| 9487f7f | 2011-08-03 07:05:30 -0700 | [diff] [blame] | 1 | /*************************************************************************** |
| 2 | * _ _ ____ _ |
| 3 | * Project ___| | | | _ \| | |
| 4 | * / __| | | | |_) | | |
| 5 | * | (__| |_| | _ <| |___ |
| 6 | * \___|\___/|_| \_\_____| |
| 7 | * |
| 8 | * Copyright (C) 1998 - 2010, Daniel Stenberg, <daniel@haxx.se>, et al. |
| 9 | * |
| 10 | * This software is licensed as described in the file COPYING, which |
| 11 | * you should have received as part of this distribution. The terms |
| 12 | * are also available at http://curl.haxx.se/docs/copyright.html. |
| 13 | * |
| 14 | * You may opt to use, copy, modify, merge, publish, distribute and/or sell |
| 15 | * copies of the Software, and permit persons to whom the Software is |
| 16 | * furnished to do so, under the terms of the COPYING file. |
| 17 | * |
| 18 | * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY |
| 19 | * KIND, either express or implied. |
| 20 | * |
| 21 | ***************************************************************************/ |
| 22 | |
| 23 | #include "setup.h" |
| 24 | |
| 25 | #ifdef HAVE_SYS_SOCKET_H |
| 26 | #include <sys/socket.h> |
| 27 | #endif |
| 28 | #ifdef HAVE_UNISTD_H |
| 29 | #include <unistd.h> |
| 30 | #endif |
| 31 | |
| 32 | #include <curl/curl.h> |
| 33 | |
| 34 | #include "urldata.h" |
| 35 | #include "transfer.h" |
| 36 | #include "url.h" |
| 37 | #include "connect.h" |
| 38 | #include "progress.h" |
| 39 | #include "easyif.h" |
| 40 | #include "multiif.h" |
| 41 | #include "sendf.h" |
| 42 | #include "timeval.h" |
| 43 | #include "http.h" |
| 44 | #include "warnless.h" |
| 45 | |
| 46 | #define _MPRINTF_REPLACE /* use our functions only */ |
| 47 | #include <curl/mprintf.h> |
| 48 | |
| 49 | #include "curl_memory.h" |
| 50 | /* The last #include file should be: */ |
| 51 | #include "memdebug.h" |
| 52 | |
| 53 | /* |
| 54 | CURL_SOCKET_HASH_TABLE_SIZE should be a prime number. Increasing it from 97 |
| 55 | to 911 takes on a 32-bit machine 4 x 804 = 3211 more bytes. Still, every |
| 56 | CURL handle takes 45-50 K memory, therefore this 3K are not significant. |
| 57 | */ |
| 58 | #ifndef CURL_SOCKET_HASH_TABLE_SIZE |
| 59 | #define CURL_SOCKET_HASH_TABLE_SIZE 911 |
| 60 | #endif |
| 61 | |
| 62 | struct Curl_message { |
| 63 | /* the 'CURLMsg' is the part that is visible to the external user */ |
| 64 | struct CURLMsg extmsg; |
| 65 | }; |
| 66 | |
| 67 | /* NOTE: if you add a state here, add the name to the statename[] array as |
| 68 | well! |
| 69 | */ |
| 70 | typedef enum { |
| 71 | CURLM_STATE_INIT, /* 0 - start in this state */ |
| 72 | CURLM_STATE_CONNECT, /* 1 - resolve/connect has been sent off */ |
| 73 | CURLM_STATE_WAITRESOLVE, /* 2 - awaiting the resolve to finalize */ |
| 74 | CURLM_STATE_WAITCONNECT, /* 3 - awaiting the connect to finalize */ |
| 75 | CURLM_STATE_WAITPROXYCONNECT, /* 4 - awaiting proxy CONNECT to finalize */ |
| 76 | CURLM_STATE_PROTOCONNECT, /* 5 - completing the protocol-specific connect |
| 77 | phase */ |
| 78 | CURLM_STATE_WAITDO, /* 6 - wait for our turn to send the request */ |
| 79 | CURLM_STATE_DO, /* 7 - start send off the request (part 1) */ |
| 80 | CURLM_STATE_DOING, /* 8 - sending off the request (part 1) */ |
| 81 | CURLM_STATE_DO_MORE, /* 9 - send off the request (part 2) */ |
| 82 | CURLM_STATE_DO_DONE, /* 10 - done sending off request */ |
| 83 | CURLM_STATE_WAITPERFORM, /* 11 - wait for our turn to read the response */ |
| 84 | CURLM_STATE_PERFORM, /* 12 - transfer data */ |
| 85 | CURLM_STATE_TOOFAST, /* 13 - wait because limit-rate exceeded */ |
| 86 | CURLM_STATE_DONE, /* 14 - post data transfer operation */ |
| 87 | CURLM_STATE_COMPLETED, /* 15 - operation complete */ |
| 88 | CURLM_STATE_MSGSENT, /* 16 - the operation complete message is sent */ |
| 89 | CURLM_STATE_LAST /* 17 - not a true state, never use this */ |
| 90 | } CURLMstate; |
| 91 | |
| 92 | /* we support N sockets per easy handle. Set the corresponding bit to what |
| 93 | action we should wait for */ |
| 94 | #define MAX_SOCKSPEREASYHANDLE 5 |
| 95 | #define GETSOCK_READABLE (0x00ff) |
| 96 | #define GETSOCK_WRITABLE (0xff00) |
| 97 | |
| 98 | struct closure { |
| 99 | struct closure *next; /* a simple one-way list of structs */ |
| 100 | struct SessionHandle *easy_handle; |
| 101 | }; |
| 102 | |
| 103 | struct Curl_one_easy { |
| 104 | /* first, two fields for the linked list of these */ |
| 105 | struct Curl_one_easy *next; |
| 106 | struct Curl_one_easy *prev; |
| 107 | |
| 108 | struct SessionHandle *easy_handle; /* the easy handle for this unit */ |
| 109 | struct connectdata *easy_conn; /* the "unit's" connection */ |
| 110 | |
| 111 | CURLMstate state; /* the handle's state */ |
| 112 | CURLcode result; /* previous result */ |
| 113 | |
| 114 | struct Curl_message msg; /* A single posted message. */ |
| 115 | |
| 116 | /* Array with the plain socket numbers this handle takes care of, in no |
| 117 | particular order. Note that all sockets are added to the sockhash, where |
| 118 | the state etc are also kept. This array is mostly used to detect when a |
| 119 | socket is to be removed from the hash. See singlesocket(). */ |
| 120 | curl_socket_t sockets[MAX_SOCKSPEREASYHANDLE]; |
| 121 | int numsocks; |
| 122 | }; |
| 123 | |
| 124 | #define CURL_MULTI_HANDLE 0x000bab1e |
| 125 | |
| 126 | #define GOOD_MULTI_HANDLE(x) \ |
| 127 | ((x)&&(((struct Curl_multi *)(x))->type == CURL_MULTI_HANDLE)) |
| 128 | #define GOOD_EASY_HANDLE(x) \ |
| 129 | (((struct SessionHandle *)(x))->magic == CURLEASY_MAGIC_NUMBER) |
| 130 | |
| 131 | /* This is the struct known as CURLM on the outside */ |
| 132 | struct Curl_multi { |
| 133 | /* First a simple identifier to easier detect if a user mix up |
| 134 | this multi handle with an easy handle. Set this to CURL_MULTI_HANDLE. */ |
| 135 | long type; |
| 136 | |
| 137 | /* We have a linked list with easy handles */ |
| 138 | struct Curl_one_easy easy; |
| 139 | |
| 140 | int num_easy; /* amount of entries in the linked list above. */ |
| 141 | int num_alive; /* amount of easy handles that are added but have not yet |
| 142 | reached COMPLETE state */ |
| 143 | |
| 144 | struct curl_llist *msglist; /* a list of messages from completed transfers */ |
| 145 | |
| 146 | /* callback function and user data pointer for the *socket() API */ |
| 147 | curl_socket_callback socket_cb; |
| 148 | void *socket_userp; |
| 149 | |
| 150 | /* Hostname cache */ |
| 151 | struct curl_hash *hostcache; |
| 152 | |
| 153 | /* timetree points to the splay-tree of time nodes to figure out expire |
| 154 | times of all currently set timers */ |
| 155 | struct Curl_tree *timetree; |
| 156 | |
| 157 | /* 'sockhash' is the lookup hash for socket descriptor => easy handles (note |
| 158 | the pluralis form, there can be more than one easy handle waiting on the |
| 159 | same actual socket) */ |
| 160 | struct curl_hash *sockhash; |
| 161 | |
| 162 | /* Whether pipelining is enabled for this multi handle */ |
| 163 | bool pipelining_enabled; |
| 164 | |
| 165 | /* shared connection cache */ |
| 166 | struct conncache *connc; |
| 167 | long maxconnects; /* if >0, a fixed limit of the maximum number of entries |
| 168 | we're allowed to grow the connection cache to */ |
| 169 | |
| 170 | /* list of easy handles kept around for doing nice connection closures */ |
| 171 | struct closure *closure; |
| 172 | |
| 173 | /* timer callback and user data pointer for the *socket() API */ |
| 174 | curl_multi_timer_callback timer_cb; |
| 175 | void *timer_userp; |
| 176 | struct timeval timer_lastcall; /* the fixed time for the timeout for the |
| 177 | previous callback */ |
| 178 | }; |
| 179 | |
| 180 | static void multi_connc_remove_handle(struct Curl_multi *multi, |
| 181 | struct SessionHandle *data); |
| 182 | static void singlesocket(struct Curl_multi *multi, |
| 183 | struct Curl_one_easy *easy); |
| 184 | static CURLMcode add_closure(struct Curl_multi *multi, |
| 185 | struct SessionHandle *data); |
| 186 | static int update_timer(struct Curl_multi *multi); |
| 187 | |
| 188 | static CURLcode addHandleToSendOrPendPipeline(struct SessionHandle *handle, |
| 189 | struct connectdata *conn); |
| 190 | static int checkPendPipeline(struct connectdata *conn); |
| 191 | static void moveHandleFromSendToRecvPipeline(struct SessionHandle *handle, |
| 192 | struct connectdata *conn); |
| 193 | static void moveHandleFromRecvToDonePipeline(struct SessionHandle *handle, |
| 194 | struct connectdata *conn); |
| 195 | static bool isHandleAtHead(struct SessionHandle *handle, |
| 196 | struct curl_llist *pipeline); |
| 197 | static CURLMcode add_next_timeout(struct timeval now, |
| 198 | struct Curl_multi *multi, |
| 199 | struct SessionHandle *d); |
| 200 | |
| 201 | #ifdef DEBUGBUILD |
| 202 | static const char * const statename[]={ |
| 203 | "INIT", |
| 204 | "CONNECT", |
| 205 | "WAITRESOLVE", |
| 206 | "WAITCONNECT", |
| 207 | "WAITPROXYCONNECT", |
| 208 | "PROTOCONNECT", |
| 209 | "WAITDO", |
| 210 | "DO", |
| 211 | "DOING", |
| 212 | "DO_MORE", |
| 213 | "DO_DONE", |
| 214 | "WAITPERFORM", |
| 215 | "PERFORM", |
| 216 | "TOOFAST", |
| 217 | "DONE", |
| 218 | "COMPLETED", |
| 219 | "MSGSENT", |
| 220 | }; |
| 221 | #endif |
| 222 | |
| 223 | static void multi_freetimeout(void *a, void *b); |
| 224 | |
| 225 | /* always use this function to change state, to make debugging easier */ |
| 226 | static void multistate(struct Curl_one_easy *easy, CURLMstate state) |
| 227 | { |
| 228 | #ifdef DEBUGBUILD |
| 229 | long connectindex = -5000; |
| 230 | #endif |
| 231 | CURLMstate oldstate = easy->state; |
| 232 | |
| 233 | if(oldstate == state) |
| 234 | /* don't bother when the new state is the same as the old state */ |
| 235 | return; |
| 236 | |
| 237 | easy->state = state; |
| 238 | |
| 239 | #ifdef DEBUGBUILD |
| 240 | if(easy->easy_conn) { |
| 241 | if(easy->state > CURLM_STATE_CONNECT && |
| 242 | easy->state < CURLM_STATE_COMPLETED) |
| 243 | connectindex = easy->easy_conn->connectindex; |
| 244 | |
| 245 | infof(easy->easy_handle, |
| 246 | "STATE: %s => %s handle %p; (connection #%ld) \n", |
| 247 | statename[oldstate], statename[easy->state], |
| 248 | (char *)easy, connectindex); |
| 249 | } |
| 250 | #endif |
| 251 | if(state == CURLM_STATE_COMPLETED) |
| 252 | /* changing to COMPLETED means there's one less easy handle 'alive' */ |
| 253 | easy->easy_handle->multi->num_alive--; |
| 254 | } |
| 255 | |
| 256 | /* |
| 257 | * We add one of these structs to the sockhash for a particular socket |
| 258 | */ |
| 259 | |
| 260 | struct Curl_sh_entry { |
| 261 | struct SessionHandle *easy; |
| 262 | time_t timestamp; |
| 263 | int action; /* what action READ/WRITE this socket waits for */ |
| 264 | curl_socket_t socket; /* mainly to ease debugging */ |
| 265 | void *socketp; /* settable by users with curl_multi_assign() */ |
| 266 | }; |
| 267 | /* bits for 'action' having no bits means this socket is not expecting any |
| 268 | action */ |
| 269 | #define SH_READ 1 |
| 270 | #define SH_WRITE 2 |
| 271 | |
| 272 | /* make sure this socket is present in the hash for this handle */ |
| 273 | static struct Curl_sh_entry *sh_addentry(struct curl_hash *sh, |
| 274 | curl_socket_t s, |
| 275 | struct SessionHandle *data) |
| 276 | { |
| 277 | struct Curl_sh_entry *there = |
| 278 | Curl_hash_pick(sh, (char *)&s, sizeof(curl_socket_t)); |
| 279 | struct Curl_sh_entry *check; |
| 280 | |
| 281 | if(there) |
| 282 | /* it is present, return fine */ |
| 283 | return there; |
| 284 | |
| 285 | /* not present, add it */ |
| 286 | check = calloc(1, sizeof(struct Curl_sh_entry)); |
| 287 | if(!check) |
| 288 | return NULL; /* major failure */ |
| 289 | check->easy = data; |
| 290 | check->socket = s; |
| 291 | |
| 292 | /* make/add new hash entry */ |
| 293 | if(NULL == Curl_hash_add(sh, (char *)&s, sizeof(curl_socket_t), check)) { |
| 294 | free(check); |
| 295 | return NULL; /* major failure */ |
| 296 | } |
| 297 | |
| 298 | return check; /* things are good in sockhash land */ |
| 299 | } |
| 300 | |
| 301 | |
| 302 | /* delete the given socket + handle from the hash */ |
| 303 | static void sh_delentry(struct curl_hash *sh, curl_socket_t s) |
| 304 | { |
| 305 | struct Curl_sh_entry *there = |
| 306 | Curl_hash_pick(sh, (char *)&s, sizeof(curl_socket_t)); |
| 307 | |
| 308 | if(there) { |
| 309 | /* this socket is in the hash */ |
| 310 | /* We remove the hash entry. (This'll end up in a call to |
| 311 | sh_freeentry().) */ |
| 312 | Curl_hash_delete(sh, (char *)&s, sizeof(curl_socket_t)); |
| 313 | } |
| 314 | } |
| 315 | |
| 316 | /* |
| 317 | * free a sockhash entry |
| 318 | */ |
| 319 | static void sh_freeentry(void *freethis) |
| 320 | { |
| 321 | struct Curl_sh_entry *p = (struct Curl_sh_entry *) freethis; |
| 322 | |
| 323 | if(p) |
| 324 | free(p); |
| 325 | } |
