 # huge const volatile member (16-bit)
870 // ::= 2 <basis> # based member
871 // ::= 3 <basis> # based const member
872 // ::= 4 <basis> # based volatile member
873 // ::= 5 <basis> # based const volatile member
874 // ::= 6 # near function (pointers only)
875 // ::= 7 # far function (pointers only)
876 // ::= 8 # near method (pointers only)
877 // ::= 9 # far method (pointers only)
878 // ::= _A <basis> # based function (pointers only)
879 // ::= _B <basis> # based function (far?) (pointers only)
880 // ::= _C <basis> # based method (pointers only)
881 // ::= _D <basis> # based method (far?) (pointers only)
882 // ::= _E # block (Clang)
883 // <basis> ::= 0 # __based(void)
884 // ::= 1 # __based(segment)?
885 // ::= 2 <name> # __based(name)
886 // ::= 3 # ?
887 // ::= 4 # ?
888 // ::= 5 # not really based
889 bool HasConst = Quals.hasConst(),
890 HasVolatile = Quals.hasVolatile();
891 if (!IsMember) {
892 if (HasConst && HasVolatile) {
893 Out << 'D';
894 } else if (HasVolatile) {
895 Out << 'C';
896 } else if (HasConst) {
897 Out << 'B';
898 } else {
899 Out << 'A';
900 }
901 } else {
902 if (HasConst && HasVolatile) {
903 Out << 'T';
904 } else if (HasVolatile) {
905 Out << 'S';
906 } else if (HasConst) {
907 Out << 'R';
908 } else {
909 Out << 'Q';
910 }
911 }
912
913 // FIXME: For now, just drop all extension qualifiers on the floor.
914}
915
916void MicrosoftCXXNameMangler::manglePointerQualifiers(Qualifiers Quals) {
917 // <pointer-cvr-qualifiers> ::= P # no qualifiers
918 // ::= Q # const
919 // ::= R # volatile
920 // ::= S # const volatile
921 bool HasConst = Quals.hasConst(),
922 HasVolatile = Quals.hasVolatile();
923 if (HasConst && HasVolatile) {
924 Out << 'S';
925 } else if (HasVolatile) {
926 Out << 'R';
927 } else if (HasConst) {
928 Out << 'Q';
929 } else {
930 Out << 'P';
931 }
932}
933
934void MicrosoftCXXNameMangler::mangleArgumentType(QualType T,
935 SourceRange Range) {
936 void *TypePtr = getASTContext().getCanonicalType(T).getAsOpaquePtr();
937 ArgBackRefMap::iterator Found = TypeBackReferences.find(TypePtr);
938
939 if (Found == TypeBackReferences.end()) {
940 size_t OutSizeBefore = Out.GetNumBytesInBuffer();
941
942 mangleType(T, Range, false);
943
944 // See if it's worth creating a back reference.
945 // Only types longer than 1 character are considered
946 // and only 10 back references slots are available:
947 bool LongerThanOneChar = (Out.GetNumBytesInBuffer() - OutSizeBefore > 1);
948 if (LongerThanOneChar && TypeBackReferences.size() < 10) {
949 size_t Size = TypeBackReferences.size();
950 TypeBackReferences[TypePtr] = Size;
951 }
952 } else {
953 Out << Found->second;
954 }
955}
956
957void MicrosoftCXXNameMangler::mangleType(QualType T, SourceRange Range,
958 bool MangleQualifiers) {
959 // Only operate on the canonical type!
960 T = getASTContext().getCanonicalType(T);
961
962 Qualifiers Quals = T.getLocalQualifiers();
963 // We have to mangle these now, while we still have enough information.
964 if (T->isAnyPointerType() || T->isMemberPointerType() ||
965 T->isBlockPointerType()) {
966 manglePointerQualifiers(Quals);
967 } else if (Quals && MangleQualifiers) {
968 mangleQualifiers(Quals, false);
969 }
970
971 SplitQualType split = T.split();
972 const Type *ty = split.Ty;
973
974 // If we're mangling a qualified array type, push the qualifiers to
975 // the element type.
