blob: 89aa038d003e07c93028ea432689a2122dfd4ec2 [file] [log] [blame]
Stephen Hines0e2c34f2015-03-23 12:09:02 -07001===========================================
2Control Flow Integrity Design Documentation
3===========================================
4
5This page documents the design of the :doc:`ControlFlowIntegrity` schemes
6supported by Clang.
7
8Forward-Edge CFI for Virtual Calls
9==================================
10
11This scheme works by allocating, for each static type used to make a virtual
12call, a region of read-only storage in the object file holding a bit vector
13that maps onto to the region of storage used for those virtual tables. Each
14set bit in the bit vector corresponds to the `address point`_ for a virtual
15table compatible with the static type for which the bit vector is being built.
16
17For example, consider the following three C++ classes:
18
19.. code-block:: c++
20
21 struct A {
22 virtual void f1();
23 virtual void f2();
24 virtual void f3();
25 };
26
27 struct B : A {
28 virtual void f1();
29 virtual void f2();
30 virtual void f3();
31 };
32
33 struct C : A {
34 virtual void f1();
35 virtual void f2();
36 virtual void f3();
37 };
38
39The scheme will cause the virtual tables for A, B and C to be laid out
40consecutively:
41
42.. csv-table:: Virtual Table Layout for A, B, C
43 :header: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
44
45 A::offset-to-top, &A::rtti, &A::f1, &A::f2, &A::f3, B::offset-to-top, &B::rtti, &B::f1, &B::f2, &B::f3, C::offset-to-top, &C::rtti, &C::f1, &C::f2, &C::f3
46
47The bit vector for static types A, B and C will look like this:
48
49.. csv-table:: Bit Vectors for A, B, C
50 :header: Class, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
51
52 A, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0
53 B, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
54 C, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0
55
Pirama Arumuga Nainar3ea9e332015-04-08 08:57:32 -070056Bit vectors are represented in the object file as byte arrays. By loading
57from indexed offsets into the byte array and applying a mask, a program can
58test bits from the bit set with a relatively short instruction sequence. Bit
59vectors may overlap so long as they use different bits. For the full details,
60see the `ByteArrayBuilder`_ class.
61
62In this case, assuming A is laid out at offset 0 in bit 0, B at offset 0 in
63bit 1 and C at offset 0 in bit 2, the byte array would look like this:
64
65.. code-block:: c++
66
67 char bits[] = { 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 0, 5, 0, 0 };
68
Stephen Hines0e2c34f2015-03-23 12:09:02 -070069To emit a virtual call, the compiler will assemble code that checks that
70the object's virtual table pointer is in-bounds and aligned and that the
71relevant bit is set in the bit vector.
72
73For example on x86 a typical virtual call may look like this:
74
75.. code-block:: none
76
Pirama Arumuga Nainar3ea9e332015-04-08 08:57:32 -070077 ca7fbb: 48 8b 0f mov (%rdi),%rcx
78 ca7fbe: 48 8d 15 c3 42 fb 07 lea 0x7fb42c3(%rip),%rdx
79 ca7fc5: 48 89 c8 mov %rcx,%rax
80 ca7fc8: 48 29 d0 sub %rdx,%rax
81 ca7fcb: 48 c1 c0 3d rol $0x3d,%rax
82 ca7fcf: 48 3d 7f 01 00 00 cmp $0x17f,%rax
83 ca7fd5: 0f 87 36 05 00 00 ja ca8511
84 ca7fdb: 48 8d 15 c0 0b f7 06 lea 0x6f70bc0(%rip),%rdx
85 ca7fe2: f6 04 10 10 testb $0x10,(%rax,%rdx,1)
86 ca7fe6: 0f 84 25 05 00 00 je ca8511
87 ca7fec: ff 91 98 00 00 00 callq *0x98(%rcx)
Stephen Hines0e2c34f2015-03-23 12:09:02 -070088 [...]
