| Howard Hinnant | 9ad441f | 2010-11-16 22:13:33 +0000 | [diff] [blame] | 1 | // This file is dual licensed under the MIT and the University of Illinois Open | 
 | 2 | // Source Licenses. See LICENSE.TXT for details. | 
| Daniel Dunbar | b3a6901 | 2009-06-26 16:47:03 +0000 | [diff] [blame] | 3 |  | 
| Daniel Dunbar | 19336a2 | 2009-10-27 17:49:50 +0000 | [diff] [blame] | 4 | #include "../assembly.h" | 
 | 5 |  | 
| Daniel Dunbar | b3a6901 | 2009-06-26 16:47:03 +0000 | [diff] [blame] | 6 | // du_int __umoddi3(du_int a, du_int b); | 
 | 7 |  | 
 | 8 | // result = remainder of a / b. | 
 | 9 | // both inputs and the output are 64-bit unsigned integers. | 
 | 10 | // This will do whatever the underlying hardware is set to do on division by zero. | 
 | 11 | // No other exceptions are generated, as the divide cannot overflow. | 
 | 12 | // | 
 | 13 | // This is targeted at 32-bit x86 *only*, as this can be done directly in hardware | 
 | 14 | // on x86_64.  The performance goal is ~40 cycles per divide, which is faster than | 
 | 15 | // currently possible via simulation of integer divides on the x87 unit. | 
 | 16 | // | 
 | 17 |  | 
 | 18 | // Stephen Canon, December 2008 | 
 | 19 |  | 
 | 20 | #ifdef __i386__ | 
 | 21 |  | 
 | 22 | .text | 
 | 23 | .align 4 | 
| Daniel Dunbar | b4b1e8c | 2009-10-27 17:50:21 +0000 | [diff] [blame] | 24 | DEFINE_COMPILERRT_FUNCTION(__umoddi3) | 
| Daniel Dunbar | b3a6901 | 2009-06-26 16:47:03 +0000 | [diff] [blame] | 25 |  | 
 | 26 | 	pushl		%ebx | 
 | 27 | 	movl	 20(%esp),			%ebx	// Find the index i of the leading bit in b. | 
 | 28 | 	bsrl		%ebx,			%ecx	// If the high word of b is zero, jump to | 
 | 29 | 	jz			9f						// the code to handle that special case [9]. | 
 | 30 | 	 | 
 | 31 | 	/* High word of b is known to be non-zero on this branch */ | 
 | 32 | 	 | 
 | 33 | 	movl	 16(%esp),			%eax	// Construct bhi, containing bits [1+i:32+i] of b | 
 | 34 | 	 | 
 | 35 | 	shrl		%cl,			%eax	// Practically, this means that bhi is given by: | 
 | 36 | 	shrl		%eax					// | 
 | 37 | 	notl		%ecx					//		bhi = (high word of b) << (31 - i) | | 
 | 38 | 	shll		%cl,			%ebx	//			  (low word of b) >> (1 + i) | 
 | 39 | 	orl			%eax,			%ebx	// | 
 | 40 | 	movl	 12(%esp),			%edx	// Load the high and low words of a, and jump | 
 | 41 | 	movl	  8(%esp),			%eax	// to [2] if the high word is larger than bhi | 
 | 42 | 	cmpl		%ebx,			%edx	// to avoid overflowing the upcoming divide. | 
 | 43 | 	jae			2f						 | 
 | 44 | 		 | 
 | 45 | 	/* High word of a is greater than or equal to (b >> (1 + i)) on this branch */ | 
 | 46 | 	 | 
 | 47 | 	divl		%ebx					// eax <-- qs, edx <-- r such that ahi:alo = bs*qs + r | 
 | 48 |  | 
 | 49 | 	pushl		%edi | 
 | 50 | 	notl		%ecx | 
 | 51 | 	shrl		%eax | 