976 if (split.Quals && isa<ArrayType>(T)) {
977 ty = Context.getASTContext().getAsArrayType(T);
978 }
979
980 switch (ty->getTypeClass()) {
981#define ABSTRACT_TYPE(CLASS, PARENT)
982#define NON_CANONICAL_TYPE(CLASS, PARENT) \
983 case Type::CLASS: \
984 llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
985 return;
986#define TYPE(CLASS, PARENT) \
987 case Type::CLASS: \
988 mangleType(cast<CLASS##Type>(ty), Range); \
989 break;
990#include "clang/AST/TypeNodes.def"
991#undef ABSTRACT_TYPE
992#undef NON_CANONICAL_TYPE
993#undef TYPE
994 }
995}
996
997void MicrosoftCXXNameMangler::mangleType(const BuiltinType *T,
998 SourceRange Range) {
999 // <type> ::= <builtin-type>
1000 // <builtin-type> ::= X # void
1001 // ::= C # signed char
1002 // ::= D # char
1003 // ::= E # unsigned char
1004 // ::= F # short
1005 // ::= G # unsigned short (or wchar_t if it's not a builtin)
1006 // ::= H # int
1007 // ::= I # unsigned int
1008 // ::= J # long
1009 // ::= K # unsigned long
1010 // L # <none>
1011 // ::= M # float
1012 // ::= N # double
1013 // ::= O # long double (__float80 is mangled differently)
1014 // ::= _J # long long, __int64
1015 // ::= _K # unsigned long long, __int64
1016 // ::= _L # __int128
1017 // ::= _M # unsigned __int128
1018 // ::= _N # bool
1019 // _O # <array in parameter>
1020 // ::= _T # __float80 (Intel)
1021 // ::= _W # wchar_t
1022 // ::= _Z # __float80 (Digital Mars)
1023 switch (T->getKind()) {
1024 case BuiltinType::Void: Out << 'X'; break;
1025 case BuiltinType::SChar: Out << 'C'; break;
1026 case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'D'; break;
1027 case BuiltinType::UChar: Out << 'E'; break;
1028 case BuiltinType::Short: Out << 'F'; break;
1029 case BuiltinType::UShort: Out << 'G'; break;
1030 case BuiltinType::Int: Out << 'H'; break;
1031 case BuiltinType::UInt: Out << 'I'; break;
1032 case BuiltinType::Long: Out << 'J'; break;
1033 case BuiltinType::ULong: Out << 'K'; break;
1034 case BuiltinType::Float: Out << 'M'; break;
1035 case BuiltinType::Double: Out << 'N'; break;
1036 // TODO: Determine size and mangle accordingly
1037 case BuiltinType::LongDouble: Out << 'O'; break;
1038 case BuiltinType::LongLong: Out << "_J"; break;
1039 case BuiltinType::ULongLong: Out << "_K"; break;
1040 case BuiltinType::Int128: Out << "_L"; break;
1041 case BuiltinType::UInt128: Out << "_M"; break;
1042 case BuiltinType::Bool: Out << "_N"; break;
1043 case BuiltinType::WChar_S:
1044 case BuiltinType::WChar_U: Out << "_W"; break;
1045
1046#define BUILTIN_TYPE(Id, SingletonId)
1047#define PLACEHOLDER_TYPE(Id, SingletonId) \
1048 case BuiltinType::Id:
1049#include "clang/AST/BuiltinTypes.def"
1050 case BuiltinType::Dependent:
1051 llvm_unreachable("placeholder types shouldn't get to name mangling");
1052
1053 case BuiltinType::ObjCId: Out << "PAUobjc_object@@"; break;
1054 case BuiltinType::ObjCClass: Out << "PAUobjc_class@@"; break;
1055 case BuiltinType::ObjCSel: Out << "PAUobjc_selector@@"; break;
Guy Benyeib13621d2012-12-18 14:38:23 +00001056
1057 case BuiltinType::OCLImage1d: Out << "PAUocl_image1d@@"; break;
1058 case BuiltinType::OCLImage1dArray: Out << "PAUocl_image1darray@@"; break;
1059 case BuiltinType::OCLImage1dBuffer: Out << "PAUocl_image1dbuffer@@"; break;
1060 case BuiltinType::OCLImage2d: Out << "PAUocl_image2d@@"; break;
1061 case BuiltinType::OCLImage2dArray: Out << "PAUocl_image2darray@@"; break;
1062 case BuiltinType::OCLImage3d: Out << "PAUocl_image3d@@"; break;
Guy Benyei7f92f2d2012-12-18 14:30:41 +00001063
1064 case BuiltinType::NullPtr: Out << "$$T"; break;
1065
1066 case BuiltinType::Char16:
1067 case BuiltinType::Char32:
1068 case BuiltinType::Half: {
1069 DiagnosticsEngine &Diags = Context.getDiags();
1070 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1071 "cannot mangle this built-in %0 type yet");
1072 Diags.Report(Range.getBegin(), DiagID)
1073 << T->getName(Context.getASTContext().getPrintingPolicy())
1074 << Range;
1075 break;
1076 }
1077 }
1078}
1079
1080// <type> ::= <function-type>
1081void MicrosoftCXXNameMangler::mangleType(const FunctionProtoType *T,
1082 SourceRange) {
1083 // Structors only appear in decls, so at this point we know it's not a
1084 // structor type.
