| //===-- lib/divdf3.c - Double-precision division ------------------*- C -*-===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is dual licensed under the MIT and the University of Illinois Open | 
 | // Source Licenses. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file implements double-precision soft-float division | 
 | // with the IEEE-754 default rounding (to nearest, ties to even). | 
 | // | 
 | // For simplicity, this implementation currently flushes denormals to zero. | 
 | // It should be a fairly straightforward exercise to implement gradual | 
 | // underflow with correct rounding. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #define DOUBLE_PRECISION | 
 | #include "fp_lib.h" | 
 |  | 
 | ARM_EABI_FNALIAS(ddiv, divdf3) | 
 |  | 
 | fp_t __divdf3(fp_t a, fp_t b) { | 
 |      | 
 |     const unsigned int aExponent = toRep(a) >> significandBits & maxExponent; | 
 |     const unsigned int bExponent = toRep(b) >> significandBits & maxExponent; | 
 |     const rep_t quotientSign = (toRep(a) ^ toRep(b)) & signBit; | 
 |      | 
 |     rep_t aSignificand = toRep(a) & significandMask; | 
 |     rep_t bSignificand = toRep(b) & significandMask; | 
 |     int scale = 0; | 
 |      | 
 |     // Detect if a or b is zero, denormal, infinity, or NaN. | 
 |     if (aExponent-1U >= maxExponent-1U || bExponent-1U >= maxExponent-1U) { | 
 |          | 
 |         const rep_t aAbs = toRep(a) & absMask; | 
 |         const rep_t bAbs = toRep(b) & absMask; | 
 |          | 
 |         // NaN / anything = qNaN | 
 |         if (aAbs > infRep) return fromRep(toRep(a) | quietBit); | 
 |         // anything / NaN = qNaN | 
 |         if (bAbs > infRep) return fromRep(toRep(b) | quietBit); | 
 |          | 
 |         if (aAbs == infRep) { | 
 |             // infinity / infinity = NaN | 
 |             if (bAbs == infRep) return fromRep(qnanRep); | 
 |             // infinity / anything else = +/- infinity | 
 |             else return fromRep(aAbs | quotientSign); | 
 |         } | 
 |          | 
 |         // anything else / infinity = +/- 0 | 
 |         if (bAbs == infRep) return fromRep(quotientSign); | 
 |          | 
 |         if (!aAbs) { | 
 |             // zero / zero = NaN | 
 |             if (!bAbs) return fromRep(qnanRep); | 
 |             // zero / anything else = +/- zero | 
 |             else return fromRep(quotientSign); | 
 |         } | 
 |         // anything else / zero = +/- infinity | 
 |         if (!bAbs) return fromRep(infRep | quotientSign); | 
 |          | 
 |         // one or both of a or b is denormal, the other (if applicable) is a | 
 |         // normal number.  Renormalize one or both of a and b, and set scale to | 
 |         // include the necessary exponent adjustment. | 
 |         if (aAbs < implicitBit) scale += normalize(&aSignificand); | 
 |         if (bAbs < implicitBit) scale -= normalize(&bSignificand); | 
 |     } | 
 |      | 
 |     // Or in the implicit significand bit.  (If we fell through from the | 
 |     // denormal path it was already set by normalize( ), but setting it twice | 
 |     // won't hurt anything.) | 
 |     aSignificand |= implicitBit; | 
 |     bSignificand |= implicitBit; | 
 |     int quotientExponent = aExponent - bExponent + scale; | 
 |      | 
 |     // Align the significand of b as a Q31 fixed-point number in the range | 
 |     // [1, 2.0) and get a Q32 approximate reciprocal using a small minimax | 
 |     // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2.  This | 
 |     // is accurate to about 3.5 binary digits. | 
 |     const uint32_t q31b = bSignificand >> 21; | 
 |     uint32_t recip32 = UINT32_C(0x7504f333) - q31b; | 
 |      | 
 |     // Now refine the reciprocal estimate using a Newton-Raphson iteration: | 
 |     // | 
 |     //     x1 = x0 * (2 - x0 * b) | 
 |     // | 
 |     // This doubles the number of correct binary digits in the approximation | 
 |     // with each iteration, so after three iterations, we have about 28 binary | 
 |     // digits of accuracy. | 
 |     uint32_t correction32; | 
 |     correction32 = -((uint64_t)recip32 * q31b >> 32); | 
 |     recip32 = (uint64_t)recip32 * correction32 >> 31; | 
 |     correction32 = -((uint64_t)recip32 * q31b >> 32); | 
