blob: ddacdd17eaa226d876639bafca60ae75ed496ece [file] [log] [blame]
John McCallfafaaef2013-03-07 21:37:12 +00001//===--- CGAtomic.cpp - Emit LLVM IR for atomic operations ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the code for emitting atomic operations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CGCall.h"
16#include "CodeGenModule.h"
17#include "clang/AST/ASTContext.h"
Ed Schoutene4692492013-05-31 19:27:59 +000018#include "llvm/ADT/StringExtras.h"
John McCallfafaaef2013-03-07 21:37:12 +000019#include "llvm/IR/DataLayout.h"
20#include "llvm/IR/Intrinsics.h"
John McCall9eda3ab2013-03-07 21:37:17 +000021#include "llvm/IR/Operator.h"
John McCallfafaaef2013-03-07 21:37:12 +000022
23using namespace clang;
24using namespace CodeGen;
25
John McCall9eda3ab2013-03-07 21:37:17 +000026// The ABI values for various atomic memory orderings.
27enum AtomicOrderingKind {
28 AO_ABI_memory_order_relaxed = 0,
29 AO_ABI_memory_order_consume = 1,
30 AO_ABI_memory_order_acquire = 2,
31 AO_ABI_memory_order_release = 3,
32 AO_ABI_memory_order_acq_rel = 4,
33 AO_ABI_memory_order_seq_cst = 5
34};
35
36namespace {
37 class AtomicInfo {
38 CodeGenFunction &CGF;
39 QualType AtomicTy;
40 QualType ValueTy;
41 uint64_t AtomicSizeInBits;
42 uint64_t ValueSizeInBits;
43 CharUnits AtomicAlign;
44 CharUnits ValueAlign;
45 CharUnits LValueAlign;
46 TypeEvaluationKind EvaluationKind;
47 bool UseLibcall;
48 public:
49 AtomicInfo(CodeGenFunction &CGF, LValue &lvalue) : CGF(CGF) {
50 assert(lvalue.isSimple());
51
52 AtomicTy = lvalue.getType();
53 ValueTy = AtomicTy->castAs<AtomicType>()->getValueType();
54 EvaluationKind = CGF.getEvaluationKind(ValueTy);
55
56 ASTContext &C = CGF.getContext();
57
58 uint64_t valueAlignInBits;
59 llvm::tie(ValueSizeInBits, valueAlignInBits) = C.getTypeInfo(ValueTy);
60
61 uint64_t atomicAlignInBits;
62 llvm::tie(AtomicSizeInBits, atomicAlignInBits) = C.getTypeInfo(AtomicTy);
63
64 assert(ValueSizeInBits <= AtomicSizeInBits);
65 assert(valueAlignInBits <= atomicAlignInBits);
66
67 AtomicAlign = C.toCharUnitsFromBits(atomicAlignInBits);
68 ValueAlign = C.toCharUnitsFromBits(valueAlignInBits);
69 if (lvalue.getAlignment().isZero())
70 lvalue.setAlignment(AtomicAlign);
71
72 UseLibcall =
73 (AtomicSizeInBits > uint64_t(C.toBits(lvalue.getAlignment())) ||
74 AtomicSizeInBits > C.getTargetInfo().getMaxAtomicInlineWidth());
75 }
76
77 QualType getAtomicType() const { return AtomicTy; }
78 QualType getValueType() const { return ValueTy; }
79 CharUnits getAtomicAlignment() const { return AtomicAlign; }
80 CharUnits getValueAlignment() const { return ValueAlign; }
81 uint64_t getAtomicSizeInBits() const { return AtomicSizeInBits; }
82 uint64_t getValueSizeInBits() const { return AtomicSizeInBits; }
83 TypeEvaluationKind getEvaluationKind() const { return EvaluationKind; }
84 bool shouldUseLibcall() const { return UseLibcall; }
85
86 /// Is the atomic size larger than the underlying value type?
87 ///
88 /// Note that the absence of padding does not mean that atomic
89 /// objects are completely interchangeable with non-atomic
90 /// objects: we might have promoted the alignment of a type
91 /// without making it bigger.
92 bool hasPadding() const {
93 return (ValueSizeInBits != AtomicSizeInBits);
94 }
95
96 void emitMemSetZeroIfNecessary(LValue dest) const;
97
98 llvm::Value *getAtomicSizeValue() const {
99 CharUnits size = CGF.getContext().toCharUnitsFromBits(AtomicSizeInBits);
100 return CGF.CGM.getSize(size);
101 }
102
103 /// Cast the given pointer to an integer pointer suitable for
104 /// atomic operations.
105 llvm::Value *emitCastToAtomicIntPointer(llvm::Value *addr) const;
106
107 /// Turn an atomic-layout object into an r-value.
108 RValue convertTempToRValue(llvm::Value *addr,
109 AggValueSlot resultSlot) const;
110
111 /// Copy an atomic r-value into atomic-layout memory.
112 void emitCopyIntoMemory(RValue rvalue, LValue lvalue) const;
113
114 /// Project an l-value down to the value field.
115 LValue projectValue(LValue lvalue) const {
116 llvm::Value *addr = lvalue.getAddress();
117 if (hasPadding())
118 addr = CGF.Builder.CreateStructGEP(addr, 0);
119
120 return LValue::MakeAddr(addr, getValueType(), lvalue.getAlignment(),
121 CGF.getContext(), lvalue.getTBAAInfo());
122 }
123
124 /// Materialize an atomic r-value in atomic-layout memory.
125 llvm::Value *materializeRValue(RValue rvalue) const;
126
127 private:
128 bool requiresMemSetZero(llvm::Type *type) const;
129 };
130}
131
132static RValue emitAtomicLibcall(CodeGenFunction &CGF,
133 StringRef fnName,
134 QualType resultType,
135 CallArgList &args) {
136 const CGFunctionInfo &fnInfo =
137 CGF.CGM.getTypes().arrangeFreeFunctionCall(resultType, args,
138 FunctionType::ExtInfo(), RequiredArgs::All);
139 llvm::FunctionType *fnTy = CGF.CGM.getTypes().GetFunctionType(fnInfo);
140 llvm::Constant *fn = CGF.CGM.CreateRuntimeFunction(fnTy, fnName);
141 return CGF.EmitCall(fnInfo, fn, ReturnValueSlot(), args);
142}
143
144/// Does a store of the given IR type modify the full expected width?
