| //===-- lib/addsf3.c - Single-precision addition ------------------*- C -*-===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is dual licensed under the MIT and the University of Illinois Open | 
 | // Source Licenses. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file implements single-precision soft-float addition with the IEEE-754 | 
 | // default rounding (to nearest, ties to even). | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #define SINGLE_PRECISION | 
 | #include "fp_lib.h" | 
 |  | 
 | ARM_EABI_FNALIAS(fadd, addsf3) | 
 |  | 
 | fp_t __addsf3(fp_t a, fp_t b) { | 
 |  | 
 |     rep_t aRep = toRep(a); | 
 |     rep_t bRep = toRep(b); | 
 |     const rep_t aAbs = aRep & absMask; | 
 |     const rep_t bAbs = bRep & absMask; | 
 |      | 
 |     // Detect if a or b is zero, infinity, or NaN. | 
 |     if (aAbs - 1U >= infRep - 1U || bAbs - 1U >= infRep - 1U) { | 
 |          | 
 |         // NaN + anything = qNaN | 
 |         if (aAbs > infRep) return fromRep(toRep(a) | quietBit); | 
 |         // anything + NaN = qNaN | 
 |         if (bAbs > infRep) return fromRep(toRep(b) | quietBit); | 
 |          | 
 |         if (aAbs == infRep) { | 
 |             // +/-infinity + -/+infinity = qNaN | 
 |             if ((toRep(a) ^ toRep(b)) == signBit) return fromRep(qnanRep); | 
 |             // +/-infinity + anything remaining = +/- infinity | 
 |             else return a; | 
 |         } | 
 |          | 
 |         // anything remaining + +/-infinity = +/-infinity | 
 |         if (bAbs == infRep) return b; | 
 |          | 
 |         // zero + anything = anything | 
 |         if (!aAbs) { | 
 |             // but we need to get the sign right for zero + zero | 
 |             if (!bAbs) return fromRep(toRep(a) & toRep(b)); | 
 |             else return b; | 
 |         } | 
 |          | 
 |         // anything + zero = anything | 
 |         if (!bAbs) return a; | 
 |     } | 
 |      | 
 |     // Swap a and b if necessary so that a has the larger absolute value. | 
 |     if (bAbs > aAbs) { | 
 |         const rep_t temp = aRep; | 
 |         aRep = bRep; | 
 |         bRep = temp; | 
 |     } | 
 |      | 
 |     // Extract the exponent and significand from the (possibly swapped) a and b. | 
 |     int aExponent = aRep >> significandBits & maxExponent; | 
 |     int bExponent = bRep >> significandBits & maxExponent; | 
 |     rep_t aSignificand = aRep & significandMask; | 
 |     rep_t bSignificand = bRep & significandMask; | 
 |      | 
 |     // Normalize any denormals, and adjust the exponent accordingly. | 
 |     if (aExponent == 0) aExponent = normalize(&aSignificand); | 
 |     if (bExponent == 0) bExponent = normalize(&bSignificand); | 
 |      | 
 |     // The sign of the result is the sign of the larger operand, a.  If they | 
 |     // have opposite signs, we are performing a subtraction; otherwise addition. | 
 |     const rep_t resultSign = aRep & signBit; | 
 |     const bool subtraction = (aRep ^ bRep) & signBit; | 
 |      | 
 |     // Shift the significands to give us round, guard and sticky, and or in the | 
 |     // implicit significand bit.  (If we fell through from the denormal path it | 
 |     // was already set by normalize( ), but setting it twice won't hurt | 
 |     // anything.) | 
 |     aSignificand = (aSignificand | implicitBit) << 3; | 
 |     bSignificand = (bSignificand | implicitBit) << 3; | 
 |      | 
 |     // Shift the significand of b by the difference in exponents, with a sticky | 
 |     // bottom bit to get rounding correct. | 
 |     const unsigned int align = aExponent - bExponent; | 
 |     if (align) { | 
 |         if (align < typeWidth) { | 
 |             const bool sticky = bSignificand << (typeWidth - align); | 
 |             bSignificand = bSignificand >> align | sticky; | 
 |         } else { | 
 |             bSignificand = 1; // sticky; b is known to be non-zero. | 
 |         } | 
 |     } | 
 |      | 
 |     if (subtraction) { | 
 |         aSignificand -= bSignificand; | 
 |          | 
 |         // If a == -b, return +zero. | 
 |         if (aSignificand == 0) return fromRep(0); | 
 |          | 
 |         // If partial cancellation occured, we need to left-shift the result | 
 |         // and adjust the exponent: | 
 |         if (aSignificand < implicitBit << 3) { | 
 |             const int shift = rep_clz(aSignificand) - rep_clz(implicitBit << 3); | 
 |             aSignificand <<= shift; | 
 |             aExponent -= shift; | 
 |         } | 
 |     } | 
 |      | 
 |     else /* addition */ { | 
 |         aSignificand += bSignificand; | 
 |          | 
 |         // If the addition carried up, we need to right-shift the result and | 
 |         // adjust the exponent: | 
 |         if (aSignificand & implicitBit << 4) { | 
 |             const bool sticky = aSignificand & 1; | 
 |             aSignificand = aSignificand >> 1 | sticky; | 
 |             aExponent += 1; | 
 |         } | 
 |     } | 
 |      | 
 |     // If we have overflowed the type, return +/- infinity: | 
 |     if (aExponent >= maxExponent) return fromRep(infRep | resultSign); | 
 |      | 
 |     if (aExponent <= 0) { | 
 |         // Result is denormal before rounding; the exponent is zero and we | 
 |         // need to shift the significand. | 
 |         const int shift = 1 - aExponent; | 
 |         const bool sticky = aSignificand << (typeWidth - shift); | 
 |         aSignificand = aSignificand >> shift | sticky; | 
 |         aExponent = 0; | 
 |     } | 
 |      | 
 |     // Low three bits are round, guard, and sticky. | 
 |     const int roundGuardSticky = aSignificand & 0x7; | 
 |      | 
 |     // Shift the significand into place, and mask off the implicit bit. | 
 |     rep_t result = aSignificand >> 3 & significandMask; | 
 |      | 
 |     // Insert the exponent and sign. | 
 |     result |= (rep_t)aExponent << significandBits; | 
 |     result |= resultSign; | 
 |      | 
 |     // Final rounding.  The result may overflow to infinity, but that is the | 
 |     // correct result in that case. | 
 |     if (roundGuardSticky > 0x4) result++; | 
 |     if (roundGuardSticky == 0x4) result += result & 1; | 
 |     return fromRep(result); | 
 | } |