 |     recip32 = (uint64_t)recip32 * correction32 >> 31; | 
 |     correction32 = -((uint64_t)recip32 * q31b >> 32); | 
 |     recip32 = (uint64_t)recip32 * correction32 >> 31; | 
 |      | 
 |     // recip32 might have overflowed to exactly zero in the preceeding | 
 |     // computation if the high word of b is exactly 1.0.  This would sabotage | 
 |     // the full-width final stage of the computation that follows, so we adjust | 
 |     // recip32 downward by one bit. | 
 |     recip32--; | 
 |      | 
 |     // We need to perform one more iteration to get us to 56 binary digits; | 
 |     // The last iteration needs to happen with extra precision. | 
 |     const uint32_t q63blo = bSignificand << 11; | 
 |     uint64_t correction, reciprocal; | 
 |     correction = -((uint64_t)recip32*q31b + ((uint64_t)recip32*q63blo >> 32)); | 
 |     uint32_t cHi = correction >> 32; | 
 |     uint32_t cLo = correction; | 
 |     reciprocal = (uint64_t)recip32*cHi + ((uint64_t)recip32*cLo >> 32); | 
 |      | 
 |     // We already adjusted the 32-bit estimate, now we need to adjust the final | 
 |     // 64-bit reciprocal estimate downward to ensure that it is strictly smaller | 
 |     // than the infinitely precise exact reciprocal.  Because the computation | 
 |     // of the Newton-Raphson step is truncating at every step, this adjustment | 
 |     // is small; most of the work is already done. | 
 |     reciprocal -= 2; | 
 |      | 
 |     // The numerical reciprocal is accurate to within 2^-56, lies in the | 
 |     // interval [0.5, 1.0), and is strictly smaller than the true reciprocal | 
 |     // of b.  Multiplying a by this reciprocal thus gives a numerical q = a/b | 
 |     // in Q53 with the following properties: | 
 |     // | 
 |     //    1. q < a/b | 
 |     //    2. q is in the interval [0.5, 2.0) | 
 |     //    3. the error in q is bounded away from 2^-53 (actually, we have a | 
 |     //       couple of bits to spare, but this is all we need). | 
 |      | 
 |     // We need a 64 x 64 multiply high to compute q, which isn't a basic | 
 |     // operation in C, so we need to be a little bit fussy. | 
 |     rep_t quotient, quotientLo; | 
 |     wideMultiply(aSignificand << 2, reciprocal, "ient, "ientLo); | 
 |      | 
 |     // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0). | 
 |     // In either case, we are going to compute a residual of the form | 
 |     // | 
 |     //     r = a - q*b | 
 |     // | 
 |     // We know from the construction of q that r satisfies: | 
 |     // | 
 |     //     0 <= r < ulp(q)*b | 
 |     //  | 
 |     // if r is greater than 1/2 ulp(q)*b, then q rounds up.  Otherwise, we | 
 |     // already have the correct result.  The exact halfway case cannot occur. | 
 |     // We also take this time to right shift quotient if it falls in the [1,2) | 
 |     // range and adjust the exponent accordingly. | 
 |     rep_t residual; | 
 |     if (quotient < (implicitBit << 1)) { | 
 |         residual = (aSignificand << 53) - quotient * bSignificand; | 
 |         quotientExponent--; | 
 |     } else { | 
 |         quotient >>= 1; | 
 |         residual = (aSignificand << 52) - quotient * bSignificand; | 
 |     } | 
 |      | 
 |     const int writtenExponent = quotientExponent + exponentBias; | 
 |      | 
 |     if (writtenExponent >= maxExponent) { | 
 |         // If we have overflowed the exponent, return infinity. | 
 |         return fromRep(infRep | quotientSign); | 
 |     } | 
 |      | 
 |     else if (writtenExponent < 1) { | 
 |         // Flush denormals to zero.  In the future, it would be nice to add | 
 |         // code to round them correctly. | 
 |         return fromRep(quotientSign); | 
 |     } | 
 |      | 
 |     else { | 
 |         const bool round = (residual << 1) > bSignificand; | 
 |         // Clear the implicit bit | 
 |         rep_t absResult = quotient & significandMask; | 
 |         // Insert the exponent | 
 |         absResult |= (rep_t)writtenExponent << significandBits; | 
 |         // Round | 
 |         absResult += round; | 
 |         // Insert the sign and return | 
 |         const double result = fromRep(absResult | quotientSign); | 
 |         return result; | 
 |     } | 
 | } |