| 326 | |
| 327 | static size_t fd_key_compare(void*k1, size_t k1_len, void*k2, size_t k2_len) |
| 328 | { |
| 329 | (void) k1_len; (void) k2_len; |
| 330 | |
| 331 | return (*((int* ) k1)) == (*((int* ) k2)); |
| 332 | } |
| 333 | |
| 334 | static size_t hash_fd(void* key, size_t key_length, size_t slots_num) |
| 335 | { |
| 336 | int fd = * ((int* ) key); |
| 337 | (void) key_length; |
| 338 | |
| 339 | return (fd % (int)slots_num); |
| 340 | } |
| 341 | |
| 342 | /* |
| 343 | * sh_init() creates a new socket hash and returns the handle for it. |
| 344 | * |
| 345 | * Quote from README.multi_socket: |
| 346 | * |
| 347 | * "Some tests at 7000 and 9000 connections showed that the socket hash lookup |
| 348 | * is somewhat of a bottle neck. Its current implementation may be a bit too |
| 349 | * limiting. It simply has a fixed-size array, and on each entry in the array |
| 350 | * it has a linked list with entries. So the hash only checks which list to |
| 351 | * scan through. The code I had used so for used a list with merely 7 slots |
| 352 | * (as that is what the DNS hash uses) but with 7000 connections that would |
| 353 | * make an average of 1000 nodes in each list to run through. I upped that to |
| 354 | * 97 slots (I believe a prime is suitable) and noticed a significant speed |
| 355 | * increase. I need to reconsider the hash implementation or use a rather |
| 356 | * large default value like this. At 9000 connections I was still below 10us |
| 357 | * per call." |
| 358 | * |
| 359 | */ |
| 360 | static struct curl_hash *sh_init(void) |
| 361 | { |
| 362 | return Curl_hash_alloc(CURL_SOCKET_HASH_TABLE_SIZE, hash_fd, fd_key_compare, |
| 363 | sh_freeentry); |
| 364 | } |
| 365 | |
| 366 | /* |
| 367 | * multi_addmsg() |
| 368 | * |
| 369 | * Called when a transfer is completed. Adds the given msg pointer to |
| 370 | * the list kept in the multi handle. |
| 371 | */ |
| 372 | static CURLMcode multi_addmsg(struct Curl_multi *multi, |
| 373 | struct Curl_message *msg) |
| 374 | { |
| 375 | if(!Curl_llist_insert_next(multi->msglist, multi->msglist->tail, msg)) |
| 376 | return CURLM_OUT_OF_MEMORY; |
| 377 | |
| 378 | return CURLM_OK; |
| 379 | } |
| 380 | |
| 381 | /* |
| 382 | * multi_freeamsg() |
| 383 | * |
| 384 | * Callback used by the llist system when a single list entry is destroyed. |
| 385 | */ |
| 386 | static void multi_freeamsg(void *a, void *b) |
| 387 | { |
| 388 | (void)a; |
| 389 | (void)b; |
| 390 | } |
| 391 | |
| 392 | |
| 393 | CURLM *curl_multi_init(void) |
| 394 | { |
| 395 | struct Curl_multi *multi = calloc(1, sizeof(struct Curl_multi)); |
| 396 | |
| 397 | if(!multi) |
| 398 | return NULL; |
| 399 | |
| 400 | multi->type = CURL_MULTI_HANDLE; |
| 401 | |
| 402 | multi->hostcache = Curl_mk_dnscache(); |
| 403 | if(!multi->hostcache) |
| 404 | goto error; |
| 405 | |
| 406 | multi->sockhash = sh_init(); |
| 407 | if(!multi->sockhash) |
| 408 | goto error; |
| 409 | |
| 410 | multi->connc = Curl_mk_connc(CONNCACHE_MULTI, -1L); |
| 411 | if(!multi->connc) |
| 412 | goto error; |
| 413 | |
| 414 | multi->msglist = Curl_llist_alloc(multi_freeamsg); |
| 415 | if(!multi->msglist) |
| 416 | goto error; |
| 417 | |
| 418 | /* Let's make the doubly-linked list a circular list. This makes |
| 419 | the linked list code simpler and allows inserting at the end |
| 420 | with less work (we didn't keep a tail pointer before). */ |
| 421 | multi->easy.next = &multi->easy; |
| 422 | multi->easy.prev = &multi->easy; |
| 423 | |
| 424 | return (CURLM *) multi; |
| 425 | |
| 426 | error: |
| 427 | if(multi->sockhash) |
| 428 | Curl_hash_destroy(multi->sockhash); |
| 429 | if(multi->hostcache) |
| 430 | Curl_hash_destroy(multi->hostcache); |
| 431 | if(multi->connc) |
| 432 | Curl_rm_connc(multi->connc); |
| 433 | |
| 434 | free(multi); |
| 435 | return NULL; |
| 436 | } |
| 437 | |
| 438 | CURLMcode curl_multi_add_handle(CURLM *multi_handle, |
| 439 | CURL *easy_handle) |
| 440 | { |
| 441 | struct Curl_multi *multi=(struct Curl_multi *)multi_handle; |
| 442 | struct Curl_one_easy *easy; |
| 443 | struct closure *cl; |
| 444 | struct closure *prev=NULL; |
| 445 | struct SessionHandle *data = easy_handle; |
| 446 | |
| 447 | /* First, make some basic checks that the CURLM handle is a good handle */ |
| 448 | if(!GOOD_MULTI_HANDLE(multi)) |
| 449 | return CURLM_BAD_HANDLE; |
| 450 | |
| 451 | /* Verify that we got a somewhat good easy handle too */ |
| 452 | if(!GOOD_EASY_HANDLE(easy_handle)) |
| 453 | return CURLM_BAD_EASY_HANDLE; |
| 454 | |
| 455 | /* Prevent users to add the same handle more than once! */ |
| 456 | if(((struct SessionHandle *)easy_handle)->multi) |
| 457 | /* possibly we should create a new unique error code for this condition */ |
| 458 | return CURLM_BAD_EASY_HANDLE; |
| 459 | |
| 460 | data->state.timeoutlist = Curl_llist_alloc(multi_freetimeout); |
| 461 | if(!data->state.timeoutlist) |
| 462 | return CURLM_OUT_OF_MEMORY; |
| 463 | |
| 464 | /* Now, time to add an easy handle to the multi stack */ |
| 465 | easy = calloc(1, sizeof(struct Curl_one_easy)); |
| 466 | if(!easy) |
| 467 | return CURLM_OUT_OF_MEMORY; |
| 468 | |
| 469 | cl = multi->closure; |
| 470 | while(cl) { |
| 471 | struct closure *next = cl->next; |
| 472 | if(cl->easy_handle == (struct SessionHandle *)easy_handle) { |
| 473 | /* remove this handle from the closure list */ |
| 474 | free(cl); |
| 475 | if(prev) |
| 476 | prev->next = next; |
| 477 | else |
| 478 | multi->closure = next; |
| 479 | break; /* no need to continue since this handle can only be present once |
| 480 | in the list */ |
| 481 | } |
| 482 | prev = cl; |
| 483 | cl = next; |
| 484 | } |
| 485 | |
| 486 | /* set the easy handle */ |
| 487 | easy->easy_handle = easy_handle; |
| 488 | multistate(easy, CURLM_STATE_INIT); |
| 489 | |
| 490 | /* set the back pointer to one_easy to assist in removal */ |
| 491 | easy->easy_handle->multi_pos = easy; |
| 492 | |
| 493 | /* for multi interface connections, we share DNS cache automatically if the |
| 494 | easy handle's one is currently private. */ |
| 495 | if(easy->easy_handle->dns.hostcache && |
| 496 | (easy->easy_handle->dns.hostcachetype == HCACHE_PRIVATE)) { |
| 497 | Curl_hash_destroy(easy->easy_handle->dns.hostcache); |
| 498 | easy->easy_handle->dns.hostcache = NULL; |
| 499 | easy->easy_handle->dns.hostcachetype = HCACHE_NONE; |
| 500 | } |
| 501 | |
| 502 | if(!easy->easy_handle->dns.hostcache || |
| 503 | (easy->easy_handle->dns.hostcachetype == HCACHE_NONE)) { |
| 504 | easy->easy_handle->dns.hostcache = multi->hostcache; |
| 505 | easy->easy_handle->dns.hostcachetype = HCACHE_MULTI; |
| 506 | } |
| 507 | |
| 508 | if(easy->easy_handle->state.connc) { |
| 509 | if(easy->easy_handle->state.connc->type == CONNCACHE_PRIVATE) { |
| 510 | /* kill old private version */ |
| 511 | Curl_rm_connc(easy->easy_handle->state.connc); |
| 512 | /* point out our shared one instead */ |
| 513 | easy->easy_handle->state.connc = multi->connc; |
| 514 | } |
| 515 | /* else it is already using multi? */ |
| 516 | } |
| 517 | else |
| 518 | /* point out our shared one */ |
| 519 | easy->easy_handle->state.connc = multi->connc; |
| 520 | |
| 521 | /* Make sure the type is setup correctly */ |
| 522 | easy->easy_handle->state.connc->type = CONNCACHE_MULTI; |
| 523 | |
| 524 | /* This adds the new entry at the back of the list |
| 525 | to try and maintain a FIFO queue so the pipelined |
| 526 | requests are in order. */ |
| 527 | |
| 528 | /* We add this new entry last in the list. We make our 'next' point to the |
| 529 | 'first' struct and our 'prev' point to the previous 'prev' */ |
| 530 | easy->next = &multi->easy; |
| 531 | easy->prev = multi->easy.prev; |
| 532 | |
| 533 | /* make 'easy' the last node in the chain */ |
| 534 | multi->easy.prev = easy; |
| 535 | |
| 536 | /* if there was a prev node, make sure its 'next' pointer links to |
| 537 | the new node */ |
| 538 | easy->prev->next = easy; |
| 539 | |
| 540 | Curl_easy_addmulti(easy_handle, multi_handle); |
| 541 | |
| 542 | /* make the SessionHandle struct refer back to this struct */ |
| 543 | easy->easy_handle->set.one_easy = easy; |
| 544 | |
| 545 | /* Set the timeout for this handle to expire really soon so that it will |
| 546 | be taken care of even when this handle is added in the midst of operation |
| 547 | when only the curl_multi_socket() API is used. During that flow, only |
| 548 | sockets that time-out or have actions will be dealt with. Since this |
| 549 | handle has no action yet, we make sure it times out to get things to |
| 550 | happen. */ |
| 551 | Curl_expire(easy->easy_handle, 1); |
| 552 | |
| 553 | /* increase the node-counter */ |
| 554 | multi->num_easy++; |
| 555 | |
| 556 | if((multi->num_easy * 4) > multi->connc->num) { |
| 557 | /* We want the connection cache to have plenty room. Before we supported |
| 558 | the shared cache every single easy handle had 5 entries in their cache |
| 559 | by default. */ |
| 560 | long newmax = multi->num_easy * 4; |
| 561 | |
| 562 | if(multi->maxconnects && (multi->maxconnects < newmax)) |
| 563 | /* don't grow beyond the allowed size */ |
| 564 | newmax = multi->maxconnects; |
| 565 | |
| 566 | if(newmax > multi->connc->num) { |
| 567 | /* we only do this is we can in fact grow the cache */ |
| 568 | CURLcode res = Curl_ch_connc(easy_handle, multi->connc, newmax); |
| 569 | if(res != CURLE_OK) { |
| 570 | /* FIXME: may need to do more cleanup here */ |
| 571 | curl_multi_remove_handle(multi_handle, easy_handle); |
| 572 | return CURLM_OUT_OF_MEMORY; |
| 573 | } |
| 574 | } |
| 575 | } |
| 576 | |
| 577 | /* increase the alive-counter */ |
| 578 | multi->num_alive++; |
| 579 | |
| 580 | /* A somewhat crude work-around for a little glitch in update_timer() that |
| 581 | happens if the lastcall time is set to the same time when the handle is |
| 582 | removed as when the next handle is added, as then the check in |
| 583 | update_timer() that prevents calling the application multiple times with |
| 584 | the same timer infor will not trigger and then the new handle's timeout |
| 585 | will not be notified to the app. |
| 586 | |
| 587 | The work-around is thus simply to clear the 'lastcall' variable to force |
| 588 | update_timer() to always trigger a callback to the app when a new easy |
| 589 | handle is added */ |
| 590 | memset(&multi->timer_lastcall, 0, sizeof(multi->timer_lastcall)); |
| 591 | |
| 592 | update_timer(multi); |
| 593 | return CURLM_OK; |
| 594 | } |
| 595 | |
| 596 | #if 0 |
| 597 | /* Debug-function, used like this: |
| 598 | * |
| 599 | * Curl_hash_print(multi->sockhash, debug_print_sock_hash); |
| 600 | * |
| 601 | * Enable the hash print function first by editing hash.c |
| 602 | */ |
| 603 | static void debug_print_sock_hash(void *p) |
| 604 | { |
| 605 | struct Curl_sh_entry *sh = (struct Curl_sh_entry *)p; |
| 606 | |
| 607 | fprintf(stderr, " [easy %p/magic %x/socket %d]", |
| 608 | (void *)sh->easy, sh->easy->magic, (int)sh->socket); |
| 609 | } |
| 610 | #endif |
| 611 | |
| 612 | CURLMcode curl_multi_remove_handle(CURLM *multi_handle, |
| 613 | CURL *curl_handle) |
| 614 | { |
| 615 | struct Curl_multi *multi=(struct Curl_multi *)multi_handle; |
| 616 | struct Curl_one_easy *easy; |
| 617 | struct SessionHandle *data = curl_handle; |
| 618 | |
| 619 | /* First, make some basic checks that the CURLM handle is a good handle */ |
| 620 | if(!GOOD_MULTI_HANDLE(multi)) |
| 621 | return CURLM_BAD_HANDLE; |
| 622 | |
| 623 | /* Verify that we got a somewhat good easy handle too */ |
| 624 | if(!GOOD_EASY_HANDLE(curl_handle)) |
| 625 | return CURLM_BAD_EASY_HANDLE; |
| 626 | |
| 627 | /* pick-up from the 'curl_handle' the kept position in the list */ |
| 628 | easy = data->multi_pos; |
| 629 | |
| 630 | if(easy) { |
| 631 | bool premature = (bool)(easy->state < CURLM_STATE_COMPLETED); |
| 632 | bool easy_owns_conn = (bool)(easy->easy_conn && |
| 633 | (easy->easy_conn->data == easy->easy_handle)); |
| 634 | |
| 635 | /* If the 'state' is not INIT or COMPLETED, we might need to do something |
| 636 | nice to put the easy_handle in a good known state when this returns. */ |
| 637 | if(premature) |
| 638 | /* this handle is "alive" so we need to count down the total number of |
| 639 | alive connections when this is removed */ |
| 640 | multi->num_alive--; |
| 641 | |
| 642 | if(easy->easy_conn && |
| 643 | (easy->easy_conn->send_pipe->size + |
| 644 | easy->easy_conn->recv_pipe->size > 1) && |
| 645 | easy->state > CURLM_STATE_WAITDO && |
| 646 | easy->state < CURLM_STATE_COMPLETED) { |
| 647 | /* If the handle is in a pipeline and has started sending off its |
| 648 | request but not received its reponse yet, we need to close |
| 649 | connection. */ |
| 650 | easy->easy_conn->bits.close = TRUE; |
| 651 | /* Set connection owner so that Curl_done() closes it. |