1085 // FIXME: This may not be lambda-friendly.
1086 Out << "$$A6";
1087 mangleType(T, NULL, false, false);
1088}
1089void MicrosoftCXXNameMangler::mangleType(const FunctionNoProtoType *T,
1090 SourceRange) {
1091 llvm_unreachable("Can't mangle K&R function prototypes");
1092}
1093
1094void MicrosoftCXXNameMangler::mangleType(const FunctionType *T,
1095 const FunctionDecl *D,
1096 bool IsStructor,
1097 bool IsInstMethod) {
1098 // <function-type> ::= <this-cvr-qualifiers> <calling-convention>
1099 // <return-type> <argument-list> <throw-spec>
1100 const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
1101
1102 // If this is a C++ instance method, mangle the CVR qualifiers for the
1103 // this pointer.
1104 if (IsInstMethod)
1105 mangleQualifiers(Qualifiers::fromCVRMask(Proto->getTypeQuals()), false);
1106
1107 mangleCallingConvention(T, IsInstMethod);
1108
1109 // <return-type> ::= <type>
1110 // ::= @ # structors (they have no declared return type)
1111 if (IsStructor)
1112 Out << '@';
1113 else {
1114 QualType Result = Proto->getResultType();
1115 const Type* RT = Result.getTypePtr();
1116 if (!RT->isAnyPointerType() && !RT->isReferenceType()) {
1117 if (Result.hasQualifiers() || !RT->isBuiltinType())
1118 Out << '?';
1119 if (!RT->isBuiltinType() && !Result.hasQualifiers()) {
1120 // Lack of qualifiers for user types is mangled as 'A'.
1121 Out << 'A';
1122 }
1123 }
1124
1125 // FIXME: Get the source range for the result type. Or, better yet,
1126 // implement the unimplemented stuff so we don't need accurate source
1127 // location info anymore :).
1128 mangleType(Result, SourceRange());
1129 }
1130
1131 // <argument-list> ::= X # void
1132 // ::= <type>+ @
1133 // ::= <type>* Z # varargs
1134 if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) {
1135 Out << 'X';
1136 } else {
1137 if (D) {
1138 // If we got a decl, use the type-as-written to make sure arrays
1139 // get mangled right. Note that we can't rely on the TSI
1140 // existing if (for example) the parameter was synthesized.
1141 for (FunctionDecl::param_const_iterator Parm = D->param_begin(),
1142 ParmEnd = D->param_end(); Parm != ParmEnd; ++Parm) {
1143 TypeSourceInfo *TSI = (*Parm)->getTypeSourceInfo();
1144 QualType Type = TSI ? TSI->getType() : (*Parm)->getType();
1145 mangleArgumentType(Type, (*Parm)->getSourceRange());
1146 }
1147 } else {
1148 // Happens for function pointer type arguments for example.
1149 for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
1150 ArgEnd = Proto->arg_type_end();
1151 Arg != ArgEnd; ++Arg)
1152 mangleArgumentType(*Arg, SourceRange());
1153 }
1154 // <builtin-type> ::= Z # ellipsis
1155 if (Proto->isVariadic())
1156 Out << 'Z';
1157 else
1158 Out << '@';
1159 }
1160
1161 mangleThrowSpecification(Proto);
1162}
1163
1164void MicrosoftCXXNameMangler::mangleFunctionClass(const FunctionDecl *FD) {
1165 // <function-class> ::= A # private: near
1166 // ::= B # private: far
1167 // ::= C # private: static near
1168 // ::= D # private: static far
1169 // ::= E # private: virtual near
1170 // ::= F # private: virtual far
1171 // ::= G # private: thunk near
1172 // ::= H # private: thunk far
1173 // ::= I # protected: near
1174 // ::= J # protected: far
1175 // ::= K # protected: static near
1176 // ::= L # protected: static far
1177 // ::= M # protected: virtual near
1178 // ::= N # protected: virtual far
1179 // ::= O # protected: thunk near
1180 // ::= P # protected: thunk far
1181 // ::= Q # public: near
1182 // ::= R # public: far
1183 // ::= S # public: static near
1184 // ::= T # public: static far
1185 // ::= U # public: virtual near
1186 // ::= V # public: virtual far
1187 // ::= W # public: thunk near
1188 // ::= X # public: thunk far
1189 // ::= Y # global near
1190 // ::= Z # global far
1191 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1192 switch (MD->getAccess()) {
1193 default:
1194 case AS_private:
1195 if (MD->isStatic())
1196 Out << 'C';
1197 else if (MD->isVirtual())
1198 Out << 'E';
1199 else
1200 Out << 'A';
1201 break;
1202 case AS_protected:
1203 if (MD->isStatic())
1204 Out << 'K';
1205 else if (MD->isVirtual())
1206 Out << 'M';
1207 else
1208 Out << 'I';
1209 break;
1210 case AS_public:
1211 if (MD->isStatic())
1212 Out << 'S';
1213 else if (MD->isVirtual())
1214 Out << 'U';
1215 else
1216 Out << 'Q';
1217 }
1218 } else
1219 Out << 'Y';
1220}
1221void MicrosoftCXXNameMangler::mangleCallingConvention(const FunctionType *T,
1222 bool IsInstMethod) {
1223 // <calling-convention> ::= A # __cdecl
1224 // ::= B # __export __cdecl
1225 // ::= C # __pascal
1226 // ::= D # __export __pascal
1227 // ::= E # __thiscall
1228 // ::= F # __export __thiscall
1229 // ::= G # __stdcall
1230 // ::= H # __export __stdcall
1231 // ::= I # __fastcall
1232 // ::= J # __export __fastcall
1233 // The 'export' calling conventions are from a bygone era
1234 // (*cough*Win16*cough*) when functions were declared for export with
1235 // that keyword. (It didn't actually export them, it just made them so
1236 // that they could be in a DLL and somebody from another module could call
1237 // them.)
1238 CallingConv CC = T->getCallConv();
1239 if (CC == CC_Default) {
1240 if (IsInstMethod) {
1241 const FunctionProtoType *FPT =
1242 T->getCanonicalTypeUnqualified().castAs<FunctionProtoType>();
1243 bool isVariadic = FPT->isVariadic();
1244 CC = getASTContext().getDefaultCXXMethodCallConv(isVariadic);
1245 } else {
1246 CC = CC_C;
1247 }
1248 }
1249 switch (CC) {
1250 default:
1251 llvm_unreachable("Unsupported CC for mangling");
1252 case CC_Default:
1253 case CC_C: Out << 'A'; break;
1254 case CC_X86Pascal: Out << 'C'; break;
1255 case CC_X86ThisCall: Out << 'E'; break;
1256 case CC_X86StdCall: Out << 'G'; break;
1257 case CC_X86FastCall: Out << 'I'; break;
1258 }
1259}
1260void MicrosoftCXXNameMangler::mangleThrowSpecification(
1261 const FunctionProtoType *FT) {
1262 // <throw-spec> ::= Z # throw(...) (default)
1263 // ::= @ # throw() or __declspec/__attribute__((nothrow))
1264 // ::= <type>+
1265 // NOTE: Since the Microsoft compiler ignores throw specifications, they are
1266 // all actually mangled as 'Z'. (They're ignored because their associated
1267 // functionality isn't implemented, and probably never will be.)
1268 Out << 'Z';
1269}
1270
1271void MicrosoftCXXNameMangler::mangleType(const UnresolvedUsingType *T,
1272 SourceRange Range) {
1273 // Probably should be mangled as a template instantiation; need to see what
1274 // VC does first.
1275 DiagnosticsEngine &Diags = Context.getDiags();
1276 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1277 "cannot mangle this unresolved dependent type yet");
1278 Diags.Report(Range.getBegin(), DiagID)
1279 << Range;
1280}
1281
1282// <type> ::= <union-type> | <struct-type> | <class-type> | <enum-type>
1283// <union-type> ::= T <name>
1284// <struct-type> ::= U <name>
1285// <class-type> ::= V <name>
1286// <enum-type> ::= W <size> <name>
1287void MicrosoftCXXNameMangler::mangleType(const EnumType *T, SourceRange) {
1288 mangleType(cast<TagType>(T));
1289}
1290void MicrosoftCXXNameMangler::mangleType(const RecordType *T, SourceRange) {
1291 mangleType(cast<TagType>(T));
1292}
1293void MicrosoftCXXNameMangler::mangleType(const TagType *T) {
1294 switch (T->getDecl()->getTagKind()) {
1295 case TTK_Union:
1296 Out << 'T';
1297 break;
1298 case TTK_Struct:
1299 case TTK_Interface:
1300 Out << 'U';
1301 break;
1302 case TTK_Class:
1303 Out << 'V';
1304 break;
1305 case TTK_Enum:
1306 Out << 'W';
1307 Out << getASTContext().getTypeSizeInChars(
1308 cast<EnumDecl>(T->getDecl())->getIntegerType()).getQuantity();
1309 break;
1310 }
1311 mangleName(T->getDecl());
1312}
1313
1314// <type> ::= <array-type>
1315// <array-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
1316// [Y <dimension-count> <dimension>+]
1317// <element-type> # as global
1318// ::= Q <cvr-qualifiers> [Y <dimension-count> <dimension>+]
1319// <element-type> # as param
1320// It's supposed to be the other way around, but for some strange reason, it
1321// isn't. Today this behavior is retained for the sole purpose of backwards
1322// compatibility.