145static bool isFullSizeType(CodeGenModule &CGM, llvm::Type *type,
146 uint64_t expectedSize) {
147 return (CGM.getDataLayout().getTypeStoreSize(type) * 8 == expectedSize);
148}
149
150/// Does the atomic type require memsetting to zero before initialization?
151///
152/// The IR type is provided as a way of making certain queries faster.
153bool AtomicInfo::requiresMemSetZero(llvm::Type *type) const {
154 // If the atomic type has size padding, we definitely need a memset.
155 if (hasPadding()) return true;
156
157 // Otherwise, do some simple heuristics to try to avoid it:
158 switch (getEvaluationKind()) {
159 // For scalars and complexes, check whether the store size of the
160 // type uses the full size.
161 case TEK_Scalar:
162 return !isFullSizeType(CGF.CGM, type, AtomicSizeInBits);
163 case TEK_Complex:
164 return !isFullSizeType(CGF.CGM, type->getStructElementType(0),
165 AtomicSizeInBits / 2);
166
167 // Just be pessimistic about aggregates.
168 case TEK_Aggregate:
169 return true;
170 }
171 llvm_unreachable("bad evaluation kind");
172}
173
174void AtomicInfo::emitMemSetZeroIfNecessary(LValue dest) const {
175 llvm::Value *addr = dest.getAddress();
176 if (!requiresMemSetZero(addr->getType()->getPointerElementType()))
177 return;
178
179 CGF.Builder.CreateMemSet(addr, llvm::ConstantInt::get(CGF.Int8Ty, 0),
180 AtomicSizeInBits / 8,
181 dest.getAlignment().getQuantity());
182}
183
John McCallfafaaef2013-03-07 21:37:12 +0000184static void
185EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, llvm::Value *Dest,
186 llvm::Value *Ptr, llvm::Value *Val1, llvm::Value *Val2,
187 uint64_t Size, unsigned Align, llvm::AtomicOrdering Order) {
188 llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add;
189 llvm::Instruction::BinaryOps PostOp = (llvm::Instruction::BinaryOps)0;
190
191 switch (E->getOp()) {
192 case AtomicExpr::AO__c11_atomic_init:
193 llvm_unreachable("Already handled!");
194
195 case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
196 case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
197 case AtomicExpr::AO__atomic_compare_exchange:
198 case AtomicExpr::AO__atomic_compare_exchange_n: {
199 // Note that cmpxchg only supports specifying one ordering and
200 // doesn't support weak cmpxchg, at least at the moment.
201 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
202 LoadVal1->setAlignment(Align);
203 llvm::LoadInst *LoadVal2 = CGF.Builder.CreateLoad(Val2);
204 LoadVal2->setAlignment(Align);
205 llvm::AtomicCmpXchgInst *CXI =
206 CGF.Builder.CreateAtomicCmpXchg(Ptr, LoadVal1, LoadVal2, Order);
207 CXI->setVolatile(E->isVolatile());
208 llvm::StoreInst *StoreVal1 = CGF.Builder.CreateStore(CXI, Val1);
209 StoreVal1->setAlignment(Align);
210 llvm::Value *Cmp = CGF.Builder.CreateICmpEQ(CXI, LoadVal1);
211 CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType()));
212 return;
213 }
214
215 case AtomicExpr::AO__c11_atomic_load:
216 case AtomicExpr::AO__atomic_load_n:
217 case AtomicExpr::AO__atomic_load: {
218 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr);
219 Load->setAtomic(Order);
220 Load->setAlignment(Size);
221 Load->setVolatile(E->isVolatile());
222 llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Load, Dest);
223 StoreDest->setAlignment(Align);
224 return;
225 }
226
227 case AtomicExpr::AO__c11_atomic_store:
228 case AtomicExpr::AO__atomic_store:
229 case AtomicExpr::AO__atomic_store_n: {
230 assert(!Dest && "Store does not return a value");
231 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
232 LoadVal1->setAlignment(Align);
233 llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr);
234 Store->setAtomic(Order);
235 Store->setAlignment(Size);
236 Store->setVolatile(E->isVolatile());
237 return;
238 }
239
240 case AtomicExpr::AO__c11_atomic_exchange:
241 case AtomicExpr::AO__atomic_exchange_n:
242 case AtomicExpr::AO__atomic_exchange:
243 Op = llvm::AtomicRMWInst::Xchg;
244 break;
245
246 case AtomicExpr::AO__atomic_add_fetch:
247 PostOp = llvm::Instruction::Add;
248 // Fall through.
249 case AtomicExpr::AO__c11_atomic_fetch_add:
250 case AtomicExpr::AO__atomic_fetch_add:
251 Op = llvm::AtomicRMWInst::Add;
252 break;
253
254 case AtomicExpr::AO__atomic_sub_fetch:
255 PostOp = llvm::Instruction::Sub;
256 // Fall through.
257 case AtomicExpr::AO__c11_atomic_fetch_sub:
258 case AtomicExpr::AO__atomic_fetch_sub:
259 Op = llvm::AtomicRMWInst::Sub;
260 break;
261
262 case AtomicExpr::AO__atomic_and_fetch:
263 PostOp = llvm::Instruction::And;
264 // Fall through.
265 case AtomicExpr::AO__c11_atomic_fetch_and:
266 case AtomicExpr::AO__atomic_fetch_and:
267 Op = llvm::AtomicRMWInst::And;
268 break;
269
270 case AtomicExpr::AO__atomic_or_fetch:
271 PostOp = llvm::Instruction::Or;
272 // Fall through.