 | 52 | 	shrl		%cl,			%eax	// q = qs >> (1 + i) | 
 | 53 | 	movl		%eax,			%edi | 
 | 54 | 	mull	 20(%esp)					// q*blo | 
 | 55 | 	movl	 12(%esp),			%ebx | 
 | 56 | 	movl	 16(%esp),			%ecx	// ECX:EBX = a | 
 | 57 | 	subl		%eax,			%ebx | 
 | 58 | 	sbbl		%edx,			%ecx	// ECX:EBX = a - q*blo | 
 | 59 | 	movl	 24(%esp),			%eax | 
 | 60 | 	imull		%edi,			%eax	// q*bhi | 
 | 61 | 	subl		%eax,			%ecx	// ECX:EBX = a - q*b | 
 | 62 | 	 | 
 | 63 | 	jnc			1f						// if positive, this is the result. | 
 | 64 | 	addl	 20(%esp),			%ebx	// otherwise | 
 | 65 | 	adcl	 24(%esp),			%ecx	// ECX:EBX = a - (q-1)*b = result | 
 | 66 | 1:	movl		%ebx,			%eax | 
 | 67 | 	movl		%ecx,			%edx | 
 | 68 | 	 | 
 | 69 | 	popl		%edi | 
 | 70 | 	popl		%ebx | 
 | 71 | 	retl | 
 | 72 |  | 
 | 73 |  | 
 | 74 | 2:	/* High word of a is greater than or equal to (b >> (1 + i)) on this branch */ | 
 | 75 | 	  | 
 | 76 | 	subl		%ebx,			%edx	// subtract bhi from ahi so that divide will not | 
 | 77 | 	divl		%ebx					// overflow, and find q and r such that | 
 | 78 | 										// | 
 | 79 | 										//		ahi:alo = (1:q)*bhi + r | 
 | 80 | 										// | 
 | 81 | 										// Note that q is a number in (31-i).(1+i) | 
 | 82 | 										// fix point. | 
 | 83 |  | 
 | 84 | 	pushl		%edi | 
 | 85 | 	notl		%ecx | 
 | 86 | 	shrl		%eax | 
 | 87 | 	orl			$0x80000000,	%eax | 
 | 88 | 	shrl		%cl,			%eax	// q = (1:qs) >> (1 + i) | 
 | 89 | 	movl		%eax,			%edi | 
 | 90 | 	mull	 20(%esp)					// q*blo | 
 | 91 | 	movl	 12(%esp),			%ebx | 
 | 92 | 	movl	 16(%esp),			%ecx	// ECX:EBX = a | 
 | 93 | 	subl		%eax,			%ebx | 
 | 94 | 	sbbl		%edx,			%ecx	// ECX:EBX = a - q*blo | 
 | 95 | 	movl	 24(%esp),			%eax | 
 | 96 | 	imull		%edi,			%eax	// q*bhi | 
 | 97 | 	subl		%eax,			%ecx	// ECX:EBX = a - q*b | 
 | 98 |  | 
 | 99 | 	jnc			3f						// if positive, this is the result. | 
 | 100 | 	addl	 20(%esp),			%ebx	// otherwise | 
 | 101 | 	adcl	 24(%esp),			%ecx	// ECX:EBX = a - (q-1)*b = result | 
 | 102 | 3:	movl		%ebx,			%eax | 
 | 103 | 	movl		%ecx,			%edx | 
 | 104 | 	 | 
 | 105 | 	popl		%edi | 
 | 106 | 	popl		%ebx | 
 | 107 | 	retl | 
 | 108 |  | 
 | 109 |  | 
 | 110 | 	 | 
 | 111 | 9:	/* High word of b is zero on this branch */ | 
 | 112 |  | 
 | 113 | 	movl	 12(%esp),			%eax	// Find qhi and rhi such that | 
 | 114 | 	movl	 16(%esp),			%ecx	// | 
 | 115 | 	xorl		%edx,			%edx	//		ahi = qhi*b + rhi	with	0 ≤ rhi < b | 
 | 116 | 	divl		%ecx					// | 
 | 117 | 	movl		%eax,			%ebx	// | 
 | 118 | 	movl	  8(%esp),			%eax	// Find rlo such that | 
 | 119 | 	divl		%ecx					// | 
 | 120 | 	movl		%edx,			%eax	//		rhi:alo = qlo*b + rlo  with 0 ≤ rlo < b | 
 | 121 | 	popl		%ebx					// | 
 | 122 | 	xorl		%edx,			%edx	// and return 0:rlo | 
 | 123 | 	retl								//  | 
 | 124 | 	 | 
 | 125 | #endif // __i386__ |