| 652 | We can sefely do this here since connection is killed. */ |
| 653 | easy->easy_conn->data = easy->easy_handle; |
| 654 | } |
| 655 | |
| 656 | /* The timer must be shut down before easy->multi is set to NULL, |
| 657 | else the timenode will remain in the splay tree after |
| 658 | curl_easy_cleanup is called. */ |
| 659 | Curl_expire(easy->easy_handle, 0); |
| 660 | |
| 661 | /* destroy the timeout list that is held in the easy handle */ |
| 662 | if(data->state.timeoutlist) { |
| 663 | Curl_llist_destroy(data->state.timeoutlist, NULL); |
| 664 | data->state.timeoutlist = NULL; |
| 665 | } |
| 666 | |
| 667 | if(easy->easy_handle->dns.hostcachetype == HCACHE_MULTI) { |
| 668 | /* clear out the usage of the shared DNS cache */ |
| 669 | easy->easy_handle->dns.hostcache = NULL; |
| 670 | easy->easy_handle->dns.hostcachetype = HCACHE_NONE; |
| 671 | } |
| 672 | |
| 673 | if(easy->easy_conn) { |
| 674 | |
| 675 | /* we must call Curl_done() here (if we still "own it") so that we don't |
| 676 | leave a half-baked one around */ |
| 677 | if (easy_owns_conn) { |
| 678 | |
| 679 | /* Curl_done() clears the conn->data field to lose the association |
| 680 | between the easy handle and the connection |
| 681 | |
| 682 | Note that this ignores the return code simply because there's |
| 683 | nothing really useful to do with it anyway! */ |
| 684 | (void)Curl_done(&easy->easy_conn, easy->result, premature); |
| 685 | |
| 686 | if(easy->easy_conn) |
| 687 | /* the connection is still alive, set back the association to enable |
| 688 | the check below to trigger TRUE */ |
| 689 | easy->easy_conn->data = easy->easy_handle; |
| 690 | } |
| 691 | else |
| 692 | /* Clear connection pipelines, if Curl_done above was not called */ |
| 693 | Curl_getoff_all_pipelines(easy->easy_handle, easy->easy_conn); |
| 694 | } |
| 695 | |
| 696 | /* figure out if the easy handle is used by one or more connections in the |
| 697 | cache */ |
| 698 | multi_connc_remove_handle(multi, easy->easy_handle); |
| 699 | |
| 700 | if(easy->easy_handle->state.connc->type == CONNCACHE_MULTI) { |
| 701 | /* if this was using the shared connection cache we clear the pointer |
| 702 | to that since we're not part of that handle anymore */ |
| 703 | easy->easy_handle->state.connc = NULL; |
| 704 | |
| 705 | /* Since we return the connection back to the communal connection pool |
| 706 | we mark the last connection as inaccessible */ |
| 707 | easy->easy_handle->state.lastconnect = -1; |
| 708 | |
| 709 | /* Modify the connectindex since this handle can't point to the |
| 710 | connection cache anymore. |
| 711 | |
| 712 | TODO: consider if this is really what we want. The connection cache |
| 713 | is within the multi handle and that owns the connections so we should |
| 714 | not need to touch connections like this when we just remove an easy |
| 715 | handle... |
| 716 | */ |
| 717 | if(easy->easy_conn && easy_owns_conn && |
| 718 | (easy->easy_conn->send_pipe->size + |
| 719 | easy->easy_conn->recv_pipe->size == 0)) |
| 720 | easy->easy_conn->connectindex = -1; |
| 721 | } |
| 722 | |
| 723 | /* change state without using multistate(), only to make singlesocket() do |
| 724 | what we want */ |
| 725 | easy->state = CURLM_STATE_COMPLETED; |
| 726 | singlesocket(multi, easy); /* to let the application know what sockets |
| 727 | that vanish with this handle */ |
| 728 | |
| 729 | Curl_easy_addmulti(easy->easy_handle, NULL); /* clear the association |
| 730 | to this multi handle */ |
| 731 | |
| 732 | { |
| 733 | /* make sure there's no pending message in the queue sent from this easy |
| 734 | handle */ |
| 735 | struct curl_llist_element *e; |
| 736 | |
| 737 | for(e = multi->msglist->head; e; e = e->next) { |
| 738 | struct Curl_message *msg = e->ptr; |
| 739 | |
| 740 | if(msg->extmsg.easy_handle == easy->easy_handle) { |
| 741 | Curl_llist_remove(multi->msglist, e, NULL); |
| 742 | /* there can only be one from this specific handle */ |
| 743 | break; |
| 744 | } |
| 745 | } |
| 746 | } |
| 747 | |
| 748 | /* make the previous node point to our next */ |
| 749 | if(easy->prev) |
| 750 | easy->prev->next = easy->next; |
| 751 | /* make our next point to our previous node */ |
| 752 | if(easy->next) |
| 753 | easy->next->prev = easy->prev; |
| 754 | |
| 755 | easy->easy_handle->set.one_easy = NULL; /* detached */ |
| 756 | |
| 757 | /* Null the position in the controlling structure */ |
| 758 | easy->easy_handle->multi_pos = NULL; |
| 759 | |
| 760 | /* NOTE NOTE NOTE |
| 761 | We do not touch the easy handle here! */ |
| 762 | free(easy); |
| 763 | |
| 764 | multi->num_easy--; /* one less to care about now */ |
| 765 | |
| 766 | update_timer(multi); |
| 767 | return CURLM_OK; |
| 768 | } |
| 769 | else |
| 770 | return CURLM_BAD_EASY_HANDLE; /* twasn't found */ |
| 771 | } |
| 772 | |
| 773 | bool Curl_multi_canPipeline(const struct Curl_multi* multi) |
| 774 | { |
| 775 | return multi->pipelining_enabled; |
| 776 | } |
| 777 | |
| 778 | void Curl_multi_handlePipeBreak(struct SessionHandle *data) |
| 779 | { |
| 780 | struct Curl_one_easy *one_easy = data->set.one_easy; |
| 781 | |
| 782 | if(one_easy) |
| 783 | one_easy->easy_conn = NULL; |
| 784 | } |
| 785 | |
| 786 | static int waitconnect_getsock(struct connectdata *conn, |
| 787 | curl_socket_t *sock, |
| 788 | int numsocks) |
| 789 | { |
| 790 | if(!numsocks) |
| 791 | return GETSOCK_BLANK; |
| 792 | |
| 793 | sock[0] = conn->sock[FIRSTSOCKET]; |
| 794 | |
| 795 | /* when we've sent a CONNECT to a proxy, we should rather wait for the |
| 796 | socket to become readable to be able to get the response headers */ |
| 797 | if(conn->bits.tunnel_connecting) |
| 798 | return GETSOCK_READSOCK(0); |
| 799 | |
| 800 | return GETSOCK_WRITESOCK(0); |
| 801 | } |
| 802 | |
| 803 | static int domore_getsock(struct connectdata *conn, |
| 804 | curl_socket_t *sock, |
| 805 | int numsocks) |
| 806 | { |
| 807 | if(!numsocks) |
| 808 | return GETSOCK_BLANK; |
| 809 | |
| 810 | /* When in DO_MORE state, we could be either waiting for us |
| 811 | to connect to a remote site, or we could wait for that site |
| 812 | to connect to us. It makes a difference in the way: if we |
| 813 | connect to the site we wait for the socket to become writable, if |
| 814 | the site connects to us we wait for it to become readable */ |
| 815 | sock[0] = conn->sock[SECONDARYSOCKET]; |
| 816 | |
| 817 | return GETSOCK_WRITESOCK(0); |
| 818 | } |
| 819 | |
| 820 | /* returns bitmapped flags for this handle and its sockets */ |
| 821 | static int multi_getsock(struct Curl_one_easy *easy, |
| 822 | curl_socket_t *socks, /* points to numsocks number |
| 823 | of sockets */ |
| 824 | int numsocks) |
| 825 | { |
| 826 | /* If the pipe broke, or if there's no connection left for this easy handle, |
| 827 | then we MUST bail out now with no bitmask set. The no connection case can |
| 828 | happen when this is called from curl_multi_remove_handle() => |
| 829 | singlesocket() => multi_getsock(). |
| 830 | */ |
| 831 | if(easy->easy_handle->state.pipe_broke || !easy->easy_conn) |
| 832 | return 0; |
| 833 | |
| 834 | if(easy->state > CURLM_STATE_CONNECT && |
| 835 | easy->state < CURLM_STATE_COMPLETED) { |
| 836 | /* Set up ownership correctly */ |
| 837 | easy->easy_conn->data = easy->easy_handle; |
| 838 | } |
| 839 | |
| 840 | switch(easy->state) { |
| 841 | default: |
| 842 | #if 0 /* switch back on these cases to get the compiler to check for all enums |
| 843 | to be present */ |
| 844 | case CURLM_STATE_TOOFAST: /* returns 0, so will not select. */ |
| 845 | case CURLM_STATE_COMPLETED: |
| 846 | case CURLM_STATE_MSGSENT: |
| 847 | case CURLM_STATE_INIT: |
| 848 | case CURLM_STATE_CONNECT: |
| 849 | case CURLM_STATE_WAITDO: |
| 850 | case CURLM_STATE_DONE: |
| 851 | case CURLM_STATE_LAST: |
| 852 | /* this will get called with CURLM_STATE_COMPLETED when a handle is |
| 853 | removed */ |
| 854 | #endif |
| 855 | return 0; |
| 856 | |
| 857 | case CURLM_STATE_WAITRESOLVE: |
| 858 | return Curl_resolv_getsock(easy->easy_conn, socks, numsocks); |
| 859 | |
| 860 | case CURLM_STATE_PROTOCONNECT: |
| 861 | return Curl_protocol_getsock(easy->easy_conn, socks, numsocks); |
| 862 | |
| 863 | case CURLM_STATE_DO: |
| 864 | case CURLM_STATE_DOING: |
| 865 | return Curl_doing_getsock(easy->easy_conn, socks, numsocks); |
| 866 | |
| 867 | case CURLM_STATE_WAITPROXYCONNECT: |
| 868 | case CURLM_STATE_WAITCONNECT: |
| 869 | return waitconnect_getsock(easy->easy_conn, socks, numsocks); |
| 870 | |
| 871 | case CURLM_STATE_DO_MORE: |
| 872 | return domore_getsock(easy->easy_conn, socks, numsocks); |
| 873 | |
| 874 | case CURLM_STATE_DO_DONE: /* since is set after DO is completed, we switch |
| 875 | to waiting for the same as the *PERFORM states */ |
| 876 | case CURLM_STATE_PERFORM: |
| 877 | case CURLM_STATE_WAITPERFORM: |
| 878 | return Curl_single_getsock(easy->easy_conn, socks, numsocks); |
| 879 | } |
| 880 | |
| 881 | } |
| 882 | |
| 883 | CURLMcode curl_multi_fdset(CURLM *multi_handle, |
| 884 | fd_set *read_fd_set, fd_set *write_fd_set, |
| 885 | fd_set *exc_fd_set, int *max_fd) |
| 886 | { |
| 887 | /* Scan through all the easy handles to get the file descriptors set. |
| 888 | Some easy handles may not have connected to the remote host yet, |
| 889 | and then we must make sure that is done. */ |
| 890 | struct Curl_multi *multi=(struct Curl_multi *)multi_handle; |
| 891 | struct Curl_one_easy *easy; |
| 892 | int this_max_fd=-1; |
| 893 | curl_socket_t sockbunch[MAX_SOCKSPEREASYHANDLE]; |
| 894 | int bitmap; |
| 895 | int i; |
| 896 | (void)exc_fd_set; /* not used */ |
| 897 | |
| 898 | if(!GOOD_MULTI_HANDLE(multi)) |
| 899 | return CURLM_BAD_HANDLE; |
| 900 | |
| 901 | easy=multi->easy.next; |
| 902 | while(easy != &multi->easy) { |
| 903 | bitmap = multi_getsock(easy, sockbunch, MAX_SOCKSPEREASYHANDLE); |
| 904 | |
| 905 | for(i=0; i< MAX_SOCKSPEREASYHANDLE; i++) { |
| 906 | curl_socket_t s = CURL_SOCKET_BAD; |
| 907 | |
| 908 | if(bitmap & GETSOCK_READSOCK(i)) { |
| 909 | FD_SET(sockbunch[i], read_fd_set); |
| 910 | s = sockbunch[i]; |
| 911 | } |
| 912 | if(bitmap & GETSOCK_WRITESOCK(i)) { |
| 913 | FD_SET(sockbunch[i], write_fd_set); |
| 914 | s = sockbunch[i]; |
| 915 | } |
| 916 | if(s == CURL_SOCKET_BAD) |
| 917 | /* this socket is unused, break out of loop */ |
| 918 | break; |
| 919 | else { |
| 920 | if((int)s > this_max_fd) |
| 921 | this_max_fd = (int)s; |
| 922 | } |
| 923 | } |
| 924 | |
| 925 | easy = easy->next; /* check next handle */ |
| 926 | } |
| 927 | |
| 928 | *max_fd = this_max_fd; |
| 929 | |
| 930 | return CURLM_OK; |
| 931 | } |
| 932 | |
| 933 | static CURLMcode multi_runsingle(struct Curl_multi *multi, |
| 934 | struct timeval now, |
| 935 | struct Curl_one_easy *easy) |
| 936 | { |
| 937 | struct Curl_message *msg = NULL; |
| 938 | bool connected; |
| 939 | bool async; |
| 940 | bool protocol_connect = FALSE; |
| 941 | bool dophase_done; |
| 942 | bool done = FALSE; |
| 943 | CURLMcode result = CURLM_OK; |
| 944 | struct SingleRequest *k; |
| 945 | struct SessionHandle *data; |
| 946 | long timeout_ms; |
| 947 | |
| 948 | if(!GOOD_EASY_HANDLE(easy->easy_handle)) |
| 949 | return CURLM_BAD_EASY_HANDLE; |
| 950 | |
| 951 | data = easy->easy_handle; |
| 952 | |
| 953 | do { |
| 954 | /* this is a do-while loop just to allow a break to skip to the end |
| 955 | of it */ |
| 956 | bool disconnect_conn = FALSE; |
| 957 | |
| 958 | /* Handle the case when the pipe breaks, i.e., the connection |
| 959 | we're using gets cleaned up and we're left with nothing. */ |
| 960 | if(data->state.pipe_broke) { |
| 961 | infof(data, "Pipe broke: handle 0x%p, url = %s\n", |
| 962 | easy, data->state.path); |
| 963 | |
| 964 | if(easy->state < CURLM_STATE_COMPLETED) { |
| 965 | /* Head back to the CONNECT state */ |
| 966 | multistate(easy, CURLM_STATE_CONNECT); |
| 967 | result = CURLM_CALL_MULTI_PERFORM; |
| 968 | easy->result = CURLE_OK; |
| 969 | } |
| 970 | |
| 971 | data->state.pipe_broke = FALSE; |
| 972 | easy->easy_conn = NULL; |
| 973 | break; |
| 974 | } |
| 975 | |
| 976 | if(easy->easy_conn && easy->state > CURLM_STATE_CONNECT && |
| 977 | easy->state < CURLM_STATE_COMPLETED) |
| 978 | /* Make sure we set the connection's current owner */ |
| 979 | easy->easy_conn->data = data; |
| 980 | |
| 981 | if(easy->easy_conn && |
| 982 | (easy->state >= CURLM_STATE_CONNECT) && |
| 983 | (easy->state < CURLM_STATE_COMPLETED)) { |
| 984 | /* we need to wait for the connect state as only then is the start time |
| 985 | stored, but we must not check already completed handles */ |
| 986 | |
| 987 | timeout_ms = Curl_timeleft(easy->easy_conn, &now, |
| 988 | (easy->state <= CURLM_STATE_WAITDO)? |
| 989 | TRUE:FALSE); |
| 990 | |
| 991 | if(timeout_ms < 0) { |
| 992 | /* Handle timed out */ |
| 993 | if(easy->state == CURLM_STATE_WAITRESOLVE) |
