blob: 77e9ed19c4550bcd308e3576b5bceba16e0cc202 [file] [log] [blame]
Stephen Canone5086322010-07-01 15:52:42 +00001/*
2 * The LLVM Compiler Infrastructure
3 *
4 * This file is distributed under the University of Illinois Open Source
5 * License. See LICENSE.TXT for details.
6 */
7
8#define DOUBLE_PRECISION
9#include "fp_lib.h"
10
11// This file implements double-precision soft-float multiplication with the
12// IEEE-754 default rounding (to nearest, ties to even).
13
14#define loWord(a) (a & 0xffffffffU)
15#define hiWord(a) (a >> 32)
16
17// 64x64 -> 128 wide multiply for platforms that don't have such an operation;
18// some 64-bit platforms have this operation, but they tend to have hardware
19// floating-point, so we don't bother with a special case for them here.
20static inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) {
21 // Each of the component 32x32 -> 64 products
22 const uint64_t plolo = loWord(a) * loWord(b);
23 const uint64_t plohi = loWord(a) * hiWord(b);
24 const uint64_t philo = hiWord(a) * loWord(b);
25 const uint64_t phihi = hiWord(a) * hiWord(b);
26 // Sum terms that compute to lo in a way that allows us to get the carry
27 const uint64_t r0 = loWord(plolo);
28 const uint64_t r1 = hiWord(plolo) + loWord(plohi) + loWord(philo);
29 *lo = r0 + (r1 << 32);
30 // Sum terms contributing to hi with the carry from lo
31 *hi = hiWord(plohi) + hiWord(philo) + hiWord(r1) + phihi;
32}
33
34fp_t __muldf3(fp_t a, fp_t b) {
35
36 const unsigned int aExponent = toRep(a) >> significandBits & maxExponent;
37 const unsigned int bExponent = toRep(b) >> significandBits & maxExponent;
38 const rep_t productSign = (toRep(a) ^ toRep(b)) & signBit;
39
40 rep_t aSignificand = toRep(a) & significandMask;
41 rep_t bSignificand = toRep(b) & significandMask;
42 int scale = 0;
43
44 // Detect if a or b is zero, denormal, infinity, or NaN.
45 if (aExponent-1U >= maxExponent-1U || bExponent-1U >= maxExponent-1U) {
46
47 const rep_t aAbs = toRep(a) & absMask;
48 const rep_t bAbs = toRep(b) & absMask;
49
50 // NaN * anything = qNaN
51 if (aAbs > infRep) return fromRep(toRep(a) | quietBit);
52 // anything * NaN = qNaN
53 if (bAbs > infRep) return fromRep(toRep(b) | quietBit);
54
55 if (aAbs == infRep) {
56 // infinity * non-zero = +/- infinity
57 if (bAbs) return fromRep(aAbs | productSign);
58 // infinity * zero = NaN
59 else return fromRep(qnanRep);
60 }
61
62 if (bAbs == infRep) {
63 // non-zero * infinity = +/- infinity
64 if (aAbs) return fromRep(bAbs | productSign);
65 // zero * infinity = NaN
66 else return fromRep(qnanRep);
67 }
68
69 // zero * anything = +/- zero
70 if (!aAbs) return fromRep(productSign);
71 // anything * zero = +/- zero
72 if (!bAbs) return fromRep(productSign);
73
74 // one or both of a or b is denormal, the other (if applicable) is a
75 // normal number. Renormalize one or both of a and b, and set scale to
76 // include the necessary exponent adjustment.
77 if (aAbs < implicitBit) scale += normalize(&aSignificand);
78 if (bAbs < implicitBit) scale += normalize(&bSignificand);
79 }
80
81 // Or in the implicit significand bit. (If we fell through from the
82 // denormal path it was already set by normalize( ), but setting it twice
83 // won't hurt anything.)
84 aSignificand |= implicitBit;
85 bSignificand |= implicitBit;
86
87 // Get the significand of a*b. Before multiplying the significands, shift
88 // one of them left to left-align it in the field. Thus, the product will
89 // have (exponentBits + 2) integral digits, all but two of which must be
90 // zero. Normalizing this result is just a conditional left-shift by one
91 // and bumping the exponent accordingly.
92 rep_t productHi, productLo;
93 wideMultiply(aSignificand, bSignificand << exponentBits,
94 &productHi, &productLo);
95
96 int productExponent = aExponent + bExponent - exponentBias + scale;
97
98 // Normalize the significand, adjust exponent if needed.
99 if (productHi & implicitBit) productExponent++;
100 else wideLeftShift(&productHi, &productLo, 1);
101
102 // If we have overflowed the type, return +/- infinity.
103 if (productExponent >= maxExponent) return fromRep(infRep | productSign);
104
105 if (productExponent <= 0) {
106 // Result is denormal before rounding
107 //
108 // If the result is so small that it just underflows to zero, return
109 // a zero of the appropriate sign. Mathematically there is no need to
110 // handle this case separately, but we make it a special case to
111 // simplify the shift logic.
112 const int shift = 1 - productExponent;
113 if (shift >= typeWidth) return fromRep(productSign);
114
115 // Otherwise, shift the significand of the result so that the round
116 // bit is the high bit of productLo.
117 wideRightShiftWithSticky(&productHi, &productLo, shift);
118 }
119
120 else {
121 // Result is normal before rounding; insert the exponent.
122 productHi &= significandMask;
123 productHi |= (rep_t)productExponent << significandBits;
124 }
125
126 // Insert the sign of the result:
127 productHi |= productSign;
128
129 // Final rounding. The final result may overflow to infinity, or underflow
130 // to zero, but those are the correct results in those cases. We use the
131 // default IEEE-754 round-to-nearest, ties-to-even rounding mode.
132 if (productLo > signBit) productHi++;
133 if (productLo == signBit) productHi += productHi & 1;
134 return fromRep(productHi);
135}