1323void MicrosoftCXXNameMangler::mangleType(const ArrayType *T, bool IsGlobal) {
1324 // This isn't a recursive mangling, so now we have to do it all in this
1325 // one call.
1326 if (IsGlobal) {
1327 manglePointerQualifiers(T->getElementType().getQualifiers());
1328 } else {
1329 Out << 'Q';
1330 }
1331 mangleExtraDimensions(T->getElementType());
1332}
1333void MicrosoftCXXNameMangler::mangleType(const ConstantArrayType *T,
1334 SourceRange) {
1335 mangleType(cast<ArrayType>(T), false);
1336}
1337void MicrosoftCXXNameMangler::mangleType(const VariableArrayType *T,
1338 SourceRange) {
1339 mangleType(cast<ArrayType>(T), false);
1340}
1341void MicrosoftCXXNameMangler::mangleType(const DependentSizedArrayType *T,
1342 SourceRange) {
1343 mangleType(cast<ArrayType>(T), false);
1344}
1345void MicrosoftCXXNameMangler::mangleType(const IncompleteArrayType *T,
1346 SourceRange) {
1347 mangleType(cast<ArrayType>(T), false);
1348}
1349void MicrosoftCXXNameMangler::mangleExtraDimensions(QualType ElementTy) {
1350 SmallVector<llvm::APInt, 3> Dimensions;
1351 for (;;) {
1352 if (const ConstantArrayType *CAT =
1353 getASTContext().getAsConstantArrayType(ElementTy)) {
1354 Dimensions.push_back(CAT->getSize());
1355 ElementTy = CAT->getElementType();
1356 } else if (ElementTy->isVariableArrayType()) {
1357 const VariableArrayType *VAT =
1358 getASTContext().getAsVariableArrayType(ElementTy);
1359 DiagnosticsEngine &Diags = Context.getDiags();
1360 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1361 "cannot mangle this variable-length array yet");
1362 Diags.Report(VAT->getSizeExpr()->getExprLoc(), DiagID)
1363 << VAT->getBracketsRange();
1364 return;
1365 } else if (ElementTy->isDependentSizedArrayType()) {
1366 // The dependent expression has to be folded into a constant (TODO).
1367 const DependentSizedArrayType *DSAT =
1368 getASTContext().getAsDependentSizedArrayType(ElementTy);
1369 DiagnosticsEngine &Diags = Context.getDiags();
1370 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1371 "cannot mangle this dependent-length array yet");
1372 Diags.Report(DSAT->getSizeExpr()->getExprLoc(), DiagID)
1373 << DSAT->getBracketsRange();
1374 return;
1375 } else if (ElementTy->isIncompleteArrayType()) continue;
1376 else break;
1377 }
1378 mangleQualifiers(ElementTy.getQualifiers(), false);
1379 // If there are any additional dimensions, mangle them now.