| 994 | failf(data, "Resolving timed out after %ld milliseconds", |
| 995 | Curl_tvdiff(now, data->progress.t_startsingle)); |
| 996 | else if(easy->state == CURLM_STATE_WAITCONNECT) |
| 997 | failf(data, "Connection timed out after %ld milliseconds", |
| 998 | Curl_tvdiff(now, data->progress.t_startsingle)); |
| 999 | else { |
| 1000 | k = &data->req; |
| 1001 | failf(data, "Operation timed out after %ld milliseconds with %" |
| 1002 | FORMAT_OFF_T " out of %" FORMAT_OFF_T " bytes received", |
| 1003 | Curl_tvdiff(now, data->progress.t_startsingle), k->bytecount, |
| 1004 | k->size); |
| 1005 | } |
| 1006 | easy->result = CURLE_OPERATION_TIMEDOUT; |
| 1007 | multistate(easy, CURLM_STATE_COMPLETED); |
| 1008 | break; |
| 1009 | } |
| 1010 | } |
| 1011 | |
| 1012 | switch(easy->state) { |
| 1013 | case CURLM_STATE_INIT: |
| 1014 | /* init this transfer. */ |
| 1015 | easy->result=Curl_pretransfer(data); |
| 1016 | |
| 1017 | if(CURLE_OK == easy->result) { |
| 1018 | /* after init, go CONNECT */ |
| 1019 | multistate(easy, CURLM_STATE_CONNECT); |
| 1020 | result = CURLM_CALL_MULTI_PERFORM; |
| 1021 | |
| 1022 | data->state.used_interface = Curl_if_multi; |
| 1023 | } |
| 1024 | break; |
| 1025 | |
| 1026 | case CURLM_STATE_CONNECT: |
| 1027 | /* Connect. We get a connection identifier filled in. */ |
| 1028 | Curl_pgrsTime(data, TIMER_STARTSINGLE); |
| 1029 | easy->result = Curl_connect(data, &easy->easy_conn, |
| 1030 | &async, &protocol_connect); |
| 1031 | |
| 1032 | if(CURLE_OK == easy->result) { |
| 1033 | /* Add this handle to the send or pend pipeline */ |
| 1034 | easy->result = addHandleToSendOrPendPipeline(data, |
| 1035 | easy->easy_conn); |
| 1036 | if(CURLE_OK == easy->result) { |
| 1037 | if(async) |
| 1038 | /* We're now waiting for an asynchronous name lookup */ |
| 1039 | multistate(easy, CURLM_STATE_WAITRESOLVE); |
| 1040 | else { |
| 1041 | /* after the connect has been sent off, go WAITCONNECT unless the |
| 1042 | protocol connect is already done and we can go directly to |
| 1043 | WAITDO or DO! */ |
| 1044 | result = CURLM_CALL_MULTI_PERFORM; |
| 1045 | |
| 1046 | if(protocol_connect) |
| 1047 | multistate(easy, multi->pipelining_enabled? |
| 1048 | CURLM_STATE_WAITDO:CURLM_STATE_DO); |
| 1049 | else { |
| 1050 | #ifndef CURL_DISABLE_HTTP |
| 1051 | if(easy->easy_conn->bits.tunnel_connecting) |
| 1052 | multistate(easy, CURLM_STATE_WAITPROXYCONNECT); |
| 1053 | else |
| 1054 | #endif |
| 1055 | multistate(easy, CURLM_STATE_WAITCONNECT); |
| 1056 | } |
| 1057 | } |
| 1058 | } |
| 1059 | } |
| 1060 | break; |
| 1061 | |
| 1062 | case CURLM_STATE_WAITRESOLVE: |
| 1063 | /* awaiting an asynch name resolve to complete */ |
| 1064 | { |
| 1065 | struct Curl_dns_entry *dns = NULL; |
| 1066 | |
| 1067 | /* check if we have the name resolved by now */ |
| 1068 | easy->result = Curl_is_resolved(easy->easy_conn, &dns); |
| 1069 | |
| 1070 | if(dns) { |
| 1071 | /* Update sockets here. Mainly because the socket(s) may have been |
| 1072 | closed and the application thus needs to be told, even if it is |
| 1073 | likely that the same socket(s) will again be used further down. */ |
| 1074 | singlesocket(multi, easy); |
| 1075 | |
| 1076 | /* Perform the next step in the connection phase, and then move on |
| 1077 | to the WAITCONNECT state */ |
| 1078 | easy->result = Curl_async_resolved(easy->easy_conn, |
| 1079 | &protocol_connect); |
| 1080 | |
| 1081 | if(CURLE_OK != easy->result) |
| 1082 | /* if Curl_async_resolved() returns failure, the connection struct |
| 1083 | is already freed and gone */ |
| 1084 | easy->easy_conn = NULL; /* no more connection */ |
| 1085 | else { |
| 1086 | /* call again please so that we get the next socket setup */ |
| 1087 | result = CURLM_CALL_MULTI_PERFORM; |
| 1088 | if(protocol_connect) |
| 1089 | multistate(easy, multi->pipelining_enabled? |
| 1090 | CURLM_STATE_WAITDO:CURLM_STATE_DO); |
| 1091 | else { |
| 1092 | #ifndef CURL_DISABLE_HTTP |
| 1093 | if(easy->easy_conn->bits.tunnel_connecting) |
| 1094 | multistate(easy, CURLM_STATE_WAITPROXYCONNECT); |
| 1095 | else |
| 1096 | #endif |
| 1097 | multistate(easy, CURLM_STATE_WAITCONNECT); |
| 1098 | } |
| 1099 | } |
| 1100 | } |
| 1101 | |
| 1102 | if(CURLE_OK != easy->result) { |
| 1103 | /* failure detected */ |
| 1104 | disconnect_conn = TRUE; |
| 1105 | break; |
| 1106 | } |
| 1107 | } |
| 1108 | break; |
| 1109 | |
| 1110 | #ifndef CURL_DISABLE_HTTP |
| 1111 | case CURLM_STATE_WAITPROXYCONNECT: |
| 1112 | /* this is HTTP-specific, but sending CONNECT to a proxy is HTTP... */ |
| 1113 | easy->result = Curl_http_connect(easy->easy_conn, &protocol_connect); |
| 1114 | |
| 1115 | if(easy->easy_conn->bits.proxy_connect_closed) { |
| 1116 | /* reset the error buffer */ |
| 1117 | if(data->set.errorbuffer) |
| 1118 | data->set.errorbuffer[0] = '\0'; |
| 1119 | data->state.errorbuf = FALSE; |
| 1120 | |
| 1121 | easy->result = CURLE_OK; |
| 1122 | result = CURLM_CALL_MULTI_PERFORM; |
| 1123 | multistate(easy, CURLM_STATE_CONNECT); |
| 1124 | } |
| 1125 | else if (CURLE_OK == easy->result) { |
| 1126 | if(!easy->easy_conn->bits.tunnel_connecting) |
| 1127 | multistate(easy, CURLM_STATE_WAITCONNECT); |
| 1128 | } |
| 1129 | break; |
| 1130 | #endif |
| 1131 | |
| 1132 | case CURLM_STATE_WAITCONNECT: |
| 1133 | /* awaiting a completion of an asynch connect */ |
| 1134 | easy->result = Curl_is_connected(easy->easy_conn, |
| 1135 | FIRSTSOCKET, |
| 1136 | &connected); |
| 1137 | if(connected) { |
| 1138 | /* see if we need to do any proxy magic first once we connected */ |
| 1139 | easy->result = Curl_connected_proxy(easy->easy_conn); |
| 1140 | |
| 1141 | if(!easy->result) |
| 1142 | /* if everything is still fine we do the protocol-specific connect |
| 1143 | setup */ |
| 1144 | easy->result = Curl_protocol_connect(easy->easy_conn, |
| 1145 | &protocol_connect); |
| 1146 | } |
| 1147 | |
| 1148 | if(CURLE_OK != easy->result) { |
| 1149 | /* failure detected */ |
| 1150 | /* Just break, the cleaning up is handled all in one place */ |
| 1151 | disconnect_conn = TRUE; |
| 1152 | break; |
| 1153 | } |
| 1154 | |
| 1155 | if(connected) { |
| 1156 | if(!protocol_connect) { |
| 1157 | /* We have a TCP connection, but 'protocol_connect' may be false |
| 1158 | and then we continue to 'STATE_PROTOCONNECT'. If protocol |
| 1159 | connect is TRUE, we move on to STATE_DO. |
| 1160 | BUT if we are using a proxy we must change to WAITPROXYCONNECT |
| 1161 | */ |
| 1162 | #ifndef CURL_DISABLE_HTTP |
| 1163 | if(easy->easy_conn->bits.tunnel_connecting) |
| 1164 | multistate(easy, CURLM_STATE_WAITPROXYCONNECT); |
| 1165 | else |
| 1166 | #endif |
| 1167 | multistate(easy, CURLM_STATE_PROTOCONNECT); |
| 1168 | |
| 1169 | } |
| 1170 | else |
| 1171 | /* after the connect has completed, go WAITDO or DO */ |
| 1172 | multistate(easy, multi->pipelining_enabled? |
| 1173 | CURLM_STATE_WAITDO:CURLM_STATE_DO); |
| 1174 | |
| 1175 | result = CURLM_CALL_MULTI_PERFORM; |
| 1176 | } |
| 1177 | break; |
| 1178 | |
| 1179 | case CURLM_STATE_PROTOCONNECT: |
| 1180 | /* protocol-specific connect phase */ |
| 1181 | easy->result = Curl_protocol_connecting(easy->easy_conn, |
| 1182 | &protocol_connect); |
| 1183 | if((easy->result == CURLE_OK) && protocol_connect) { |
| 1184 | /* after the connect has completed, go WAITDO or DO */ |
| 1185 | multistate(easy, multi->pipelining_enabled? |
| 1186 | CURLM_STATE_WAITDO:CURLM_STATE_DO); |
| 1187 | result = CURLM_CALL_MULTI_PERFORM; |
| 1188 | } |
| 1189 | else if(easy->result) { |
| 1190 | /* failure detected */ |
| 1191 | Curl_posttransfer(data); |
| 1192 | Curl_done(&easy->easy_conn, easy->result, FALSE); |
| 1193 | disconnect_conn = TRUE; |
| 1194 | } |
| 1195 | break; |
| 1196 | |
| 1197 | case CURLM_STATE_WAITDO: |
| 1198 | /* Wait for our turn to DO when we're pipelining requests */ |
| 1199 | #ifdef DEBUGBUILD |
| 1200 | infof(data, "Conn %ld send pipe %zu inuse %d athead %d\n", |
| 1201 | easy->easy_conn->connectindex, |
| 1202 | easy->easy_conn->send_pipe->size, |
| 1203 | easy->easy_conn->writechannel_inuse?1:0, |
| 1204 | isHandleAtHead(data, |
| 1205 | easy->easy_conn->send_pipe)?1:0); |
| 1206 | #endif |
| 1207 | if(!easy->easy_conn->writechannel_inuse && |
| 1208 | isHandleAtHead(data, |
| 1209 | easy->easy_conn->send_pipe)) { |
| 1210 | /* Grab the channel */ |
| 1211 | easy->easy_conn->writechannel_inuse = TRUE; |
| 1212 | multistate(easy, CURLM_STATE_DO); |
| 1213 | result = CURLM_CALL_MULTI_PERFORM; |
| 1214 | } |
| 1215 | break; |
| 1216 | |
| 1217 | case CURLM_STATE_DO: |
| 1218 | if(data->set.connect_only) { |
| 1219 | /* keep connection open for application to use the socket */ |
| 1220 | easy->easy_conn->bits.close = FALSE; |
| 1221 | multistate(easy, CURLM_STATE_DONE); |
| 1222 | easy->result = CURLE_OK; |
| 1223 | result = CURLM_OK; |
| 1224 | } |
| 1225 | else { |
| 1226 | /* Perform the protocol's DO action */ |
| 1227 | easy->result = Curl_do(&easy->easy_conn, |
| 1228 | &dophase_done); |
| 1229 | |
| 1230 | if(CURLE_OK == easy->result) { |
| 1231 | if(!dophase_done) { |
| 1232 | /* some steps needed for wildcard matching */ |
| 1233 | if(data->set.wildcardmatch) { |
| 1234 | struct WildcardData *wc = &data->wildcard; |
| 1235 | if(wc->state == CURLWC_DONE || wc->state == CURLWC_SKIP) { |
| 1236 | /* skip some states if it is important */ |
| 1237 | Curl_done(&easy->easy_conn, CURLE_OK, FALSE); |
| 1238 | multistate(easy, CURLM_STATE_DONE); |
| 1239 | result = CURLM_CALL_MULTI_PERFORM; |
| 1240 | break; |
| 1241 | } |
| 1242 | } |
| 1243 | /* DO was not completed in one function call, we must continue |
| 1244 | DOING... */ |
| 1245 | multistate(easy, CURLM_STATE_DOING); |
| 1246 | result = CURLM_OK; |
| 1247 | } |
| 1248 | |
| 1249 | /* after DO, go DO_DONE... or DO_MORE */ |
| 1250 | else if(easy->easy_conn->bits.do_more) { |
| 1251 | /* we're supposed to do more, but we need to sit down, relax |
| 1252 | and wait a little while first */ |
| 1253 | multistate(easy, CURLM_STATE_DO_MORE); |
| 1254 | result = CURLM_OK; |
| 1255 | } |
| 1256 | else { |
| 1257 | /* we're done with the DO, now DO_DONE */ |
| 1258 | multistate(easy, CURLM_STATE_DO_DONE); |
| 1259 | result = CURLM_CALL_MULTI_PERFORM; |
| 1260 | } |
| 1261 | } |
| 1262 | else if ((CURLE_SEND_ERROR == easy->result) && |
| 1263 | easy->easy_conn->bits.reuse) { |
| 1264 | /* |
| 1265 | * In this situation, a connection that we were trying to use |
| 1266 | * may have unexpectedly died. If possible, send the connection |
| 1267 | * back to the CONNECT phase so we can try again. |
| 1268 | */ |
| 1269 | char *newurl = NULL; |
| 1270 | followtype follow=FOLLOW_NONE; |
| 1271 | CURLcode drc; |
| 1272 | bool retry = FALSE; |
| 1273 | |
| 1274 | drc = Curl_retry_request(easy->easy_conn, &newurl); |
| 1275 | if(drc) { |
| 1276 | /* a failure here pretty much implies an out of memory */ |
| 1277 | easy->result = drc; |
| 1278 | disconnect_conn = TRUE; |
| 1279 | } |
| 1280 | else |
| 1281 | retry = (bool)(newurl?TRUE:FALSE); |
| 1282 | |
| 1283 | Curl_posttransfer(data); |
| 1284 | drc = Curl_done(&easy->easy_conn, easy->result, FALSE); |
| 1285 | |
| 1286 | /* When set to retry the connection, we must to go back to |
| 1287 | * the CONNECT state */ |
| 1288 | if(retry) { |
| 1289 | if ((drc == CURLE_OK) || (drc == CURLE_SEND_ERROR)) { |
| 1290 | follow = FOLLOW_RETRY; |
| 1291 | drc = Curl_follow(data, newurl, follow); |
| 1292 | if(drc == CURLE_OK) { |
| 1293 | multistate(easy, CURLM_STATE_CONNECT); |
| 1294 | result = CURLM_CALL_MULTI_PERFORM; |
| 1295 | easy->result = CURLE_OK; |
| 1296 | } |
| 1297 | else { |
| 1298 | /* Follow failed */ |
| 1299 | easy->result = drc; |
| 1300 | free(newurl); |
| 1301 | } |
| 1302 | } |
| 1303 | else { |
| 1304 | /* done didn't return OK or SEND_ERROR */ |
| 1305 | easy->result = drc; |
| 1306 | free(newurl); |
| 1307 | } |
| 1308 | } |
| 1309 | else { |
| 1310 | /* Have error handler disconnect conn if we can't retry */ |
| 1311 | disconnect_conn = TRUE; |
| 1312 | } |
| 1313 | } |
| 1314 | else { |
| 1315 | /* failure detected */ |
| 1316 | Curl_posttransfer(data); |
| 1317 | Curl_done(&easy->easy_conn, easy->result, FALSE); |
| 1318 | disconnect_conn = TRUE; |
| 1319 | } |
| 1320 | } |
| 1321 | break; |
| 1322 | |
| 1323 | case CURLM_STATE_DOING: |
| 1324 | /* we continue DOING until the DO phase is complete */ |
| 1325 | easy->result = Curl_protocol_doing(easy->easy_conn, |
| 1326 | &dophase_done); |
| 1327 | if(CURLE_OK == easy->result) { |
| 1328 | if(dophase_done) { |
| 1329 | /* after DO, go PERFORM... or DO_MORE */ |
| 1330 | if(easy->easy_conn->bits.do_more) { |
| 1331 | /* we're supposed to do more, but we need to sit down, relax |
| 1332 | and wait a little while first */ |
| 1333 | multistate(easy, CURLM_STATE_DO_MORE); |
| 1334 | result = CURLM_OK; |
| 1335 | } |
| 1336 | else { |
| 1337 | /* we're done with the DO, now DO_DONE */ |