273 case AtomicExpr::AO__c11_atomic_fetch_or:
274 case AtomicExpr::AO__atomic_fetch_or:
275 Op = llvm::AtomicRMWInst::Or;
276 break;
277
278 case AtomicExpr::AO__atomic_xor_fetch:
279 PostOp = llvm::Instruction::Xor;
280 // Fall through.
281 case AtomicExpr::AO__c11_atomic_fetch_xor:
282 case AtomicExpr::AO__atomic_fetch_xor:
283 Op = llvm::AtomicRMWInst::Xor;
284 break;
285
286 case AtomicExpr::AO__atomic_nand_fetch:
287 PostOp = llvm::Instruction::And;
288 // Fall through.
289 case AtomicExpr::AO__atomic_fetch_nand:
290 Op = llvm::AtomicRMWInst::Nand;
291 break;
292 }
293
294 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
295 LoadVal1->setAlignment(Align);
296 llvm::AtomicRMWInst *RMWI =
297 CGF.Builder.CreateAtomicRMW(Op, Ptr, LoadVal1, Order);
298 RMWI->setVolatile(E->isVolatile());
299
300 // For __atomic_*_fetch operations, perform the operation again to
301 // determine the value which was written.
302 llvm::Value *Result = RMWI;
303 if (PostOp)
304 Result = CGF.Builder.CreateBinOp(PostOp, RMWI, LoadVal1);
305 if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch)
306 Result = CGF.Builder.CreateNot(Result);
307 llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Result, Dest);
308 StoreDest->setAlignment(Align);
309}
310
311// This function emits any expression (scalar, complex, or aggregate)
312// into a temporary alloca.
313static llvm::Value *
314EmitValToTemp(CodeGenFunction &CGF, Expr *E) {
315 llvm::Value *DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp");
316 CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(),
317 /*Init*/ true);
318 return DeclPtr;
319}
320
Ed Schoutene4692492013-05-31 19:27:59 +0000321static void
322AddDirectArgument(CodeGenFunction &CGF, CallArgList &Args,
323 bool UseOptimizedLibcall, llvm::Value *Val,
324 QualType ValTy) {
325 if (UseOptimizedLibcall) {
326 // Load value and pass it to the function directly.
327 unsigned Align = CGF.getContext().getTypeAlignInChars(ValTy).getQuantity();
328 Val = CGF.EmitLoadOfScalar(Val, false, Align, ValTy);
329 Args.add(RValue::get(Val), ValTy);
330 } else {
331 // Non-optimized functions always take a reference.
332 Args.add(RValue::get(CGF.EmitCastToVoidPtr(Val)),
333 CGF.getContext().VoidPtrTy);
334 }
335}
336
John McCallfafaaef2013-03-07 21:37:12 +0000337RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest) {
338 QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
339 QualType MemTy = AtomicTy;
340 if (const AtomicType *AT = AtomicTy->getAs<AtomicType>())
341 MemTy = AT->getValueType();
342 CharUnits sizeChars = getContext().getTypeSizeInChars(AtomicTy);
343 uint64_t Size = sizeChars.getQuantity();
344 CharUnits alignChars = getContext().getTypeAlignInChars(AtomicTy);
345 unsigned Align = alignChars.getQuantity();
346 unsigned MaxInlineWidthInBits =
John McCall64aa4b32013-04-16 22:48:15 +0000347 getTarget().getMaxAtomicInlineWidth();
John McCallfafaaef2013-03-07 21:37:12 +0000348 bool UseLibcall = (Size != Align ||
349 getContext().toBits(sizeChars) > MaxInlineWidthInBits);
350
351 llvm::Value *Ptr, *Order, *OrderFail = 0, *Val1 = 0, *Val2 = 0;
352 Ptr = EmitScalarExpr(E->getPtr());
353
354 if (E->getOp() == AtomicExpr::AO__c11_atomic_init) {
355 assert(!Dest && "Init does not return a value");
John McCall9eda3ab2013-03-07 21:37:17 +0000356 LValue lvalue = LValue::MakeAddr(Ptr, AtomicTy, alignChars, getContext());
357 EmitAtomicInit(E->getVal1(), lvalue);
358 return RValue::get(0);
John McCallfafaaef2013-03-07 21:37:12 +0000359 }
360
361 Order = EmitScalarExpr(E->getOrder());
362
363 switch (E->getOp()) {
364 case AtomicExpr::AO__c11_atomic_init:
365 llvm_unreachable("Already handled!");
366
367 case AtomicExpr::AO__c11_atomic_load:
368 case AtomicExpr::AO__atomic_load_n:
369 break;
370
371 case AtomicExpr::AO__atomic_load:
372 Dest = EmitScalarExpr(E->getVal1());
373 break;
374
375 case AtomicExpr::AO__atomic_store:
376 Val1 = EmitScalarExpr(E->getVal1());
377 break;
378
379 case AtomicExpr::AO__atomic_exchange:
380 Val1 = EmitScalarExpr(E->getVal1());
381 Dest = EmitScalarExpr(E->getVal2());
382 break;
383
384 case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
385 case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
386 case AtomicExpr::AO__atomic_compare_exchange_n:
387 case AtomicExpr::AO__atomic_compare_exchange:
388 Val1 = EmitScalarExpr(E->getVal1());
389 if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange)
390 Val2 = EmitScalarExpr(E->getVal2());
391 else
392 Val2 = EmitValToTemp(*this, E->getVal2());
393 OrderFail = EmitScalarExpr(E->getOrderFail());
394 // Evaluate and discard the 'weak' argument.
395 if (E->getNumSubExprs() == 6)
396 EmitScalarExpr(E->getWeak());
397 break;
398
399 case AtomicExpr::AO__c11_atomic_fetch_add:
400 case AtomicExpr::AO__c11_atomic_fetch_sub:
401 if (MemTy->isPointerType()) {
402 // For pointer arithmetic, we're required to do a bit of math:
403 // adding 1 to an int* is not the same as adding 1 to a uintptr_t.