Pirama Arumuga Nainar3ea9e332015-04-08 08:57:32 -070089 ca8511: 0f 0b ud2
Stephen Hines0e2c34f2015-03-23 12:09:02 -070090
91The compiler relies on co-operation from the linker in order to assemble
92the bit vectors for the whole program. It currently does this using LLVM's
93`bit sets`_ mechanism together with link-time optimization.
94
95.. _address point: https://mentorembedded.github.io/cxx-abi/abi.html#vtable-general
96.. _bit sets: http://llvm.org/docs/BitSets.html
Pirama Arumuga Nainar3ea9e332015-04-08 08:57:32 -070097.. _ByteArrayBuilder: http://llvm.org/docs/doxygen/html/structllvm_1_1ByteArrayBuilder.html
Stephen Hines0e2c34f2015-03-23 12:09:02 -070098
99Optimizations
100-------------
101
102The scheme as described above is the fully general variant of the scheme.
103Most of the time we are able to apply one or more of the following
104optimizations to improve binary size or performance.
105
106In fact, if you try the above example with the current version of the
107compiler, you will probably find that it will not use the described virtual
108table layout or machine instructions. Some of the optimizations we are about
109to introduce cause the compiler to use a different layout or a different
110sequence of machine instructions.
111
112Stripping Leading/Trailing Zeros in Bit Vectors
113~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
114
115If a bit vector contains leading or trailing zeros, we can strip them from
116the vector. The compiler will emit code to check if the pointer is in range
117of the region covered by ones, and perform the bit vector check using a
118truncated version of the bit vector. For example, the bit vectors for our
119example class hierarchy will be emitted like this:
120
121.. csv-table:: Bit Vectors for A, B, C
122 :header: Class, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
123
124 A, , , 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, ,
125 B, , , , , , , , 1, , , , , , ,
126 C, , , , , , , , , , , , , 1, ,
127
128Short Inline Bit Vectors
129~~~~~~~~~~~~~~~~~~~~~~~~
130
131If the vector is sufficiently short, we can represent it as an inline constant
132on x86. This saves us a few instructions when reading the correct element
133of the bit vector.
134
135If the bit vector fits in 32 bits, the code looks like this:
136
137.. code-block:: none
138
139 dc2: 48 8b 03 mov (%rbx),%rax
140 dc5: 48 8d 15 14 1e 00 00 lea 0x1e14(%rip),%rdx
141 dcc: 48 89 c1 mov %rax,%rcx
142 dcf: 48 29 d1 sub %rdx,%rcx
143 dd2: 48 c1 c1 3d rol $0x3d,%rcx
144 dd6: 48 83 f9 03 cmp $0x3,%rcx
145 dda: 77 2f ja e0b <main+0x9b>
146 ddc: ba 09 00 00 00 mov $0x9,%edx
147 de1: 0f a3 ca bt %ecx,%edx
148 de4: 73 25 jae e0b <main+0x9b>
149 de6: 48 89 df mov %rbx,%rdi
150 de9: ff 10 callq *(%rax)
151 [...]
152 e0b: 0f 0b ud2
153
154Or if the bit vector fits in 64 bits:
155
156.. code-block:: none
157
158 11a6: 48 8b 03 mov (%rbx),%rax
159 11a9: 48 8d 15 d0 28 00 00 lea 0x28d0(%rip),%rdx
160 11b0: 48 89 c1 mov %rax,%rcx
161 11b3: 48 29 d1 sub %rdx,%rcx
162 11b6: 48 c1 c1 3d rol $0x3d,%rcx
163 11ba: 48 83 f9 2a cmp $0x2a,%rcx
164 11be: 77 35 ja 11f5 <main+0xb5>
165 11c0: 48 ba 09 00 00 00 00 movabs $0x40000000009,%rdx
166 11c7: 04 00 00
167 11ca: 48 0f a3 ca bt %rcx,%rdx
168 11ce: 73 25 jae 11f5 <main+0xb5>
169 11d0: 48 89 df mov %rbx,%rdi
170 11d3: ff 10 callq *(%rax)
171 [...]