| 1338 | multistate(easy, CURLM_STATE_DO_DONE); |
| 1339 | result = CURLM_CALL_MULTI_PERFORM; |
| 1340 | } |
| 1341 | } /* dophase_done */ |
| 1342 | } |
| 1343 | else { |
| 1344 | /* failure detected */ |
| 1345 | Curl_posttransfer(data); |
| 1346 | Curl_done(&easy->easy_conn, easy->result, FALSE); |
| 1347 | disconnect_conn = TRUE; |
| 1348 | } |
| 1349 | break; |
| 1350 | |
| 1351 | case CURLM_STATE_DO_MORE: |
| 1352 | /* Ready to do more? */ |
| 1353 | easy->result = Curl_is_connected(easy->easy_conn, |
| 1354 | SECONDARYSOCKET, |
| 1355 | &connected); |
| 1356 | if(connected) { |
| 1357 | /* |
| 1358 | * When we are connected, DO MORE and then go DO_DONE |
| 1359 | */ |
| 1360 | easy->result = Curl_do_more(easy->easy_conn); |
| 1361 | |
| 1362 | /* No need to remove ourselves from the send pipeline here since that |
| 1363 | is done for us in Curl_done() */ |
| 1364 | |
| 1365 | if(CURLE_OK == easy->result) { |
| 1366 | multistate(easy, CURLM_STATE_DO_DONE); |
| 1367 | result = CURLM_CALL_MULTI_PERFORM; |
| 1368 | } |
| 1369 | else { |
| 1370 | /* failure detected */ |
| 1371 | Curl_posttransfer(data); |
| 1372 | Curl_done(&easy->easy_conn, easy->result, FALSE); |
| 1373 | disconnect_conn = TRUE; |
| 1374 | } |
| 1375 | } |
| 1376 | break; |
| 1377 | |
| 1378 | case CURLM_STATE_DO_DONE: |
| 1379 | /* Move ourselves from the send to recv pipeline */ |
| 1380 | moveHandleFromSendToRecvPipeline(data, easy->easy_conn); |
| 1381 | /* Check if we can move pending requests to send pipe */ |
| 1382 | checkPendPipeline(easy->easy_conn); |
| 1383 | multistate(easy, CURLM_STATE_WAITPERFORM); |
| 1384 | result = CURLM_CALL_MULTI_PERFORM; |
| 1385 | break; |
| 1386 | |
| 1387 | case CURLM_STATE_WAITPERFORM: |
| 1388 | /* Wait for our turn to PERFORM */ |
| 1389 | if(!easy->easy_conn->readchannel_inuse && |
| 1390 | isHandleAtHead(data, |
| 1391 | easy->easy_conn->recv_pipe)) { |
| 1392 | /* Grab the channel */ |
| 1393 | easy->easy_conn->readchannel_inuse = TRUE; |
| 1394 | multistate(easy, CURLM_STATE_PERFORM); |
| 1395 | result = CURLM_CALL_MULTI_PERFORM; |
| 1396 | } |
| 1397 | #ifdef DEBUGBUILD |
| 1398 | else { |
| 1399 | infof(data, "Conn %ld recv pipe %zu inuse %d athead %d\n", |
| 1400 | easy->easy_conn->connectindex, |
| 1401 | easy->easy_conn->recv_pipe->size, |
| 1402 | easy->easy_conn->readchannel_inuse?1:0, |
| 1403 | isHandleAtHead(data, |
| 1404 | easy->easy_conn->recv_pipe)?1:0); |
| 1405 | } |
| 1406 | #endif |
| 1407 | break; |
| 1408 | |
| 1409 | case CURLM_STATE_TOOFAST: /* limit-rate exceeded in either direction */ |
| 1410 | /* if both rates are within spec, resume transfer */ |
| 1411 | if( ( (data->set.max_send_speed == 0) || |
| 1412 | (data->progress.ulspeed < data->set.max_send_speed )) && |
| 1413 | ( (data->set.max_recv_speed == 0) || |
| 1414 | (data->progress.dlspeed < data->set.max_recv_speed) ) ) |
| 1415 | multistate(easy, CURLM_STATE_PERFORM); |
| 1416 | break; |
| 1417 | |
| 1418 | case CURLM_STATE_PERFORM: |
| 1419 | /* check if over send speed */ |
| 1420 | if( (data->set.max_send_speed > 0) && |
| 1421 | (data->progress.ulspeed > data->set.max_send_speed) ) { |
| 1422 | int buffersize; |
| 1423 | |
| 1424 | multistate(easy, CURLM_STATE_TOOFAST); |
| 1425 | |
| 1426 | /* calculate upload rate-limitation timeout. */ |
| 1427 | buffersize = (int)(data->set.buffer_size ? |
| 1428 | data->set.buffer_size : BUFSIZE); |
| 1429 | timeout_ms = Curl_sleep_time(data->set.max_send_speed, |
| 1430 | data->progress.ulspeed, buffersize); |
| 1431 | Curl_expire(data, timeout_ms); |
| 1432 | break; |
| 1433 | } |
| 1434 | |
| 1435 | /* check if over recv speed */ |
| 1436 | if( (data->set.max_recv_speed > 0) && |
| 1437 | (data->progress.dlspeed > data->set.max_recv_speed) ) { |
| 1438 | int buffersize; |
| 1439 | |
| 1440 | multistate(easy, CURLM_STATE_TOOFAST); |
| 1441 | |
| 1442 | /* Calculate download rate-limitation timeout. */ |
| 1443 | buffersize = (int)(data->set.buffer_size ? |
| 1444 | data->set.buffer_size : BUFSIZE); |
| 1445 | timeout_ms = Curl_sleep_time(data->set.max_recv_speed, |
| 1446 | data->progress.dlspeed, buffersize); |
| 1447 | Curl_expire(data, timeout_ms); |
| 1448 | break; |
| 1449 | } |
| 1450 | |
| 1451 | /* read/write data if it is ready to do so */ |
| 1452 | easy->result = Curl_readwrite(easy->easy_conn, &done); |
| 1453 | |
| 1454 | k = &data->req; |
| 1455 | |
| 1456 | if(!(k->keepon & KEEP_RECV)) { |
| 1457 | /* We're done receiving */ |
| 1458 | easy->easy_conn->readchannel_inuse = FALSE; |
| 1459 | } |
| 1460 | |
| 1461 | if(!(k->keepon & KEEP_SEND)) { |
| 1462 | /* We're done sending */ |
| 1463 | easy->easy_conn->writechannel_inuse = FALSE; |
| 1464 | } |
| 1465 | |
| 1466 | if(easy->result) { |
| 1467 | /* The transfer phase returned error, we mark the connection to get |
| 1468 | * closed to prevent being re-used. This is because we can't possibly |
| 1469 | * know if the connection is in a good shape or not now. Unless it is |
| 1470 | * a protocol which uses two "channels" like FTP, as then the error |
| 1471 | * happened in the data connection. |
| 1472 | */ |
| 1473 | if(!(easy->easy_conn->protocol & PROT_DUALCHANNEL)) |
| 1474 | easy->easy_conn->bits.close = TRUE; |
| 1475 | |
| 1476 | Curl_posttransfer(data); |
| 1477 | Curl_done(&easy->easy_conn, easy->result, FALSE); |
| 1478 | } |
| 1479 | else if(TRUE == done) { |
| 1480 | char *newurl = NULL; |
| 1481 | bool retry = FALSE; |
| 1482 | followtype follow=FOLLOW_NONE; |
| 1483 | |
| 1484 | easy->result = Curl_retry_request(easy->easy_conn, &newurl); |
| 1485 | if(!easy->result) |
| 1486 | retry = (bool)(newurl?TRUE:FALSE); |
| 1487 | |
| 1488 | /* call this even if the readwrite function returned error */ |
| 1489 | Curl_posttransfer(data); |
| 1490 | |
| 1491 | /* we're no longer receving */ |
| 1492 | moveHandleFromRecvToDonePipeline(data, |
| 1493 | easy->easy_conn); |
| 1494 | |
| 1495 | /* expire the new receiving pipeline head */ |
| 1496 | if(easy->easy_conn->recv_pipe->head) |
| 1497 | Curl_expire(easy->easy_conn->recv_pipe->head->ptr, 1); |
| 1498 | |
| 1499 | /* Check if we can move pending requests to send pipe */ |
| 1500 | checkPendPipeline(easy->easy_conn); |
| 1501 | |
| 1502 | /* When we follow redirects or is set to retry the connection, we must |
| 1503 | to go back to the CONNECT state */ |
| 1504 | if(data->req.newurl || retry) { |
| 1505 | if(!retry) { |
| 1506 | /* if the URL is a follow-location and not just a retried request |
| 1507 | then figure out the URL here */ |
| 1508 | newurl = data->req.newurl; |
| 1509 | data->req.newurl = NULL; |
| 1510 | follow = FOLLOW_REDIR; |
| 1511 | } |
| 1512 | else |
| 1513 | follow = FOLLOW_RETRY; |
| 1514 | easy->result = Curl_done(&easy->easy_conn, CURLE_OK, FALSE); |
| 1515 | if(easy->result == CURLE_OK) |
| 1516 | easy->result = Curl_follow(data, newurl, follow); |
| 1517 | if(CURLE_OK == easy->result) { |
| 1518 | multistate(easy, CURLM_STATE_CONNECT); |
| 1519 | result = CURLM_CALL_MULTI_PERFORM; |
| 1520 | } |
| 1521 | else if(newurl) |
| 1522 | /* Since we "took it", we are in charge of freeing this on |
| 1523 | failure */ |
| 1524 | free(newurl); |
| 1525 | } |
| 1526 | else { |
| 1527 | /* after the transfer is done, go DONE */ |
| 1528 | |
| 1529 | /* but first check to see if we got a location info even though we're |
| 1530 | not following redirects */ |
| 1531 | if (data->req.location) { |
| 1532 | newurl = data->req.location; |
| 1533 | data->req.location = NULL; |
| 1534 | easy->result = Curl_follow(data, newurl, FOLLOW_FAKE); |
| 1535 | if (easy->result) |
| 1536 | free(newurl); |
| 1537 | } |
| 1538 | |
| 1539 | multistate(easy, CURLM_STATE_DONE); |
| 1540 | result = CURLM_CALL_MULTI_PERFORM; |
| 1541 | } |
| 1542 | } |
| 1543 | |
| 1544 | break; |
| 1545 | |
| 1546 | case CURLM_STATE_DONE: |
| 1547 | |
| 1548 | if(easy->easy_conn) { |
| 1549 | /* Remove ourselves from the receive and done pipelines. Handle |
| 1550 | should be on one of these lists, depending upon how we got here. */ |
| 1551 | Curl_removeHandleFromPipeline(data, |
| 1552 | easy->easy_conn->recv_pipe); |
| 1553 | Curl_removeHandleFromPipeline(data, |
| 1554 | easy->easy_conn->done_pipe); |
| 1555 | /* Check if we can move pending requests to send pipe */ |
| 1556 | checkPendPipeline(easy->easy_conn); |
| 1557 | |
| 1558 | if(easy->easy_conn->bits.stream_was_rewound) { |
| 1559 | /* This request read past its response boundary so we quickly let |
| 1560 | the other requests consume those bytes since there is no |
| 1561 | guarantee that the socket will become active again */ |
| 1562 | result = CURLM_CALL_MULTI_PERFORM; |
| 1563 | } |
| 1564 | |
| 1565 | /* post-transfer command */ |
| 1566 | easy->result = Curl_done(&easy->easy_conn, CURLE_OK, FALSE); |
| 1567 | /* |
| 1568 | * If there are other handles on the pipeline, Curl_done won't set |
| 1569 | * easy_conn to NULL. In such a case, curl_multi_remove_handle() can |
| 1570 | * access free'd data, if the connection is free'd and the handle |
| 1571 | * removed before we perform the processing in CURLM_STATE_COMPLETED |
| 1572 | */ |
| 1573 | if (easy->easy_conn) |
| 1574 | easy->easy_conn = NULL; |
| 1575 | } |
| 1576 | |
| 1577 | if(data->set.wildcardmatch) { |
| 1578 | if(data->wildcard.state != CURLWC_DONE) { |
| 1579 | /* if a wildcard is set and we are not ending -> lets start again |
| 1580 | with CURLM_STATE_INIT */ |
| 1581 | result = CURLM_CALL_MULTI_PERFORM; |
| 1582 | multistate(easy, CURLM_STATE_INIT); |
| 1583 | break; |
| 1584 | } |
| 1585 | } |
| 1586 | |
| 1587 | /* after we have DONE what we're supposed to do, go COMPLETED, and |
| 1588 | it doesn't matter what the Curl_done() returned! */ |
| 1589 | multistate(easy, CURLM_STATE_COMPLETED); |
| 1590 | |
| 1591 | break; |
| 1592 | |
| 1593 | case CURLM_STATE_COMPLETED: |
| 1594 | /* this is a completed transfer, it is likely to still be connected */ |
| 1595 | |
| 1596 | /* This node should be delinked from the list now and we should post |
| 1597 | an information message that we are complete. */ |
| 1598 | |
| 1599 | /* Important: reset the conn pointer so that we don't point to memory |
| 1600 | that could be freed anytime */ |
| 1601 | easy->easy_conn = NULL; |
| 1602 | |
| 1603 | Curl_expire(data, 0); /* stop all timers */ |
| 1604 | break; |
| 1605 | |
| 1606 | case CURLM_STATE_MSGSENT: |
| 1607 | return CURLM_OK; /* do nothing */ |
| 1608 | |
| 1609 | default: |
| 1610 | return CURLM_INTERNAL_ERROR; |
| 1611 | } |
| 1612 | |
| 1613 | if(CURLM_STATE_COMPLETED > easy->state) { |
| 1614 | if(CURLE_OK != easy->result) { |
| 1615 | /* |
| 1616 | * If an error was returned, and we aren't in completed state now, |
| 1617 | * then we go to completed and consider this transfer aborted. |
| 1618 | */ |
| 1619 | |
| 1620 | /* NOTE: no attempt to disconnect connections must be made |
| 1621 | in the case blocks above - cleanup happens only here */ |
| 1622 | |
| 1623 | data->state.pipe_broke = FALSE; |
| 1624 | |
| 1625 | if(easy->easy_conn) { |
| 1626 | /* if this has a connection, unsubscribe from the pipelines */ |
| 1627 | easy->easy_conn->writechannel_inuse = FALSE; |
| 1628 | easy->easy_conn->readchannel_inuse = FALSE; |
| 1629 | Curl_removeHandleFromPipeline(data, |
| 1630 | easy->easy_conn->send_pipe); |
| 1631 | Curl_removeHandleFromPipeline(data, |
| 1632 | easy->easy_conn->recv_pipe); |
| 1633 | Curl_removeHandleFromPipeline(data, |
| 1634 | easy->easy_conn->done_pipe); |
| 1635 | /* Check if we can move pending requests to send pipe */ |
| 1636 | checkPendPipeline(easy->easy_conn); |
| 1637 | } |
| 1638 | |
| 1639 | if(disconnect_conn) { |
| 1640 | /* disconnect properly */ |
| 1641 | Curl_disconnect(easy->easy_conn, /* dead_connection */ FALSE); |
| 1642 | |
| 1643 | /* This is where we make sure that the easy_conn pointer is reset. |
| 1644 | We don't have to do this in every case block above where a |
| 1645 | failure is detected */ |
| 1646 | easy->easy_conn = NULL; |
| 1647 | } |
| 1648 | |
| 1649 | multistate(easy, CURLM_STATE_COMPLETED); |
| 1650 | } |
| 1651 | /* if there's still a connection to use, call the progress function */ |
| 1652 | else if(easy->easy_conn && Curl_pgrsUpdate(easy->easy_conn)) |
| 1653 | easy->result = CURLE_ABORTED_BY_CALLBACK; |
| 1654 | } |
| 1655 | } while(0); |
| 1656 | |
| 1657 | if(CURLM_STATE_COMPLETED == easy->state) { |
| 1658 | if(data->dns.hostcachetype == HCACHE_MULTI) { |
| 1659 | /* clear out the usage of the shared DNS cache */ |
| 1660 | data->dns.hostcache = NULL; |
| 1661 | data->dns.hostcachetype = HCACHE_NONE; |
| 1662 | } |
| 1663 | |
| 1664 | /* now fill in the Curl_message with this info */ |
| 1665 | msg = &easy->msg; |
| 1666 | |
| 1667 | msg->extmsg.msg = CURLMSG_DONE; |
| 1668 | msg->extmsg.easy_handle = data; |
| 1669 | msg->extmsg.data.result = easy->result; |