404 // ... but only for the C11 builtins. The GNU builtins expect the
405 // user to multiply by sizeof(T).
406 QualType Val1Ty = E->getVal1()->getType();
407 llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1());
408 CharUnits PointeeIncAmt =
409 getContext().getTypeSizeInChars(MemTy->getPointeeType());
410 Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt));
411 Val1 = CreateMemTemp(Val1Ty, ".atomictmp");
412 EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Val1, Val1Ty));
413 break;
414 }
415 // Fall through.
416 case AtomicExpr::AO__atomic_fetch_add:
417 case AtomicExpr::AO__atomic_fetch_sub:
418 case AtomicExpr::AO__atomic_add_fetch:
419 case AtomicExpr::AO__atomic_sub_fetch:
420 case AtomicExpr::AO__c11_atomic_store:
421 case AtomicExpr::AO__c11_atomic_exchange:
422 case AtomicExpr::AO__atomic_store_n:
423 case AtomicExpr::AO__atomic_exchange_n:
424 case AtomicExpr::AO__c11_atomic_fetch_and:
425 case AtomicExpr::AO__c11_atomic_fetch_or:
426 case AtomicExpr::AO__c11_atomic_fetch_xor:
427 case AtomicExpr::AO__atomic_fetch_and:
428 case AtomicExpr::AO__atomic_fetch_or:
429 case AtomicExpr::AO__atomic_fetch_xor:
430 case AtomicExpr::AO__atomic_fetch_nand:
431 case AtomicExpr::AO__atomic_and_fetch:
432 case AtomicExpr::AO__atomic_or_fetch:
433 case AtomicExpr::AO__atomic_xor_fetch:
434 case AtomicExpr::AO__atomic_nand_fetch:
435 Val1 = EmitValToTemp(*this, E->getVal1());
436 break;
437 }
438
439 if (!E->getType()->isVoidType() && !Dest)
440 Dest = CreateMemTemp(E->getType(), ".atomicdst");
441
442 // Use a library call. See: http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary .
443 if (UseLibcall) {
Ed Schoutene4692492013-05-31 19:27:59 +0000444 bool UseOptimizedLibcall = false;
445 switch (E->getOp()) {
446 case AtomicExpr::AO__c11_atomic_fetch_add:
447 case AtomicExpr::AO__atomic_fetch_add:
448 case AtomicExpr::AO__c11_atomic_fetch_and:
449 case AtomicExpr::AO__atomic_fetch_and:
450 case AtomicExpr::AO__c11_atomic_fetch_or:
451 case AtomicExpr::AO__atomic_fetch_or:
452 case AtomicExpr::AO__c11_atomic_fetch_sub:
453 case AtomicExpr::AO__atomic_fetch_sub:
454 case AtomicExpr::AO__c11_atomic_fetch_xor:
455 case AtomicExpr::AO__atomic_fetch_xor:
456 // For these, only library calls for certain sizes exist.
457 UseOptimizedLibcall = true;
458 break;
459 default:
460 // Only use optimized library calls for sizes for which they exist.
461 if (Size == 1 || Size == 2 || Size == 4 || Size == 8)
462 UseOptimizedLibcall = true;
463 break;
464 }
John McCallfafaaef2013-03-07 21:37:12 +0000465
John McCallfafaaef2013-03-07 21:37:12 +0000466 CallArgList Args;
Ed Schoutene4692492013-05-31 19:27:59 +0000467 if (!UseOptimizedLibcall) {
468 // For non-optimized library calls, the size is the first parameter
469 Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)),
470 getContext().getSizeType());
471 }
472 // Atomic address is the first or second parameter
John McCallfafaaef2013-03-07 21:37:12 +0000473 Args.add(RValue::get(EmitCastToVoidPtr(Ptr)),
474 getContext().VoidPtrTy);
475
Ed Schoutene4692492013-05-31 19:27:59 +0000476 std::string LibCallName;
477 QualType RetTy;
478 bool HaveRetTy = false;
John McCallfafaaef2013-03-07 21:37:12 +0000479 switch (E->getOp()) {
480 // There is only one libcall for compare an exchange, because there is no
481 // optimisation benefit possible from a libcall version of a weak compare
482 // and exchange.