172 11f5: 0f 0b ud2
173
174If the bit vector consists of a single bit, there is only one possible
175virtual table, and the check can consist of a single equality comparison:
176
177.. code-block:: none
178
179 9a2: 48 8b 03 mov (%rbx),%rax
180 9a5: 48 8d 0d a4 13 00 00 lea 0x13a4(%rip),%rcx
181 9ac: 48 39 c8 cmp %rcx,%rax
182 9af: 75 25 jne 9d6 <main+0x86>
183 9b1: 48 89 df mov %rbx,%rdi
184 9b4: ff 10 callq *(%rax)
185 [...]
186 9d6: 0f 0b ud2
187
188Virtual Table Layout
189~~~~~~~~~~~~~~~~~~~~
190
191The compiler lays out classes of disjoint hierarchies in separate regions
192of the object file. At worst, bit vectors in disjoint hierarchies only
193need to cover their disjoint hierarchy. But the closer that classes in
194sub-hierarchies are laid out to each other, the smaller the bit vectors for
195those sub-hierarchies need to be (see "Stripping Leading/Trailing Zeros in Bit
196Vectors" above). The `GlobalLayoutBuilder`_ class is responsible for laying
197out the globals efficiently to minimize the sizes of the underlying bitsets.
198
199.. _GlobalLayoutBuilder: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/Transforms/IPO/LowerBitSets.h?view=markup
200
201Alignment
202~~~~~~~~~
203
204If all gaps between address points in a particular bit vector are multiples
205of powers of 2, the compiler can compress the bit vector by strengthening
206the alignment requirements of the virtual table pointer. For example, given
207this class hierarchy:
208
209.. code-block:: c++
210
211 struct A {
212 virtual void f1();
213 virtual void f2();
214 };
215
216 struct B : A {
217 virtual void f1();
218 virtual void f2();
219 virtual void f3();
220 virtual void f4();
221 virtual void f5();
222 virtual void f6();
223 };
224
225 struct C : A {
226 virtual void f1();
227 virtual void f2();
228 };
229
230The virtual tables will be laid out like this:
231
232.. csv-table:: Virtual Table Layout for A, B, C
233 :header: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
234
235 A::offset-to-top, &A::rtti, &A::f1, &A::f2, B::offset-to-top, &B::rtti, &B::f1, &B::f2, &B::f3, &B::f4, &B::f5, &B::f6, C::offset-to-top, &C::rtti, &C::f1, &C::f2
236
237Notice that each address point for A is separated by 4 words. This lets us
238emit a compressed bit vector for A that looks like this:
239
240.. csv-table::
241 :header: 2, 6, 10, 14
242
243 1, 1, 0, 1
244
245At call sites, the compiler will strengthen the alignment requirements by
246using a different rotate count. For example, on a 64-bit machine where the
247address points are 4-word aligned (as in A from our example), the ``rol``
248instruction may look like this:
249
250.. code-block:: none
251
252 dd2: 48 c1 c1 3b rol $0x3b,%rcx
253
254Padding to Powers of 2
255~~~~~~~~~~~~~~~~~~~~~~
256
257Of course, this alignment scheme works best if the address points are
258in fact aligned correctly. To make this more likely to happen, we insert
259padding between virtual tables that in many cases aligns address points to
260a power of 2. Specifically, our padding aligns virtual tables to the next
261highest power of 2 bytes; because address points for specific base classes
262normally appear at fixed offsets within the virtual table, this normally
263has the effect of aligning the address points as well.
264
265This scheme introduces tradeoffs between decreased space overhead for
266instructions and bit vectors and increased overhead in the form of padding. We
267therefore limit the amount of padding so that we align to no more than 128
268bytes. This number was found experimentally to provide a good tradeoff.
269
270Eliminating Bit Vector Checks for All-Ones Bit Vectors
271~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
272
273If the bit vector is all ones, the bit vector check is redundant; we simply
274need to check that the address is in range and well aligned. This is more
275likely to occur if the virtual tables are padded.