1380 if (Dimensions.size() > 0) {
1381 Out << 'Y';
1382 // <dimension-count> ::= <number> # number of extra dimensions
1383 mangleNumber(Dimensions.size());
1384 for (unsigned Dim = 0; Dim < Dimensions.size(); ++Dim) {
1385 mangleNumber(Dimensions[Dim].getLimitedValue());
1386 }
1387 }
1388 mangleType(ElementTy.getLocalUnqualifiedType(), SourceRange());
1389}
1390
1391// <type> ::= <pointer-to-member-type>
1392// <pointer-to-member-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
1393// <class name> <type>
1394void MicrosoftCXXNameMangler::mangleType(const MemberPointerType *T,
1395 SourceRange Range) {
1396 QualType PointeeType = T->getPointeeType();
1397 if (const FunctionProtoType *FPT = PointeeType->getAs<FunctionProtoType>()) {
1398 Out << '8';
1399 mangleName(T->getClass()->castAs<RecordType>()->getDecl());
1400 mangleType(FPT, NULL, false, true);
1401 } else {
1402 mangleQualifiers(PointeeType.getQualifiers(), true);
1403 mangleName(T->getClass()->castAs<RecordType>()->getDecl());
1404 mangleType(PointeeType.getLocalUnqualifiedType(), Range);
1405 }
1406}
1407
1408void MicrosoftCXXNameMangler::mangleType(const TemplateTypeParmType *T,
1409 SourceRange Range) {
1410 DiagnosticsEngine &Diags = Context.getDiags();
1411 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1412 "cannot mangle this template type parameter type yet");
1413 Diags.Report(Range.getBegin(), DiagID)
1414 << Range;
1415}
1416
1417void MicrosoftCXXNameMangler::mangleType(
1418 const SubstTemplateTypeParmPackType *T,
1419 SourceRange Range) {
1420 DiagnosticsEngine &Diags = Context.getDiags();
1421 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1422 "cannot mangle this substituted parameter pack yet");
1423 Diags.Report(Range.getBegin(), DiagID)
1424 << Range;
1425}
1426
1427// <type> ::= <pointer-type>
1428// <pointer-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers> <type>
1429void MicrosoftCXXNameMangler::mangleType(const PointerType *T,
1430 SourceRange Range) {
1431 QualType PointeeTy = T->getPointeeType();
1432 if (PointeeTy->isArrayType()) {
1433 // Pointers to arrays are mangled like arrays.
1434 mangleExtraDimensions(PointeeTy);
1435 } else if (const FunctionType *FT = PointeeTy->getAs<FunctionType>()) {
1436 // Function pointers are special.
1437 Out << '6';
1438 mangleType(FT, NULL, false, false);
1439 } else {
1440 mangleQualifiers(PointeeTy.getQualifiers(), false);
1441 mangleType(PointeeTy, Range, false);
1442 }
1443}
1444void MicrosoftCXXNameMangler::mangleType(const ObjCObjectPointerType *T,
1445 SourceRange Range) {
1446 // Object pointers never have qualifiers.
1447 Out << 'A';
1448 mangleType(T->getPointeeType(), Range);
1449}
1450
1451// <type> ::= <reference-type>
1452// <reference-type> ::= A <cvr-qualifiers> <type>
1453void MicrosoftCXXNameMangler::mangleType(const LValueReferenceType *T,
1454 SourceRange Range) {
1455 Out << 'A';
1456 QualType PointeeTy = T->getPointeeType();
1457 if (!PointeeTy.hasQualifiers())
1458 // Lack of qualifiers is mangled as 'A'.
1459 Out << 'A';
1460 mangleType(PointeeTy, Range);
1461}
1462
1463// <type> ::= <r-value-reference-type>
1464// <r-value-reference-type> ::= $$Q <cvr-qualifiers> <type>
1465void MicrosoftCXXNameMangler::mangleType(const RValueReferenceType *T,
1466 SourceRange Range) {
1467 Out << "$$Q";
1468 QualType PointeeTy = T->getPointeeType();
1469 if (!PointeeTy.hasQualifiers())
1470 // Lack of qualifiers is mangled as 'A'.
1471 Out << 'A';
1472 mangleType(PointeeTy, Range);
1473}
1474
1475void MicrosoftCXXNameMangler::mangleType(const ComplexType *T,
1476 SourceRange Range) {
1477 DiagnosticsEngine &Diags = Context.getDiags();
1478 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1479 "cannot mangle this complex number type yet");
1480 Diags.Report(Range.getBegin(), DiagID)
1481 << Range;
1482}
1483
1484void MicrosoftCXXNameMangler::mangleType(const VectorType *T,
1485 SourceRange Range) {
1486 DiagnosticsEngine &Diags = Context.getDiags();
1487 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1488 "cannot mangle this vector type yet");
1489 Diags.Report(Range.getBegin(), DiagID)
1490 << Range;
1491}
1492void MicrosoftCXXNameMangler::mangleType(const ExtVectorType *T,
1493 SourceRange Range) {
1494 DiagnosticsEngine &Diags = Context.getDiags();
1495 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1496 "cannot mangle this extended vector type yet");
1497 Diags.Report(Range.getBegin(), DiagID)
1498 << Range;
1499}
1500void MicrosoftCXXNameMangler::mangleType(const DependentSizedExtVectorType *T,
1501 SourceRange Range) {
1502 DiagnosticsEngine &Diags = Context.getDiags();
1503 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1504 "cannot mangle this dependent-sized extended vector type yet");
1505 Diags.Report(Range.getBegin(), DiagID)
1506 << Range;
1507}
1508
1509void MicrosoftCXXNameMangler::mangleType(const ObjCInterfaceType *T,
1510 SourceRange) {
1511 // ObjC interfaces have structs underlying them.