Ed Schoutene4692492013-05-31 19:27:59 +0000483 // bool __atomic_compare_exchange(size_t size, void *mem, void *expected,
John McCallfafaaef2013-03-07 21:37:12 +0000484 // void *desired, int success, int failure)
Ed Schoutene4692492013-05-31 19:27:59 +0000485 // bool __atomic_compare_exchange_N(T *mem, T *expected, T desired,
486 // int success, int failure)
John McCallfafaaef2013-03-07 21:37:12 +0000487 case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
488 case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
489 case AtomicExpr::AO__atomic_compare_exchange:
490 case AtomicExpr::AO__atomic_compare_exchange_n:
491 LibCallName = "__atomic_compare_exchange";
492 RetTy = getContext().BoolTy;
Ed Schoutene4692492013-05-31 19:27:59 +0000493 HaveRetTy = true;
John McCallfafaaef2013-03-07 21:37:12 +0000494 Args.add(RValue::get(EmitCastToVoidPtr(Val1)),
495 getContext().VoidPtrTy);
Ed Schoutene4692492013-05-31 19:27:59 +0000496 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val2, MemTy);
John McCallfafaaef2013-03-07 21:37:12 +0000497 Args.add(RValue::get(Order),
498 getContext().IntTy);
499 Order = OrderFail;
500 break;
501 // void __atomic_exchange(size_t size, void *mem, void *val, void *return,
502 // int order)
Ed Schoutene4692492013-05-31 19:27:59 +0000503 // T __atomic_exchange_N(T *mem, T val, int order)
John McCallfafaaef2013-03-07 21:37:12 +0000504 case AtomicExpr::AO__c11_atomic_exchange:
505 case AtomicExpr::AO__atomic_exchange_n:
506 case AtomicExpr::AO__atomic_exchange:
507 LibCallName = "__atomic_exchange";
Ed Schoutene4692492013-05-31 19:27:59 +0000508 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, MemTy);
John McCallfafaaef2013-03-07 21:37:12 +0000509 break;
510 // void __atomic_store(size_t size, void *mem, void *val, int order)
Ed Schoutene4692492013-05-31 19:27:59 +0000511 // void __atomic_store_N(T *mem, T val, int order)
John McCallfafaaef2013-03-07 21:37:12 +0000512 case AtomicExpr::AO__c11_atomic_store:
513 case AtomicExpr::AO__atomic_store:
514 case AtomicExpr::AO__atomic_store_n:
515 LibCallName = "__atomic_store";
Ed Schoutene4692492013-05-31 19:27:59 +0000516 RetTy = getContext().VoidTy;
517 HaveRetTy = true;
518 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, MemTy);
John McCallfafaaef2013-03-07 21:37:12 +0000519 break;
520 // void __atomic_load(size_t size, void *mem, void *return, int order)
Ed Schoutene4692492013-05-31 19:27:59 +0000521 // T __atomic_load_N(T *mem, int order)
John McCallfafaaef2013-03-07 21:37:12 +0000522 case AtomicExpr::AO__c11_atomic_load:
523 case AtomicExpr::AO__atomic_load:
524 case AtomicExpr::AO__atomic_load_n:
525 LibCallName = "__atomic_load";
Ed Schoutene4692492013-05-31 19:27:59 +0000526 break;
527 // T __atomic_fetch_add_N(T *mem, T val, int order)
528 case AtomicExpr::AO__c11_atomic_fetch_add:
529 case AtomicExpr::AO__atomic_fetch_add:
530 LibCallName = "__atomic_fetch_add";
531 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, MemTy);
532 break;
533 // T __atomic_fetch_and_N(T *mem, T val, int order)
534 case AtomicExpr::AO__c11_atomic_fetch_and:
535 case AtomicExpr::AO__atomic_fetch_and:
536 LibCallName = "__atomic_fetch_and";
537 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, MemTy);
538 break;
539 // T __atomic_fetch_or_N(T *mem, T val, int order)
540 case AtomicExpr::AO__c11_atomic_fetch_or:
541 case AtomicExpr::AO__atomic_fetch_or:
542 LibCallName = "__atomic_fetch_or";
543 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, MemTy);
544 break;
545 // T __atomic_fetch_sub_N(T *mem, T val, int order)
546 case AtomicExpr::AO__c11_atomic_fetch_sub:
547 case AtomicExpr::AO__atomic_fetch_sub:
548 LibCallName = "__atomic_fetch_sub";
549 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, MemTy);
550 break;
551 // T __atomic_fetch_xor_N(T *mem, T val, int order)
552 case AtomicExpr::AO__c11_atomic_fetch_xor:
553 case AtomicExpr::AO__atomic_fetch_xor:
554 LibCallName = "__atomic_fetch_xor";
555 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, MemTy);
John McCallfafaaef2013-03-07 21:37:12 +0000556 break;
John McCallfafaaef2013-03-07 21:37:12 +0000557 default: return EmitUnsupportedRValue(E, "atomic library call");
558 }
Ed Schoutene4692492013-05-31 19:27:59 +0000559
560 // Optimized functions have the size in their name.
561 if (UseOptimizedLibcall)
562 LibCallName += "_" + llvm::utostr(Size);
563 // By default, assume we return a value of the atomic type.
564 if (!HaveRetTy) {
565 if (UseOptimizedLibcall) {
566 // Value is returned directly.
567 RetTy = MemTy;
568 } else {
569 // Value is returned through parameter before the order.
570 RetTy = getContext().VoidTy;
571 Args.add(RValue::get(EmitCastToVoidPtr(Dest)),
572 getContext().VoidPtrTy);
573 }
574 }
John McCallfafaaef2013-03-07 21:37:12 +0000575 // order is always the last parameter
576 Args.add(RValue::get(Order),
577 getContext().IntTy);
578
579 const CGFunctionInfo &FuncInfo =
580 CGM.getTypes().arrangeFreeFunctionCall(RetTy, Args,
581 FunctionType::ExtInfo(), RequiredArgs::All);
582 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
583 llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
584 RValue Res = EmitCall(FuncInfo, Func, ReturnValueSlot(), Args);
Ed Schoutene4692492013-05-31 19:27:59 +0000585 if (!RetTy->isVoidType())
John McCallfafaaef2013-03-07 21:37:12 +0000586 return Res;
587 if (E->getType()->isVoidType())
588 return RValue::get(0);
589 return convertTempToRValue(Dest, E->getType());
590 }
591
592 bool IsStore = E->getOp() == AtomicExpr::AO__c11_atomic_store ||
593 E->getOp() == AtomicExpr::AO__atomic_store ||
594 E->getOp() == AtomicExpr::AO__atomic_store_n;
595 bool IsLoad = E->getOp() == AtomicExpr::AO__c11_atomic_load ||
596 E->getOp() == AtomicExpr::AO__atomic_load ||
597 E->getOp() == AtomicExpr::AO__atomic_load_n;
598
599 llvm::Type *IPtrTy =
600 llvm::IntegerType::get(getLLVMContext(), Size * 8)->getPointerTo();
601 llvm::Value *OrigDest = Dest;
602 Ptr = Builder.CreateBitCast(Ptr, IPtrTy);
603 if (Val1) Val1 = Builder.CreateBitCast(Val1, IPtrTy);
604 if (Val2) Val2 = Builder.CreateBitCast(Val2, IPtrTy);
605 if (Dest && !E->isCmpXChg()) Dest = Builder.CreateBitCast(Dest, IPtrTy);
606
607 if (isa<llvm::ConstantInt>(Order)) {
608 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
609 switch (ord) {
John McCall9eda3ab2013-03-07 21:37:17 +0000610 case AO_ABI_memory_order_relaxed:
John McCallfafaaef2013-03-07 21:37:12 +0000611 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
612 llvm::Monotonic);
613 break;
John McCall9eda3ab2013-03-07 21:37:17 +0000614 case AO_ABI_memory_order_consume:
615 case AO_ABI_memory_order_acquire:
John McCallfafaaef2013-03-07 21:37:12 +0000616 if (IsStore)
617 break; // Avoid crashing on code with undefined behavior
618 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
619 llvm::Acquire);
620 break;
John McCall9eda3ab2013-03-07 21:37:17 +0000621 case AO_ABI_memory_order_release:
John McCallfafaaef2013-03-07 21:37:12 +0000622 if (IsLoad)
623 break; // Avoid crashing on code with undefined behavior
624 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
625 llvm::Release);
626 break;
John McCall9eda3ab2013-03-07 21:37:17 +0000627 case AO_ABI_memory_order_acq_rel:
John McCallfafaaef2013-03-07 21:37:12 +0000628 if (IsLoad || IsStore)
629 break; // Avoid crashing on code with undefined behavior
630 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
631 llvm::AcquireRelease);
632 break;
John McCall9eda3ab2013-03-07 21:37:17 +0000633 case AO_ABI_memory_order_seq_cst:
John McCallfafaaef2013-03-07 21:37:12 +0000634 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
635 llvm::SequentiallyConsistent);
636 break;
637 default: // invalid order
638 // We should not ever get here normally, but it's hard to
639 // enforce that in general.