| 1670 | |
| 1671 | result = multi_addmsg(multi, msg); |
| 1672 | |
| 1673 | multistate(easy, CURLM_STATE_MSGSENT); |
| 1674 | } |
| 1675 | |
| 1676 | return result; |
| 1677 | } |
| 1678 | |
| 1679 | |
| 1680 | CURLMcode curl_multi_perform(CURLM *multi_handle, int *running_handles) |
| 1681 | { |
| 1682 | struct Curl_multi *multi=(struct Curl_multi *)multi_handle; |
| 1683 | struct Curl_one_easy *easy; |
| 1684 | CURLMcode returncode=CURLM_OK; |
| 1685 | struct Curl_tree *t; |
| 1686 | struct timeval now = Curl_tvnow(); |
| 1687 | |
| 1688 | if(!GOOD_MULTI_HANDLE(multi)) |
| 1689 | return CURLM_BAD_HANDLE; |
| 1690 | |
| 1691 | easy=multi->easy.next; |
| 1692 | while(easy != &multi->easy) { |
| 1693 | CURLMcode result; |
| 1694 | struct WildcardData *wc = &easy->easy_handle->wildcard; |
| 1695 | |
| 1696 | if(easy->easy_handle->set.wildcardmatch) { |
| 1697 | if(!wc->filelist) { |
| 1698 | CURLcode ret = Curl_wildcard_init(wc); /* init wildcard structures */ |
| 1699 | if(ret) |
| 1700 | return CURLM_OUT_OF_MEMORY; |
| 1701 | } |
| 1702 | } |
| 1703 | |
| 1704 | do |
| 1705 | result = multi_runsingle(multi, now, easy); |
| 1706 | while (CURLM_CALL_MULTI_PERFORM == result); |
| 1707 | |
| 1708 | if(easy->easy_handle->set.wildcardmatch) { |
| 1709 | /* destruct wildcard structures if it is needed */ |
| 1710 | if(wc->state == CURLWC_DONE || result) |
| 1711 | Curl_wildcard_dtor(wc); |
| 1712 | } |
| 1713 | |
| 1714 | if(result) |
| 1715 | returncode = result; |
| 1716 | |
| 1717 | easy = easy->next; /* operate on next handle */ |
| 1718 | } |
| 1719 | |
| 1720 | /* |
| 1721 | * Simply remove all expired timers from the splay since handles are dealt |
| 1722 | * with unconditionally by this function and curl_multi_timeout() requires |
| 1723 | * that already passed/handled expire times are removed from the splay. |
| 1724 | * |
| 1725 | * It is important that the 'now' value is set at the entry of this function |
| 1726 | * and not for the current time as it may have ticked a little while since |
| 1727 | * then and then we risk this loop to remove timers that actually have not |
| 1728 | * been handled! |
| 1729 | */ |
| 1730 | do { |
| 1731 | multi->timetree = Curl_splaygetbest(now, multi->timetree, &t); |
| 1732 | if(t) |
| 1733 | /* the removed may have another timeout in queue */ |
| 1734 | (void)add_next_timeout(now, multi, t->payload); |
| 1735 | |
| 1736 | } while(t); |
| 1737 | |
| 1738 | *running_handles = multi->num_alive; |
| 1739 | |
| 1740 | if( CURLM_OK >= returncode ) |
| 1741 | update_timer(multi); |
| 1742 | |
| 1743 | return returncode; |
| 1744 | } |
| 1745 | |
| 1746 | CURLMcode curl_multi_cleanup(CURLM *multi_handle) |
| 1747 | { |
| 1748 | struct Curl_multi *multi=(struct Curl_multi *)multi_handle; |
| 1749 | struct Curl_one_easy *easy; |
| 1750 | struct Curl_one_easy *nexteasy; |
| 1751 | int i; |
| 1752 | struct closure *cl; |
| 1753 | struct closure *n; |
| 1754 | |
| 1755 | if(GOOD_MULTI_HANDLE(multi)) { |
| 1756 | multi->type = 0; /* not good anymore */ |
| 1757 | Curl_hash_destroy(multi->hostcache); |
| 1758 | Curl_hash_destroy(multi->sockhash); |
| 1759 | multi->hostcache = NULL; |
| 1760 | multi->sockhash = NULL; |
| 1761 | |
| 1762 | /* go over all connections that have close actions */ |
| 1763 | for(i=0; i< multi->connc->num; i++) { |
| 1764 | if(multi->connc->connects[i] && |
| 1765 | multi->connc->connects[i]->protocol & PROT_CLOSEACTION) { |
| 1766 | Curl_disconnect(multi->connc->connects[i], /* dead_connection */ FALSE); |
| 1767 | multi->connc->connects[i] = NULL; |
| 1768 | } |
| 1769 | } |
| 1770 | /* now walk through the list of handles we kept around only to be |
| 1771 | able to close connections "properly" */ |
| 1772 | cl = multi->closure; |
| 1773 | while(cl) { |
| 1774 | cl->easy_handle->state.shared_conn = NULL; /* no more shared */ |
| 1775 | if(cl->easy_handle->state.closed) |
| 1776 | /* close handle only if curl_easy_cleanup() already has been called |
| 1777 | for this easy handle */ |
| 1778 | Curl_close(cl->easy_handle); |
| 1779 | n = cl->next; |
| 1780 | free(cl); |
| 1781 | cl= n; |
| 1782 | } |
| 1783 | |
| 1784 | Curl_rm_connc(multi->connc); |
| 1785 | |
| 1786 | /* remove the pending list of messages */ |
| 1787 | Curl_llist_destroy(multi->msglist, NULL); |
| 1788 | |
| 1789 | /* remove all easy handles */ |
| 1790 | easy = multi->easy.next; |
| 1791 | while(easy != &multi->easy) { |
| 1792 | nexteasy=easy->next; |
| 1793 | if(easy->easy_handle->dns.hostcachetype == HCACHE_MULTI) { |
| 1794 | /* clear out the usage of the shared DNS cache */ |
| 1795 | easy->easy_handle->dns.hostcache = NULL; |
| 1796 | easy->easy_handle->dns.hostcachetype = HCACHE_NONE; |
| 1797 | } |
| 1798 | |
| 1799 | /* Clear the pointer to the connection cache */ |
| 1800 | easy->easy_handle->state.connc = NULL; |
| 1801 | |
| 1802 | Curl_easy_addmulti(easy->easy_handle, NULL); /* clear the association */ |
| 1803 | |
| 1804 | free(easy); |
| 1805 | easy = nexteasy; |
| 1806 | } |
| 1807 | |
| 1808 | free(multi); |
| 1809 | |
| 1810 | return CURLM_OK; |
| 1811 | } |
| 1812 | else |
| 1813 | return CURLM_BAD_HANDLE; |
| 1814 | } |
| 1815 | |
| 1816 | /* |
| 1817 | * curl_multi_info_read() |
| 1818 | * |
| 1819 | * This function is the primary way for a multi/multi_socket application to |
| 1820 | * figure out if a transfer has ended. We MUST make this function as fast as |
| 1821 | * possible as it will be polled frequently and we MUST NOT scan any lists in |
| 1822 | * here to figure out things. We must scale fine to thousands of handles and |
| 1823 | * beyond. The current design is fully O(1). |
| 1824 | */ |
| 1825 | |
| 1826 | CURLMsg *curl_multi_info_read(CURLM *multi_handle, int *msgs_in_queue) |
| 1827 | { |
| 1828 | struct Curl_multi *multi=(struct Curl_multi *)multi_handle; |
| 1829 | struct Curl_message *msg; |
| 1830 | |
| 1831 | *msgs_in_queue = 0; /* default to none */ |
| 1832 | |
| 1833 | if(GOOD_MULTI_HANDLE(multi) && Curl_llist_count(multi->msglist)) { |
| 1834 | /* there is one or more messages in the list */ |
| 1835 | struct curl_llist_element *e; |
| 1836 | |
| 1837 | /* extract the head of the list to return */ |
| 1838 | e = multi->msglist->head; |
| 1839 | |
| 1840 | msg = e->ptr; |
| 1841 | |
| 1842 | /* remove the extracted entry */ |
| 1843 | Curl_llist_remove(multi->msglist, e, NULL); |
| 1844 | |
| 1845 | *msgs_in_queue = curlx_uztosi(Curl_llist_count(multi->msglist)); |
| 1846 | |
| 1847 | return &msg->extmsg; |
| 1848 | } |
| 1849 | else |
| 1850 | return NULL; |
| 1851 | } |
| 1852 | |
| 1853 | /* |
| 1854 | * singlesocket() checks what sockets we deal with and their "action state" |
| 1855 | * and if we have a different state in any of those sockets from last time we |
| 1856 | * call the callback accordingly. |
| 1857 | */ |
| 1858 | static void singlesocket(struct Curl_multi *multi, |
| 1859 | struct Curl_one_easy *easy) |
| 1860 | { |
| 1861 | curl_socket_t socks[MAX_SOCKSPEREASYHANDLE]; |
| 1862 | int i; |
| 1863 | struct Curl_sh_entry *entry; |
| 1864 | curl_socket_t s; |
| 1865 | int num; |
| 1866 | unsigned int curraction; |
| 1867 | struct Curl_one_easy *easy_by_hash; |
| 1868 | bool remove_sock_from_hash; |
| 1869 | |
| 1870 | for(i=0; i< MAX_SOCKSPEREASYHANDLE; i++) |
| 1871 | socks[i] = CURL_SOCKET_BAD; |
| 1872 | |
| 1873 | /* Fill in the 'current' struct with the state as it is now: what sockets to |
| 1874 | supervise and for what actions */ |
| 1875 | curraction = multi_getsock(easy, socks, MAX_SOCKSPEREASYHANDLE); |
| 1876 | |
| 1877 | /* We have 0 .. N sockets already and we get to know about the 0 .. M |
| 1878 | sockets we should have from now on. Detect the differences, remove no |
| 1879 | longer supervised ones and add new ones */ |
| 1880 | |
| 1881 | /* walk over the sockets we got right now */ |
| 1882 | for(i=0; (i< MAX_SOCKSPEREASYHANDLE) && |
| 1883 | (curraction & (GETSOCK_READSOCK(i) | GETSOCK_WRITESOCK(i))); |
| 1884 | i++) { |
| 1885 | int action = CURL_POLL_NONE; |
| 1886 | |
| 1887 | s = socks[i]; |
| 1888 | |
| 1889 | /* get it from the hash */ |
| 1890 | entry = Curl_hash_pick(multi->sockhash, (char *)&s, sizeof(s)); |
| 1891 | |
| 1892 | if(curraction & GETSOCK_READSOCK(i)) |
| 1893 | action |= CURL_POLL_IN; |
| 1894 | if(curraction & GETSOCK_WRITESOCK(i)) |
| 1895 | action |= CURL_POLL_OUT; |
| 1896 | |
| 1897 | if(entry) { |
| 1898 | /* yeps, already present so check if it has the same action set */ |
| 1899 | if(entry->action == action) |
| 1900 | /* same, continue */ |
| 1901 | continue; |
| 1902 | } |
| 1903 | else { |
| 1904 | /* this is a socket we didn't have before, add it! */ |
| 1905 | entry = sh_addentry(multi->sockhash, s, easy->easy_handle); |
| 1906 | if(!entry) |
| 1907 | /* fatal */ |
| 1908 | return; |
| 1909 | } |
| 1910 | |
| 1911 | /* we know (entry != NULL) at this point, see the logic above */ |
| 1912 | multi->socket_cb(easy->easy_handle, |
| 1913 | s, |
| 1914 | action, |
| 1915 | multi->socket_userp, |
| 1916 | entry->socketp); |
| 1917 | |
| 1918 | entry->action = action; /* store the current action state */ |
| 1919 | } |
| 1920 | |
| 1921 | num = i; /* number of sockets */ |
| 1922 | |
| 1923 | /* when we've walked over all the sockets we should have right now, we must |
| 1924 | make sure to detect sockets that are removed */ |
| 1925 | for(i=0; i< easy->numsocks; i++) { |
| 1926 | int j; |
| 1927 | s = easy->sockets[i]; |
| 1928 | for(j=0; j<num; j++) { |
| 1929 | if(s == socks[j]) { |
| 1930 | /* this is still supervised */ |
| 1931 | s = CURL_SOCKET_BAD; |
| 1932 | break; |
| 1933 | } |
| 1934 | } |
| 1935 | if(s != CURL_SOCKET_BAD) { |
| 1936 | |
| 1937 | /* this socket has been removed. Tell the app to remove it */ |
| 1938 | remove_sock_from_hash = TRUE; |
| 1939 | |
| 1940 | entry = Curl_hash_pick(multi->sockhash, (char *)&s, sizeof(s)); |
| 1941 | if(entry) { |
| 1942 | /* check if the socket to be removed serves a connection which has |
| 1943 | other easy-s in a pipeline. In this case the socket should not be |
| 1944 | removed. */ |
| 1945 | struct connectdata *easy_conn; |
| 1946 | |
| 1947 | easy_by_hash = entry->easy->multi_pos; |
| 1948 | easy_conn = easy_by_hash->easy_conn; |
| 1949 | if(easy_conn) { |
| 1950 | if (easy_conn->recv_pipe && easy_conn->recv_pipe->size > 1) { |
| 1951 | /* the handle should not be removed from the pipe yet */ |
| 1952 | remove_sock_from_hash = FALSE; |
| 1953 | |
| 1954 | /* Update the sockhash entry to instead point to the next in line |
| 1955 | for the recv_pipe, or the first (in case this particular easy |
| 1956 | isn't already) */ |
| 1957 | if (entry->easy == easy->easy_handle) { |
| 1958 | if (isHandleAtHead(easy->easy_handle, easy_conn->recv_pipe)) |
| 1959 | entry->easy = easy_conn->recv_pipe->head->next->ptr; |
| 1960 | else |
| 1961 | entry->easy = easy_conn->recv_pipe->head->ptr; |
| 1962 | } |
| 1963 | } |
| 1964 | if (easy_conn->send_pipe && easy_conn->send_pipe->size > 1) { |
| 1965 | /* the handle should not be removed from the pipe yet */ |
| 1966 | remove_sock_from_hash = FALSE; |
| 1967 | |
| 1968 | /* Update the sockhash entry to instead point to the next in line |
| 1969 | for the send_pipe, or the first (in case this particular easy |
| 1970 | isn't already) */ |
| 1971 | if (entry->easy == easy->easy_handle) { |
| 1972 | if (isHandleAtHead(easy->easy_handle, easy_conn->send_pipe)) |
| 1973 | entry->easy = easy_conn->send_pipe->head->next->ptr; |
| 1974 | else |
| 1975 | entry->easy = easy_conn->send_pipe->head->ptr; |
| 1976 | } |
| 1977 | } |
| 1978 | /* Don't worry about overwriting recv_pipe head with send_pipe_head, |
| 1979 | when action will be asked on the socket (see multi_socket()), the |
| 1980 | head of the correct pipe will be taken according to the |
| 1981 | action. */ |
| 1982 | } |
| 1983 | } |
| 1984 | else |
| 1985 | /* just a precaution, this socket really SHOULD be in the hash already |
| 1986 | but in case it isn't, we don't have to tell the app to remove it |
| 1987 | either since it never got to know about it */ |
| 1988 | remove_sock_from_hash = FALSE; |
| 1989 | |
| 1990 | if (remove_sock_from_hash) { |
| 1991 | multi->socket_cb(easy->easy_handle, |
| 1992 | s, |
| 1993 | CURL_POLL_REMOVE, |
| 1994 | multi->socket_userp, |
| 1995 | entry ? entry->socketp : NULL); |
| 1996 | sh_delentry(multi->sockhash, s); |
| 1997 | } |
| 1998 | |
| 1999 | } |
| 2000 | } |
| 2001 | |
| 2002 | memcpy(easy->sockets, socks, num*sizeof(curl_socket_t)); |
| 2003 | easy->numsocks = num; |
| 2004 | } |
| 2005 | |
| 2006 | /* |
| 2007 | * add_next_timeout() |
| 2008 | * |
| 2009 | * Each SessionHandle has a list of timeouts. The add_next_timeout() is called |
| 2010 | * when it has just been removed from the splay tree because the timeout has |
| 2011 | * expired. This function is then to advance in the list to pick the next |