1512 Out << 'U';
1513 mangleName(T->getDecl());
1514}
1515
1516void MicrosoftCXXNameMangler::mangleType(const ObjCObjectType *T,
1517 SourceRange Range) {
1518 // We don't allow overloading by different protocol qualification,
1519 // so mangling them isn't necessary.
1520 mangleType(T->getBaseType(), Range);
1521}
1522
1523void MicrosoftCXXNameMangler::mangleType(const BlockPointerType *T,
1524 SourceRange Range) {
1525 Out << "_E";
1526
1527 QualType pointee = T->getPointeeType();
1528 mangleType(pointee->castAs<FunctionProtoType>(), NULL, false, false);
1529}
1530
1531void MicrosoftCXXNameMangler::mangleType(const InjectedClassNameType *T,
1532 SourceRange Range) {
1533 DiagnosticsEngine &Diags = Context.getDiags();
1534 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1535 "cannot mangle this injected class name type yet");
1536 Diags.Report(Range.getBegin(), DiagID)
1537 << Range;
1538}
1539
1540void MicrosoftCXXNameMangler::mangleType(const TemplateSpecializationType *T,
1541 SourceRange Range) {
1542 DiagnosticsEngine &Diags = Context.getDiags();
1543 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1544 "cannot mangle this template specialization type yet");
1545 Diags.Report(Range.getBegin(), DiagID)
1546 << Range;
1547}
1548
1549void MicrosoftCXXNameMangler::mangleType(const DependentNameType *T,
1550 SourceRange Range) {
1551 DiagnosticsEngine &Diags = Context.getDiags();
1552 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1553 "cannot mangle this dependent name type yet");
1554 Diags.Report(Range.getBegin(), DiagID)
1555 << Range;
1556}
1557
1558void MicrosoftCXXNameMangler::mangleType(
1559 const DependentTemplateSpecializationType *T,
1560 SourceRange Range) {
1561 DiagnosticsEngine &Diags = Context.getDiags();
1562 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1563 "cannot mangle this dependent template specialization type yet");
1564 Diags.Report(Range.getBegin(), DiagID)
1565 << Range;
1566}
1567
1568void MicrosoftCXXNameMangler::mangleType(const PackExpansionType *T,
1569 SourceRange Range) {
1570 DiagnosticsEngine &Diags = Context.getDiags();
1571 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1572 "cannot mangle this pack expansion yet");
1573 Diags.Report(Range.getBegin(), DiagID)
1574 << Range;
1575}
1576
1577void MicrosoftCXXNameMangler::mangleType(const TypeOfType *T,
1578 SourceRange Range) {
1579 DiagnosticsEngine &Diags = Context.getDiags();
1580 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1581 "cannot mangle this typeof(type) yet");
1582 Diags.Report(Range.getBegin(), DiagID)
1583 << Range;
1584}
1585
1586void MicrosoftCXXNameMangler::mangleType(const TypeOfExprType *T,
1587 SourceRange Range) {
1588 DiagnosticsEngine &Diags = Context.getDiags();
1589 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1590 "cannot mangle this typeof(expression) yet");
1591 Diags.Report(Range.getBegin(), DiagID)
1592 << Range;
1593}
1594
1595void MicrosoftCXXNameMangler::mangleType(const DecltypeType *T,
1596 SourceRange Range) {
1597 DiagnosticsEngine &Diags = Context.getDiags();
1598 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1599 "cannot mangle this decltype() yet");
1600 Diags.Report(Range.getBegin(), DiagID)
1601 << Range;
1602}
1603
1604void MicrosoftCXXNameMangler::mangleType(const UnaryTransformType *T,
1605 SourceRange Range) {
1606 DiagnosticsEngine &Diags = Context.getDiags();
1607 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1608 "cannot mangle this unary transform type yet");
1609 Diags.Report(Range.getBegin(), DiagID)
1610 << Range;
1611}
1612
1613void MicrosoftCXXNameMangler::mangleType(const AutoType *T, SourceRange Range) {
1614 DiagnosticsEngine &Diags = Context.getDiags();
1615 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1616 "cannot mangle this 'auto' type yet");
1617 Diags.Report(Range.getBegin(), DiagID)
1618 << Range;
1619}
1620
1621void MicrosoftCXXNameMangler::mangleType(const AtomicType *T,
1622 SourceRange Range) {