640 break;
641 }
642 if (E->getType()->isVoidType())
643 return RValue::get(0);
644 return convertTempToRValue(OrigDest, E->getType());
645 }
646
647 // Long case, when Order isn't obviously constant.
648
649 // Create all the relevant BB's
650 llvm::BasicBlock *MonotonicBB = 0, *AcquireBB = 0, *ReleaseBB = 0,
651 *AcqRelBB = 0, *SeqCstBB = 0;
652 MonotonicBB = createBasicBlock("monotonic", CurFn);
653 if (!IsStore)
654 AcquireBB = createBasicBlock("acquire", CurFn);
655 if (!IsLoad)
656 ReleaseBB = createBasicBlock("release", CurFn);
657 if (!IsLoad && !IsStore)
658 AcqRelBB = createBasicBlock("acqrel", CurFn);
659 SeqCstBB = createBasicBlock("seqcst", CurFn);
660 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
661
662 // Create the switch for the split
663 // MonotonicBB is arbitrarily chosen as the default case; in practice, this
664 // doesn't matter unless someone is crazy enough to use something that
665 // doesn't fold to a constant for the ordering.
666 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
667 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB);
668
669 // Emit all the different atomics
670 Builder.SetInsertPoint(MonotonicBB);
671 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
672 llvm::Monotonic);
673 Builder.CreateBr(ContBB);
674 if (!IsStore) {
675 Builder.SetInsertPoint(AcquireBB);
676 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
677 llvm::Acquire);
678 Builder.CreateBr(ContBB);
679 SI->addCase(Builder.getInt32(1), AcquireBB);
680 SI->addCase(Builder.getInt32(2), AcquireBB);
681 }
682 if (!IsLoad) {
683 Builder.SetInsertPoint(ReleaseBB);
684 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
685 llvm::Release);
686 Builder.CreateBr(ContBB);
687 SI->addCase(Builder.getInt32(3), ReleaseBB);
688 }
689 if (!IsLoad && !IsStore) {
690 Builder.SetInsertPoint(AcqRelBB);
691 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
692 llvm::AcquireRelease);
693 Builder.CreateBr(ContBB);
694 SI->addCase(Builder.getInt32(4), AcqRelBB);
695 }
696 Builder.SetInsertPoint(SeqCstBB);
697 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
698 llvm::SequentiallyConsistent);
699 Builder.CreateBr(ContBB);
700 SI->addCase(Builder.getInt32(5), SeqCstBB);
701
702 // Cleanup and return
703 Builder.SetInsertPoint(ContBB);
704 if (E->getType()->isVoidType())
705 return RValue::get(0);
706 return convertTempToRValue(OrigDest, E->getType());
707}
John McCall9eda3ab2013-03-07 21:37:17 +0000708
709llvm::Value *AtomicInfo::emitCastToAtomicIntPointer(llvm::Value *addr) const {
710 unsigned addrspace =
711 cast<llvm::PointerType>(addr->getType())->getAddressSpace();
712 llvm::IntegerType *ty =
713 llvm::IntegerType::get(CGF.getLLVMContext(), AtomicSizeInBits);
714 return CGF.Builder.CreateBitCast(addr, ty->getPointerTo(addrspace));
715}
716
717RValue AtomicInfo::convertTempToRValue(llvm::Value *addr,
718 AggValueSlot resultSlot) const {
719 if (EvaluationKind == TEK_Aggregate) {
720 // Nothing to do if the result is ignored.
721 if (resultSlot.isIgnored()) return resultSlot.asRValue();
722
723 assert(resultSlot.getAddr() == addr || hasPadding());
724
725 // In these cases, we should have emitted directly into the result slot.
726 if (!hasPadding() || resultSlot.isValueOfAtomic())
727 return resultSlot.asRValue();
728
729 // Otherwise, fall into the common path.
730 }
731
732 // Drill into the padding structure if we have one.
733 if (hasPadding())
734 addr = CGF.Builder.CreateStructGEP(addr, 0);
735
736 // If we're emitting to an aggregate, copy into the result slot.
737 if (EvaluationKind == TEK_Aggregate) {
738 CGF.EmitAggregateCopy(resultSlot.getAddr(), addr, getValueType(),
739 resultSlot.isVolatile());
740 return resultSlot.asRValue();
741 }
742
743 // Otherwise, just convert the temporary to an r-value using the
744 // normal conversion routine.