| 2012 | * timeout to use (skip the already expired ones) and add this node back to |
| 2013 | * the splay tree again. |
| 2014 | * |
| 2015 | * The splay tree only has each sessionhandle as a single node and the nearest |
| 2016 | * timeout is used to sort it on. |
| 2017 | */ |
| 2018 | static CURLMcode add_next_timeout(struct timeval now, |
| 2019 | struct Curl_multi *multi, |
| 2020 | struct SessionHandle *d) |
| 2021 | { |
| 2022 | struct timeval *tv = &d->state.expiretime; |
| 2023 | struct curl_llist *list = d->state.timeoutlist; |
| 2024 | struct curl_llist_element *e; |
| 2025 | |
| 2026 | /* move over the timeout list for this specific handle and remove all |
| 2027 | timeouts that are now passed tense and store the next pending |
| 2028 | timeout in *tv */ |
| 2029 | for(e = list->head; e; ) { |
| 2030 | struct curl_llist_element *n = e->next; |
| 2031 | long diff = curlx_tvdiff(*(struct timeval *)e->ptr, now); |
| 2032 | if(diff <= 0) |
| 2033 | /* remove outdated entry */ |
| 2034 | Curl_llist_remove(list, e, NULL); |
| 2035 | else |
| 2036 | /* the list is sorted so get out on the first mismatch */ |
| 2037 | break; |
| 2038 | e = n; |
| 2039 | } |
| 2040 | if(!list->size) { |
| 2041 | /* clear the expire times within the handles that we remove from the |
| 2042 | splay tree */ |
| 2043 | tv->tv_sec = 0; |
| 2044 | tv->tv_usec = 0; |
| 2045 | } |
| 2046 | else { |
| 2047 | e = list->head; |
| 2048 | /* copy the first entry to 'tv' */ |
| 2049 | memcpy(tv, e->ptr, sizeof(*tv)); |
| 2050 | |
| 2051 | /* remove first entry from list */ |
| 2052 | Curl_llist_remove(list, e, NULL); |
| 2053 | |
| 2054 | /* insert this node again into the splay */ |
| 2055 | multi->timetree = Curl_splayinsert(*tv, multi->timetree, |
| 2056 | &d->state.timenode); |
| 2057 | } |
| 2058 | return CURLM_OK; |
| 2059 | } |
| 2060 | |
| 2061 | |
| 2062 | static CURLMcode multi_socket(struct Curl_multi *multi, |
| 2063 | bool checkall, |
| 2064 | curl_socket_t s, |
| 2065 | int ev_bitmask, |
| 2066 | int *running_handles) |
| 2067 | { |
| 2068 | CURLMcode result = CURLM_OK; |
| 2069 | struct SessionHandle *data = NULL; |
| 2070 | struct Curl_tree *t; |
| 2071 | struct timeval now = Curl_tvnow(); |
| 2072 | |
| 2073 | if(checkall) { |
| 2074 | struct Curl_one_easy *easyp; |
| 2075 | /* *perform() deals with running_handles on its own */ |
| 2076 | result = curl_multi_perform(multi, running_handles); |
| 2077 | |
| 2078 | /* walk through each easy handle and do the socket state change magic |
| 2079 | and callbacks */ |
| 2080 | easyp=multi->easy.next; |
| 2081 | while(easyp != &multi->easy) { |
| 2082 | singlesocket(multi, easyp); |
| 2083 | easyp = easyp->next; |
| 2084 | } |
| 2085 | |
| 2086 | /* or should we fall-through and do the timer-based stuff? */ |
| 2087 | return result; |
| 2088 | } |
| 2089 | else if(s != CURL_SOCKET_TIMEOUT) { |
| 2090 | |
| 2091 | struct Curl_sh_entry *entry = |
| 2092 | Curl_hash_pick(multi->sockhash, (char *)&s, sizeof(s)); |
| 2093 | |
| 2094 | if(!entry) |
| 2095 | /* Unmatched socket, we can't act on it but we ignore this fact. In |
| 2096 | real-world tests it has been proved that libevent can in fact give |
| 2097 | the application actions even though the socket was just previously |
| 2098 | asked to get removed, so thus we better survive stray socket actions |
| 2099 | and just move on. */ |
| 2100 | ; |
| 2101 | else { |
| 2102 | data = entry->easy; |
| 2103 | |
| 2104 | if(data->magic != CURLEASY_MAGIC_NUMBER) |
| 2105 | /* bad bad bad bad bad bad bad */ |
| 2106 | return CURLM_INTERNAL_ERROR; |
| 2107 | |
| 2108 | /* If the pipeline is enabled, take the handle which is in the head of |
| 2109 | the pipeline. If we should write into the socket, take the send_pipe |
| 2110 | head. If we should read from the socket, take the recv_pipe head. */ |
| 2111 | if(data->set.one_easy->easy_conn) { |
| 2112 | if ((ev_bitmask & CURL_POLL_OUT) && |
| 2113 | data->set.one_easy->easy_conn->send_pipe && |
| 2114 | data->set.one_easy->easy_conn->send_pipe->head) |
| 2115 | data = data->set.one_easy->easy_conn->send_pipe->head->ptr; |
| 2116 | else if ((ev_bitmask & CURL_POLL_IN) && |
| 2117 | data->set.one_easy->easy_conn->recv_pipe && |
| 2118 | data->set.one_easy->easy_conn->recv_pipe->head) |
| 2119 | data = data->set.one_easy->easy_conn->recv_pipe->head->ptr; |
| 2120 | } |
| 2121 | |
| 2122 | if(data->set.one_easy->easy_conn) /* set socket event bitmask */ |
| 2123 | data->set.one_easy->easy_conn->cselect_bits = ev_bitmask; |
| 2124 | |
| 2125 | do |
| 2126 | result = multi_runsingle(multi, now, data->set.one_easy); |
| 2127 | while (CURLM_CALL_MULTI_PERFORM == result); |
| 2128 | |
| 2129 | if(data->set.one_easy->easy_conn) |
| 2130 | data->set.one_easy->easy_conn->cselect_bits = 0; |
| 2131 | |
| 2132 | if(CURLM_OK >= result) |
| 2133 | /* get the socket(s) and check if the state has been changed since |
| 2134 | last */ |
| 2135 | singlesocket(multi, data->set.one_easy); |
| 2136 | |
| 2137 | /* Now we fall-through and do the timer-based stuff, since we don't want |
| 2138 | to force the user to have to deal with timeouts as long as at least |
| 2139 | one connection in fact has traffic. */ |
| 2140 | |
| 2141 | data = NULL; /* set data to NULL again to avoid calling |
| 2142 | multi_runsingle() in case there's no need to */ |
| 2143 | } |
| 2144 | } |
| 2145 | |
| 2146 | now.tv_usec += 40000; /* compensate for bad precision timers that might've |
| 2147 | triggered too early */ |
| 2148 | if(now.tv_usec >= 1000000) { |
| 2149 | now.tv_sec++; |
| 2150 | now.tv_usec -= 1000000; |
| 2151 | } |
| 2152 | |
| 2153 | /* |
| 2154 | * The loop following here will go on as long as there are expire-times left |
| 2155 | * to process in the splay and 'data' will be re-assigned for every expired |
| 2156 | * handle we deal with. |
| 2157 | */ |
| 2158 | do { |
| 2159 | /* the first loop lap 'data' can be NULL */ |
| 2160 | if(data) { |
| 2161 | do |
| 2162 | result = multi_runsingle(multi, now, data->set.one_easy); |
| 2163 | while (CURLM_CALL_MULTI_PERFORM == result); |
| 2164 | |
| 2165 | if(CURLM_OK >= result) |
| 2166 | /* get the socket(s) and check if the state has been changed since |
| 2167 | last */ |
| 2168 | singlesocket(multi, data->set.one_easy); |
| 2169 | } |
| 2170 | |
| 2171 | /* Check if there's one (more) expired timer to deal with! This function |
| 2172 | extracts a matching node if there is one */ |
| 2173 | |
| 2174 | multi->timetree = Curl_splaygetbest(now, multi->timetree, &t); |
| 2175 | if(t) { |
| 2176 | data = t->payload; /* assign this for next loop */ |
| 2177 | (void)add_next_timeout(now, multi, t->payload); |
| 2178 | } |
| 2179 | |
| 2180 | } while(t); |
| 2181 | |
| 2182 | *running_handles = multi->num_alive; |
| 2183 | return result; |
| 2184 | } |
| 2185 | |
| 2186 | #undef curl_multi_setopt |
| 2187 | CURLMcode curl_multi_setopt(CURLM *multi_handle, |
| 2188 | CURLMoption option, ...) |
| 2189 | { |
| 2190 | struct Curl_multi *multi=(struct Curl_multi *)multi_handle; |
| 2191 | CURLMcode res = CURLM_OK; |
| 2192 | va_list param; |
| 2193 | |
| 2194 | if(!GOOD_MULTI_HANDLE(multi)) |
| 2195 | return CURLM_BAD_HANDLE; |
| 2196 | |
| 2197 | va_start(param, option); |
| 2198 | |
| 2199 | switch(option) { |
| 2200 | case CURLMOPT_SOCKETFUNCTION: |
| 2201 | multi->socket_cb = va_arg(param, curl_socket_callback); |
| 2202 | break; |
| 2203 | case CURLMOPT_SOCKETDATA: |
| 2204 | multi->socket_userp = va_arg(param, void *); |
| 2205 | break; |
| 2206 | case CURLMOPT_PIPELINING: |
| 2207 | multi->pipelining_enabled = (bool)(0 != va_arg(param, long)); |
| 2208 | break; |
| 2209 | case CURLMOPT_TIMERFUNCTION: |
| 2210 | multi->timer_cb = va_arg(param, curl_multi_timer_callback); |
| 2211 | break; |
| 2212 | case CURLMOPT_TIMERDATA: |
| 2213 | multi->timer_userp = va_arg(param, void *); |
| 2214 | break; |
| 2215 | case CURLMOPT_MAXCONNECTS: |
| 2216 | multi->maxconnects = va_arg(param, long); |
| 2217 | break; |
| 2218 | default: |
| 2219 | res = CURLM_UNKNOWN_OPTION; |
| 2220 | break; |
| 2221 | } |
| 2222 | va_end(param); |
| 2223 | return res; |
| 2224 | } |
| 2225 | |
| 2226 | /* we define curl_multi_socket() in the public multi.h header */ |
| 2227 | #undef curl_multi_socket |
| 2228 | |
| 2229 | CURLMcode curl_multi_socket(CURLM *multi_handle, curl_socket_t s, |
| 2230 | int *running_handles) |
| 2231 | { |
| 2232 | CURLMcode result = multi_socket((struct Curl_multi *)multi_handle, FALSE, s, |
| 2233 | 0, running_handles); |
| 2234 | if(CURLM_OK >= result) |
| 2235 | update_timer((struct Curl_multi *)multi_handle); |
| 2236 | return result; |
| 2237 | } |
| 2238 | |
| 2239 | CURLMcode curl_multi_socket_action(CURLM *multi_handle, curl_socket_t s, |
| 2240 | int ev_bitmask, int *running_handles) |
| 2241 | { |
| 2242 | CURLMcode result = multi_socket((struct Curl_multi *)multi_handle, FALSE, s, |
| 2243 | ev_bitmask, running_handles); |
| 2244 | if(CURLM_OK >= result) |
| 2245 | update_timer((struct Curl_multi *)multi_handle); |
| 2246 | return result; |
| 2247 | } |
| 2248 | |
| 2249 | CURLMcode curl_multi_socket_all(CURLM *multi_handle, int *running_handles) |
| 2250 | |
| 2251 | { |
| 2252 | CURLMcode result = multi_socket((struct Curl_multi *)multi_handle, |
| 2253 | TRUE, CURL_SOCKET_BAD, 0, running_handles); |
| 2254 | if(CURLM_OK >= result) |
| 2255 | update_timer((struct Curl_multi *)multi_handle); |
| 2256 | return result; |
| 2257 | } |
| 2258 | |
| 2259 | static CURLMcode multi_timeout(struct Curl_multi *multi, |
| 2260 | long *timeout_ms) |
| 2261 | { |
| 2262 | static struct timeval tv_zero = {0,0}; |
| 2263 | |
| 2264 | if(multi->timetree) { |
| 2265 | /* we have a tree of expire times */ |
| 2266 | struct timeval now = Curl_tvnow(); |
| 2267 | |
| 2268 | /* splay the lowest to the bottom */ |
| 2269 | multi->timetree = Curl_splay(tv_zero, multi->timetree); |
| 2270 | |
| 2271 | if(Curl_splaycomparekeys(multi->timetree->key, now) > 0) { |
| 2272 | /* some time left before expiration */ |
| 2273 | *timeout_ms = curlx_tvdiff(multi->timetree->key, now); |
| 2274 | if(!*timeout_ms) |
| 2275 | /* |
| 2276 | * Since we only provide millisecond resolution on the returned value |
| 2277 | * and the diff might be less than one millisecond here, we don't |
| 2278 | * return zero as that may cause short bursts of busyloops on fast |
| 2279 | * processors while the diff is still present but less than one |
| 2280 | * millisecond! instead we return 1 until the time is ripe. |
| 2281 | */ |
| 2282 | *timeout_ms=1; |
| 2283 | } |
| 2284 | else |
| 2285 | /* 0 means immediately */ |
| 2286 | *timeout_ms = 0; |
| 2287 | } |
| 2288 | else |
| 2289 | *timeout_ms = -1; |
| 2290 | |
| 2291 | return CURLM_OK; |
| 2292 | } |
| 2293 | |
| 2294 | CURLMcode curl_multi_timeout(CURLM *multi_handle, |
| 2295 | long *timeout_ms) |
| 2296 | { |
| 2297 | struct Curl_multi *multi=(struct Curl_multi *)multi_handle; |
| 2298 | |
| 2299 | /* First, make some basic checks that the CURLM handle is a good handle */ |
| 2300 | if(!GOOD_MULTI_HANDLE(multi)) |
| 2301 | return CURLM_BAD_HANDLE; |
| 2302 | |
| 2303 | return multi_timeout(multi, timeout_ms); |
| 2304 | } |
| 2305 | |
| 2306 | /* |
| 2307 | * Tell the application it should update its timers, if it subscribes to the |
| 2308 | * update timer callback. |
| 2309 | */ |
| 2310 | static int update_timer(struct Curl_multi *multi) |
| 2311 | { |
| 2312 | long timeout_ms; |
| 2313 | |
| 2314 | if(!multi->timer_cb) |
| 2315 | return 0; |
| 2316 | if(multi_timeout(multi, &timeout_ms)) { |
| 2317 | return -1; |
| 2318 | } |
| 2319 | if( timeout_ms < 0 ) { |
| 2320 | static const struct timeval none={0,0}; |
| 2321 | if(Curl_splaycomparekeys(none, multi->timer_lastcall)) { |
| 2322 | multi->timer_lastcall = none; |
| 2323 | /* there's no timeout now but there was one previously, tell the app to |
| 2324 | disable it */ |
| 2325 | return multi->timer_cb((CURLM*)multi, -1, multi->timer_userp); |
| 2326 | } |
| 2327 | return 0; |
| 2328 | } |
| 2329 | |
| 2330 | /* When multi_timeout() is done, multi->timetree points to the node with the |
| 2331 | * timeout we got the (relative) time-out time for. We can thus easily check |
| 2332 | * if this is the same (fixed) time as we got in a previous call and then |
| 2333 | * avoid calling the callback again. */ |
| 2334 | if(Curl_splaycomparekeys(multi->timetree->key, multi->timer_lastcall) == 0) |
| 2335 | return 0; |
| 2336 | |
| 2337 | multi->timer_lastcall = multi->timetree->key; |
| 2338 | |
| 2339 | return multi->timer_cb((CURLM*)multi, timeout_ms, multi->timer_userp); |
| 2340 | } |
| 2341 | |
| 2342 | static CURLcode addHandleToSendOrPendPipeline(struct SessionHandle *handle, |
| 2343 | struct connectdata *conn) |
| 2344 | { |
| 2345 | size_t pipeLen = conn->send_pipe->size + conn->recv_pipe->size; |