1623 DiagnosticsEngine &Diags = Context.getDiags();
1624 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1625 "cannot mangle this C11 atomic type yet");
1626 Diags.Report(Range.getBegin(), DiagID)
1627 << Range;
1628}
1629
1630void MicrosoftMangleContext::mangleName(const NamedDecl *D,
1631 raw_ostream &Out) {
1632 assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
1633 "Invalid mangleName() call, argument is not a variable or function!");
1634 assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
1635 "Invalid mangleName() call on 'structor decl!");
1636
1637 PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
1638 getASTContext().getSourceManager(),
1639 "Mangling declaration");
1640
1641 MicrosoftCXXNameMangler Mangler(*this, Out);
1642 return Mangler.mangle(D);
1643}
1644void MicrosoftMangleContext::mangleThunk(const CXXMethodDecl *MD,
1645 const ThunkInfo &Thunk,
1646 raw_ostream &) {
1647 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1648 "cannot mangle thunk for this method yet");
1649 getDiags().Report(MD->getLocation(), DiagID);
1650}
1651void MicrosoftMangleContext::mangleCXXDtorThunk(const CXXDestructorDecl *DD,
1652 CXXDtorType Type,
1653 const ThisAdjustment &,
1654 raw_ostream &) {
1655 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1656 "cannot mangle thunk for this destructor yet");
1657 getDiags().Report(DD->getLocation(), DiagID);
1658}
1659void MicrosoftMangleContext::mangleCXXVTable(const CXXRecordDecl *RD,
1660 raw_ostream &Out) {
1661 // <mangled-name> ::= ? <operator-name> <class-name> <storage-class>
1662 // <cvr-qualifiers> [<name>] @
1663 // <operator-name> ::= _7 # vftable
1664 // ::= _8 # vbtable
1665 // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
1666 // is always '6' for vftables and '7' for vbtables. (The difference is
1667 // beyond me.)
1668 // TODO: vbtables.
1669 MicrosoftCXXNameMangler Mangler(*this, Out);
1670 Mangler.getStream() << "\01??_7";
1671 Mangler.mangleName(RD);
1672 Mangler.getStream() << "6B";
1673 // TODO: If the class has more than one vtable, mangle in the class it came
1674 // from.
1675 Mangler.getStream() << '@';
1676}
1677void MicrosoftMangleContext::mangleCXXVTT(const CXXRecordDecl *RD,
1678 raw_ostream &) {
1679 llvm_unreachable("The MS C++ ABI does not have virtual table tables!");
1680}
1681void MicrosoftMangleContext::mangleCXXCtorVTable(const CXXRecordDecl *RD,
1682 int64_t Offset,
1683 const CXXRecordDecl *Type,
1684 raw_ostream &) {
1685 llvm_unreachable("The MS C++ ABI does not have constructor vtables!");
1686}
1687void MicrosoftMangleContext::mangleCXXRTTI(QualType T,
1688 raw_ostream &) {
1689 // FIXME: Give a location...
1690 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1691 "cannot mangle RTTI descriptors for type %0 yet");
1692 getDiags().Report(DiagID)
1693 << T.getBaseTypeIdentifier();
1694}
1695void MicrosoftMangleContext::mangleCXXRTTIName(QualType T,
1696 raw_ostream &) {
1697 // FIXME: Give a location...
1698 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1699 "cannot mangle the name of type %0 into RTTI descriptors yet");
1700 getDiags().Report(DiagID)
1701 << T.getBaseTypeIdentifier();
1702}
1703void MicrosoftMangleContext::mangleCXXCtor(const CXXConstructorDecl *D,
1704 CXXCtorType Type,
1705 raw_ostream & Out) {
1706 MicrosoftCXXNameMangler mangler(*this, Out);
1707 mangler.mangle(D);
1708}
1709void MicrosoftMangleContext::mangleCXXDtor(const CXXDestructorDecl *D,
1710 CXXDtorType Type,
1711 raw_ostream & Out) {
1712 MicrosoftCXXNameMangler mangler(*this, Out);
1713 mangler.mangle(D);
1714}
1715void MicrosoftMangleContext::mangleReferenceTemporary(const clang::VarDecl *VD,
1716 raw_ostream &) {
1717 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1718 "cannot mangle this reference temporary yet");
1719 getDiags().Report(VD->getLocation(), DiagID);
1720}
1721
1722MangleContext *clang::createMicrosoftMangleContext(ASTContext &Context,
1723 DiagnosticsEngine &Diags) {
1724 return new MicrosoftMangleContext(Context, Diags);
1725}