745 return CGF.convertTempToRValue(addr, getValueType());
746}
747
748/// Emit a load from an l-value of atomic type. Note that the r-value
749/// we produce is an r-value of the atomic *value* type.
750RValue CodeGenFunction::EmitAtomicLoad(LValue src, AggValueSlot resultSlot) {
751 AtomicInfo atomics(*this, src);
752
753 // Check whether we should use a library call.
754 if (atomics.shouldUseLibcall()) {
755 llvm::Value *tempAddr;
756 if (resultSlot.isValueOfAtomic()) {
757 assert(atomics.getEvaluationKind() == TEK_Aggregate);
758 tempAddr = resultSlot.getPaddedAtomicAddr();
759 } else if (!resultSlot.isIgnored() && !atomics.hasPadding()) {
760 assert(atomics.getEvaluationKind() == TEK_Aggregate);
761 tempAddr = resultSlot.getAddr();
762 } else {
763 tempAddr = CreateMemTemp(atomics.getAtomicType(), "atomic-load-temp");
764 }
765
766 // void __atomic_load(size_t size, void *mem, void *return, int order);
767 CallArgList args;
768 args.add(RValue::get(atomics.getAtomicSizeValue()),
769 getContext().getSizeType());
770 args.add(RValue::get(EmitCastToVoidPtr(src.getAddress())),
771 getContext().VoidPtrTy);
772 args.add(RValue::get(EmitCastToVoidPtr(tempAddr)),
773 getContext().VoidPtrTy);
774 args.add(RValue::get(llvm::ConstantInt::get(IntTy,
775 AO_ABI_memory_order_seq_cst)),
776 getContext().IntTy);
777 emitAtomicLibcall(*this, "__atomic_load", getContext().VoidTy, args);
778
779 // Produce the r-value.
780 return atomics.convertTempToRValue(tempAddr, resultSlot);
781 }
782
783 // Okay, we're doing this natively.
784 llvm::Value *addr = atomics.emitCastToAtomicIntPointer(src.getAddress());
785 llvm::LoadInst *load = Builder.CreateLoad(addr, "atomic-load");
786 load->setAtomic(llvm::SequentiallyConsistent);
787
788 // Other decoration.
789 load->setAlignment(src.getAlignment().getQuantity());
790 if (src.isVolatileQualified())
791 load->setVolatile(true);
792 if (src.getTBAAInfo())
793 CGM.DecorateInstruction(load, src.getTBAAInfo());
794
795 // Okay, turn that back into the original value type.
796 QualType valueType = atomics.getValueType();
797 llvm::Value *result = load;
798
799 // If we're ignoring an aggregate return, don't do anything.
800 if (atomics.getEvaluationKind() == TEK_Aggregate && resultSlot.isIgnored())
801 return RValue::getAggregate(0, false);
802
803 // The easiest way to do this this is to go through memory, but we
804 // try not to in some easy cases.
805 if (atomics.getEvaluationKind() == TEK_Scalar && !atomics.hasPadding()) {
806 llvm::Type *resultTy = CGM.getTypes().ConvertTypeForMem(valueType);
807 if (isa<llvm::IntegerType>(resultTy)) {
808 assert(result->getType() == resultTy);
809 result = EmitFromMemory(result, valueType);
810 } else if (isa<llvm::PointerType>(resultTy)) {
811 result = Builder.CreateIntToPtr(result, resultTy);
812 } else {
813 result = Builder.CreateBitCast(result, resultTy);
814 }
815 return RValue::get(result);
816 }
817
818 // Create a temporary. This needs to be big enough to hold the
819 // atomic integer.
820 llvm::Value *temp;
821 bool tempIsVolatile = false;
822 CharUnits tempAlignment;
823 if (atomics.getEvaluationKind() == TEK_Aggregate &&
824 (!atomics.hasPadding() || resultSlot.isValueOfAtomic())) {
825 assert(!resultSlot.isIgnored());
826 if (resultSlot.isValueOfAtomic()) {
827 temp = resultSlot.getPaddedAtomicAddr();
828 tempAlignment = atomics.getAtomicAlignment();
829 } else {
830 temp = resultSlot.getAddr();
831 tempAlignment = atomics.getValueAlignment();
832 }
833 tempIsVolatile = resultSlot.isVolatile();
834 } else {
835 temp = CreateMemTemp(atomics.getAtomicType(), "atomic-load-temp");
836 tempAlignment = atomics.getAtomicAlignment();
837 }
838
839 // Slam the integer into the temporary.
840 llvm::Value *castTemp = atomics.emitCastToAtomicIntPointer(temp);
841 Builder.CreateAlignedStore(result, castTemp, tempAlignment.getQuantity())
842 ->setVolatile(tempIsVolatile);
843
844 return atomics.convertTempToRValue(temp, resultSlot);
845}
846
847
848
849/// Copy an r-value into memory as part of storing to an atomic type.
850/// This needs to create a bit-pattern suitable for atomic operations.
851void AtomicInfo::emitCopyIntoMemory(RValue rvalue, LValue dest) const {
852 // If we have an r-value, the rvalue should be of the atomic type,
853 // which means that the caller is responsible for having zeroed
854 // any padding. Just do an aggregate copy of that type.
855 if (rvalue.isAggregate()) {
856 CGF.EmitAggregateCopy(dest.getAddress(),
857 rvalue.getAggregateAddr(),
858 getAtomicType(),
859 (rvalue.isVolatileQualified()
860 || dest.isVolatileQualified()),
861 dest.getAlignment());
862 return;
863 }
864
865 // Okay, otherwise we're copying stuff.
866
867 // Zero out the buffer if necessary.
868 emitMemSetZeroIfNecessary(dest);
869
870 // Drill past the padding if present.
871 dest = projectValue(dest);
872
873 // Okay, store the rvalue in.
874 if (rvalue.isScalar()) {
875 CGF.EmitStoreOfScalar(rvalue.getScalarVal(), dest, /*init*/ true);
876 } else {
877 CGF.EmitStoreOfComplex(rvalue.getComplexVal(), dest, /*init*/ true);
878 }
879}
880
881
882/// Materialize an r-value into memory for the purposes of storing it
883/// to an atomic type.
884llvm::Value *AtomicInfo::materializeRValue(RValue rvalue) const {
885 // Aggregate r-values are already in memory, and EmitAtomicStore
886 // requires them to be values of the atomic type.
887 if (rvalue.isAggregate())
888 return rvalue.getAggregateAddr();
889
890 // Otherwise, make a temporary and materialize into it.
891 llvm::Value *temp = CGF.CreateMemTemp(getAtomicType(), "atomic-store-temp");
892 LValue tempLV = CGF.MakeAddrLValue(temp, getAtomicType(), getAtomicAlignment());
893 emitCopyIntoMemory(rvalue, tempLV);
894 return temp;
895}
896
897/// Emit a store to an l-value of atomic type.
898///
899/// Note that the r-value is expected to be an r-value *of the atomic
900/// type*; this means that for aggregate r-values, it should include
901/// storage for any padding that was necessary.
902void CodeGenFunction::EmitAtomicStore(RValue rvalue, LValue dest,
903 bool isInit) {
904 // If this is an aggregate r-value, it should agree in type except
905 // maybe for address-space qualification.
906 assert(!rvalue.isAggregate() ||
907 rvalue.getAggregateAddr()->getType()->getPointerElementType()
908 == dest.getAddress()->getType()->getPointerElementType());
909
910 AtomicInfo atomics(*this, dest);
911
912 // If this is an initialization, just put the value there normally.
913 if (isInit) {
914 atomics.emitCopyIntoMemory(rvalue, dest);
915 return;
916 }
917
918 // Check whether we should use a library call.
919 if (atomics.shouldUseLibcall()) {
920 // Produce a source address.
921 llvm::Value *srcAddr = atomics.materializeRValue(rvalue);
922
923 // void __atomic_store(size_t size, void *mem, void *val, int order)
924 CallArgList args;
925 args.add(RValue::get(atomics.getAtomicSizeValue()),
926 getContext().getSizeType());
927 args.add(RValue::get(EmitCastToVoidPtr(dest.getAddress())),
928 getContext().VoidPtrTy);
929 args.add(RValue::get(EmitCastToVoidPtr(srcAddr)),
930 getContext().VoidPtrTy);
931 args.add(RValue::get(llvm::ConstantInt::get(IntTy,
932 AO_ABI_memory_order_seq_cst)),
933 getContext().IntTy);
934 emitAtomicLibcall(*this, "__atomic_store", getContext().VoidTy, args);
935 return;
936 }
937
938 // Okay, we're doing this natively.
939 llvm::Value *intValue;
940
941 // If we've got a scalar value of the right size, try to avoid going
942 // through memory.
943 if (rvalue.isScalar() && !atomics.hasPadding()) {
944 llvm::Value *value = rvalue.getScalarVal();
945 if (isa<llvm::IntegerType>(value->getType())) {
946 intValue = value;
947 } else {
948 llvm::IntegerType *inputIntTy =
949 llvm::IntegerType::get(getLLVMContext(), atomics.getValueSizeInBits());
950 if (isa<llvm::PointerType>(value->getType())) {
951 intValue = Builder.CreatePtrToInt(value, inputIntTy);
952 } else {
953 intValue = Builder.CreateBitCast(value, inputIntTy);
954 }
955 }
956
957 // Otherwise, we need to go through memory.
958 } else {
959 // Put the r-value in memory.
960 llvm::Value *addr = atomics.materializeRValue(rvalue);
961
962 // Cast the temporary to the atomic int type and pull a value out.
963 addr = atomics.emitCastToAtomicIntPointer(addr);
964 intValue = Builder.CreateAlignedLoad(addr,
965 atomics.getAtomicAlignment().getQuantity());
966 }
967
968 // Do the atomic store.
969 llvm::Value *addr = atomics.emitCastToAtomicIntPointer(dest.getAddress());
970 llvm::StoreInst *store = Builder.CreateStore(intValue, addr);
971
972 // Initializations don't need to be atomic.
973 if (!isInit) store->setAtomic(llvm::SequentiallyConsistent);
974
975 // Other decoration.
976 store->setAlignment(dest.getAlignment().getQuantity());
977 if (dest.isVolatileQualified())
978 store->setVolatile(true);
979 if (dest.getTBAAInfo())
980 CGM.DecorateInstruction(store, dest.getTBAAInfo());
981}
982
983void CodeGenFunction::EmitAtomicInit(Expr *init, LValue dest) {
984 AtomicInfo atomics(*this, dest);
985
986 switch (atomics.getEvaluationKind()) {
987 case TEK_Scalar: {
988 llvm::Value *value = EmitScalarExpr(init);
989 atomics.emitCopyIntoMemory(RValue::get(value), dest);
990 return;
991 }
992
993 case TEK_Complex: {
994 ComplexPairTy value = EmitComplexExpr(init);
995 atomics.emitCopyIntoMemory(RValue::getComplex(value), dest);
996 return;
997 }
998
999 case TEK_Aggregate: {
1000 // Memset the buffer first if there's any possibility of
1001 // uninitialized internal bits.
1002 atomics.emitMemSetZeroIfNecessary(dest);
1003
1004 // HACK: whether the initializer actually has an atomic type
1005 // doesn't really seem reliable right now.
1006 if (!init->getType()->isAtomicType()) {
1007 dest = atomics.projectValue(dest);
1008 }
1009
1010 // Evaluate the expression directly into the destination.
1011 AggValueSlot slot = AggValueSlot::forLValue(dest,
1012 AggValueSlot::IsNotDestructed,
1013 AggValueSlot::DoesNotNeedGCBarriers,
1014 AggValueSlot::IsNotAliased);
1015 EmitAggExpr(init, slot);
1016 return;
1017 }
1018 }
1019 llvm_unreachable("bad evaluation kind");
1020}