| 2346 | struct curl_llist_element *sendhead = conn->send_pipe->head; |
| 2347 | struct curl_llist *pipeline; |
| 2348 | CURLcode rc; |
| 2349 | |
| 2350 | if(!Curl_isPipeliningEnabled(handle) || |
| 2351 | pipeLen == 0) |
| 2352 | pipeline = conn->send_pipe; |
| 2353 | else { |
| 2354 | if(conn->server_supports_pipelining && |
| 2355 | pipeLen < MAX_PIPELINE_LENGTH) |
| 2356 | pipeline = conn->send_pipe; |
| 2357 | else |
| 2358 | pipeline = conn->pend_pipe; |
| 2359 | } |
| 2360 | |
| 2361 | rc = Curl_addHandleToPipeline(handle, pipeline); |
| 2362 | |
| 2363 | if (pipeline == conn->send_pipe && sendhead != conn->send_pipe->head) { |
| 2364 | /* this is a new one as head, expire it */ |
| 2365 | conn->writechannel_inuse = FALSE; /* not in use yet */ |
| 2366 | infof(conn->data, "%p is at send pipe head!\n", |
| 2367 | conn->send_pipe->head->ptr); |
| 2368 | Curl_expire(conn->send_pipe->head->ptr, 1); |
| 2369 | } |
| 2370 | |
| 2371 | return rc; |
| 2372 | } |
| 2373 | |
| 2374 | static int checkPendPipeline(struct connectdata *conn) |
| 2375 | { |
| 2376 | int result = 0; |
| 2377 | struct curl_llist_element *sendhead = conn->send_pipe->head; |
| 2378 | |
| 2379 | size_t pipeLen = conn->send_pipe->size + conn->recv_pipe->size; |
| 2380 | if (conn->server_supports_pipelining || pipeLen == 0) { |
| 2381 | struct curl_llist_element *curr = conn->pend_pipe->head; |
| 2382 | const size_t maxPipeLen = |
| 2383 | conn->server_supports_pipelining ? MAX_PIPELINE_LENGTH : 1; |
| 2384 | |
| 2385 | while(pipeLen < maxPipeLen && curr) { |
| 2386 | Curl_llist_move(conn->pend_pipe, curr, |
| 2387 | conn->send_pipe, conn->send_pipe->tail); |
| 2388 | Curl_pgrsTime(curr->ptr, TIMER_PRETRANSFER); |
| 2389 | ++result; /* count how many handles we moved */ |
| 2390 | curr = conn->pend_pipe->head; |
| 2391 | ++pipeLen; |
| 2392 | } |
| 2393 | } |
| 2394 | |
| 2395 | if (result) { |
| 2396 | conn->now = Curl_tvnow(); |
| 2397 | /* something moved, check for a new send pipeline leader */ |
| 2398 | if(sendhead != conn->send_pipe->head) { |
| 2399 | /* this is a new one as head, expire it */ |
| 2400 | conn->writechannel_inuse = FALSE; /* not in use yet */ |
| 2401 | infof(conn->data, "%p is at send pipe head!\n", |
| 2402 | conn->send_pipe->head->ptr); |
| 2403 | Curl_expire(conn->send_pipe->head->ptr, 1); |
| 2404 | } |
| 2405 | } |
| 2406 | |
| 2407 | return result; |
| 2408 | } |
| 2409 | |
| 2410 | /* Move this transfer from the sending list to the receiving list. |
| 2411 | |
| 2412 | Pay special attention to the new sending list "leader" as it needs to get |
| 2413 | checked to update what sockets it acts on. |
| 2414 | |
| 2415 | */ |
| 2416 | static void moveHandleFromSendToRecvPipeline(struct SessionHandle *handle, |
| 2417 | struct connectdata *conn) |
| 2418 | { |
| 2419 | struct curl_llist_element *curr; |
| 2420 | |
| 2421 | curr = conn->send_pipe->head; |
| 2422 | while(curr) { |
| 2423 | if(curr->ptr == handle) { |
| 2424 | Curl_llist_move(conn->send_pipe, curr, |
| 2425 | conn->recv_pipe, conn->recv_pipe->tail); |
| 2426 | |
| 2427 | if(conn->send_pipe->head) { |
| 2428 | /* Since there's a new easy handle at the start of the send pipeline, |
| 2429 | set its timeout value to 1ms to make it trigger instantly */ |
| 2430 | conn->writechannel_inuse = FALSE; /* not used now */ |
| 2431 | infof(conn->data, "%p is at send pipe head B!\n", |
| 2432 | conn->send_pipe->head->ptr); |
| 2433 | Curl_expire(conn->send_pipe->head->ptr, 1); |
| 2434 | } |
| 2435 | |
| 2436 | /* The receiver's list is not really interesting here since either this |
| 2437 | handle is now first in the list and we'll deal with it soon, or |
| 2438 | another handle is already first and thus is already taken care of */ |
| 2439 | |
| 2440 | break; /* we're done! */ |
| 2441 | } |
| 2442 | curr = curr->next; |
| 2443 | } |
| 2444 | } |
| 2445 | |
| 2446 | static void moveHandleFromRecvToDonePipeline(struct SessionHandle *handle, |
| 2447 | struct connectdata *conn) |
| 2448 | { |
| 2449 | struct curl_llist_element *curr; |
| 2450 | |
| 2451 | curr = conn->recv_pipe->head; |
| 2452 | while(curr) { |
| 2453 | if(curr->ptr == handle) { |
| 2454 | Curl_llist_move(conn->recv_pipe, curr, |
| 2455 | conn->done_pipe, conn->done_pipe->tail); |
| 2456 | break; |
| 2457 | } |
| 2458 | curr = curr->next; |
| 2459 | } |
| 2460 | } |
| 2461 | static bool isHandleAtHead(struct SessionHandle *handle, |
| 2462 | struct curl_llist *pipeline) |
| 2463 | { |
| 2464 | struct curl_llist_element *curr = pipeline->head; |
| 2465 | if(curr) |
| 2466 | return (bool)(curr->ptr == handle); |
| 2467 | |
| 2468 | return FALSE; |
| 2469 | } |
| 2470 | |
| 2471 | /* |
| 2472 | * multi_freetimeout() |
| 2473 | * |
| 2474 | * Callback used by the llist system when a single timeout list entry is |
| 2475 | * destroyed. |
| 2476 | */ |
| 2477 | static void multi_freetimeout(void *user, void *entryptr) |
| 2478 | { |
| 2479 | (void)user; |
| 2480 | |
| 2481 | /* the entry was plain malloc()'ed */ |
| 2482 | free(entryptr); |
| 2483 | } |
| 2484 | |
| 2485 | /* |
| 2486 | * multi_addtimeout() |
| 2487 | * |
| 2488 | * Add a timestamp to the list of timeouts. Keep the list sorted so that head |
| 2489 | * of list is always the timeout nearest in time. |
| 2490 | * |
| 2491 | */ |
| 2492 | static CURLMcode |
| 2493 | multi_addtimeout(struct curl_llist *timeoutlist, |
| 2494 | struct timeval *stamp) |
| 2495 | { |
| 2496 | struct curl_llist_element *e; |
| 2497 | struct timeval *timedup; |
| 2498 | struct curl_llist_element *prev = NULL; |
| 2499 | |
| 2500 | timedup = malloc(sizeof(*timedup)); |
| 2501 | if(!timedup) |
| 2502 | return CURLM_OUT_OF_MEMORY; |
| 2503 | |
| 2504 | /* copy the timestamp */ |
| 2505 | memcpy(timedup, stamp, sizeof(*timedup)); |
| 2506 | |
| 2507 | if(Curl_llist_count(timeoutlist)) { |
| 2508 | /* find the correct spot in the list */ |
| 2509 | for(e = timeoutlist->head; e; e = e->next) { |
| 2510 | struct timeval *checktime = e->ptr; |
| 2511 | long diff = curlx_tvdiff(*checktime, *timedup); |
| 2512 | if(diff > 0) |
| 2513 | break; |
| 2514 | prev = e; |
| 2515 | } |
| 2516 | |
| 2517 | } |
| 2518 | /* else |
| 2519 | this is the first timeout on the list */ |
| 2520 | |
| 2521 | if(!Curl_llist_insert_next(timeoutlist, prev, timedup)) { |
| 2522 | free(timedup); |
| 2523 | return CURLM_OUT_OF_MEMORY; |
| 2524 | } |
| 2525 | |
| 2526 | return CURLM_OK; |
| 2527 | } |
| 2528 | |
| 2529 | /* |
| 2530 | * Curl_expire() |
| 2531 | * |
| 2532 | * given a number of milliseconds from now to use to set the 'act before |
| 2533 | * this'-time for the transfer, to be extracted by curl_multi_timeout() |
| 2534 | * |
| 2535 | * Note that the timeout will be added to a queue of timeouts if it defines a |
| 2536 | * moment in time that is later than the current head of queue. |
| 2537 | * |
| 2538 | * Pass zero to clear all timeout values for this handle. |
| 2539 | */ |
| 2540 | void Curl_expire(struct SessionHandle *data, long milli) |
| 2541 | { |
| 2542 | struct Curl_multi *multi = data->multi; |
| 2543 | struct timeval *nowp = &data->state.expiretime; |
| 2544 | int rc; |
| 2545 | |
| 2546 | /* this is only interesting for multi-interface using libcurl, and only |
| 2547 | while there is still a multi interface struct remaining! */ |
| 2548 | if(!multi) |
| 2549 | return; |
| 2550 | |
| 2551 | if(!milli) { |
| 2552 | /* No timeout, clear the time data. */ |
| 2553 | if(nowp->tv_sec || nowp->tv_usec) { |
| 2554 | /* Since this is an cleared time, we must remove the previous entry from |
| 2555 | the splay tree */ |
| 2556 | struct curl_llist *list = data->state.timeoutlist; |
| 2557 | |
| 2558 | rc = Curl_splayremovebyaddr(multi->timetree, |
| 2559 | &data->state.timenode, |
| 2560 | &multi->timetree); |
| 2561 | if(rc) |
| 2562 | infof(data, "Internal error clearing splay node = %d\n", rc); |
| 2563 | |
| 2564 | /* flush the timeout list too */ |
| 2565 | while(list->size > 0) |
| 2566 | Curl_llist_remove(list, list->tail, NULL); |
| 2567 | |
| 2568 | infof(data, "Expire cleared\n"); |
| 2569 | nowp->tv_sec = 0; |
| 2570 | nowp->tv_usec = 0; |
| 2571 | } |
| 2572 | } |
| 2573 | else { |
| 2574 | struct timeval set; |
| 2575 | |
| 2576 | set = Curl_tvnow(); |
| 2577 | set.tv_sec += milli/1000; |
| 2578 | set.tv_usec += (milli%1000)*1000; |
| 2579 | |
| 2580 | if(set.tv_usec >= 1000000) { |
| 2581 | set.tv_sec++; |
| 2582 | set.tv_usec -= 1000000; |
| 2583 | } |
| 2584 | |
| 2585 | if(nowp->tv_sec || nowp->tv_usec) { |
| 2586 | /* This means that the struct is added as a node in the splay tree. |
| 2587 | Compare if the new time is earlier, and only remove-old/add-new if it |
| 2588 | is. */ |
| 2589 | long diff = curlx_tvdiff(set, *nowp); |
| 2590 | if(diff > 0) { |
| 2591 | /* the new expire time was later so just add it to the queue |
| 2592 | and get out */ |
| 2593 | multi_addtimeout(data->state.timeoutlist, &set); |
| 2594 | return; |
| 2595 | } |
| 2596 | |
| 2597 | /* the new time is newer than the presently set one, so add the current |
| 2598 | to the queue and update the head */ |
| 2599 | multi_addtimeout(data->state.timeoutlist, nowp); |
| 2600 | |
| 2601 | /* Since this is an updated time, we must remove the previous entry from |
| 2602 | the splay tree first and then re-add the new value */ |
| 2603 | rc = Curl_splayremovebyaddr(multi->timetree, |
| 2604 | &data->state.timenode, |
| 2605 | &multi->timetree); |
| 2606 | if(rc) |
| 2607 | infof(data, "Internal error removing splay node = %d\n", rc); |
| 2608 | } |
| 2609 | |
| 2610 | *nowp = set; |
| 2611 | data->state.timenode.payload = data; |
| 2612 | multi->timetree = Curl_splayinsert(*nowp, |
| 2613 | multi->timetree, |
| 2614 | &data->state.timenode); |
| 2615 | } |
| 2616 | #if 0 |
| 2617 | Curl_splayprint(multi->timetree, 0, TRUE); |
| 2618 | #endif |
| 2619 | } |
| 2620 | |
| 2621 | CURLMcode curl_multi_assign(CURLM *multi_handle, |
| 2622 | curl_socket_t s, void *hashp) |
| 2623 | { |
| 2624 | struct Curl_sh_entry *there = NULL; |
| 2625 | struct Curl_multi *multi = (struct Curl_multi *)multi_handle; |
| 2626 | |
| 2627 | if(s != CURL_SOCKET_BAD) |
| 2628 | there = Curl_hash_pick(multi->sockhash, (char *)&s, sizeof(curl_socket_t)); |
| 2629 | |
| 2630 | if(!there) |
| 2631 | return CURLM_BAD_SOCKET; |
| 2632 | |
| 2633 | there->socketp = hashp; |
| 2634 | |
| 2635 | return CURLM_OK; |
| 2636 | } |
| 2637 | |
| 2638 | static void multi_connc_remove_handle(struct Curl_multi *multi, |
| 2639 | struct SessionHandle *data) |
| 2640 | { |
| 2641 | /* a connection in the connection cache pointing to the given 'data' ? */ |
| 2642 | int i; |
| 2643 | |
| 2644 | for(i=0; i< multi->connc->num; i++) { |
| 2645 | struct connectdata * conn = multi->connc->connects[i]; |
| 2646 | |
| 2647 | if(conn && conn->data == data) { |
| 2648 | /* If this easy_handle was the last one in charge for one or more |
| 2649 | connections in the shared connection cache, we might need to keep |
| 2650 | this handle around until either A) the connection is closed and |
| 2651 | killed properly, or B) another easy_handle uses the connection. |
| 2652 | |
| 2653 | The reason why we need to have a easy_handle associated with a live |
| 2654 | connection is simply that some connections will need a handle to get |
| 2655 | closed down properly. Currently, the only connections that need to |
| 2656 | keep a easy_handle handle around are using FTP(S). Such connections |
| 2657 | have the PROT_CLOSEACTION bit set. |
| 2658 | |
| 2659 | Thus, we need to check for all connections in the shared cache that |
| 2660 | points to this handle and are using PROT_CLOSEACTION. If there's any, |
| 2661 | we need to add this handle to the list of "easy handles kept around |
| 2662 | for nice connection closures". |
| 2663 | */ |
| 2664 | |
| 2665 | if(conn->protocol & PROT_CLOSEACTION) { |
| 2666 | /* this handle is still being used by a shared connection and |
| 2667 | thus we leave it around for now */ |
| 2668 | if(add_closure(multi, data) == CURLM_OK) |
| 2669 | data->state.shared_conn = multi; |
| 2670 | else { |
| 2671 | /* out of memory - so much for graceful shutdown */ |
| 2672 | Curl_disconnect(conn, /* dead_connection */ FALSE); |
| 2673 | multi->connc->connects[i] = NULL; |
| 2674 | } |
| 2675 | } |
| 2676 | else |
| 2677 | /* disconect the easy handle from the connection since the connection |
| 2678 | will now remain but this easy handle is going */ |
| 2679 | conn->data = NULL; |
| 2680 | } |
| 2681 | } |
| 2682 | } |
| 2683 | |
| 2684 | /* Add the given data pointer to the list of 'closure handles' that are kept |
| 2685 | around only to be able to close some connections nicely - just make sure |
| 2686 | that this handle isn't already added, like for the cases when an easy |
| 2687 | handle is removed, added and removed again... */ |
| 2688 | static CURLMcode add_closure(struct Curl_multi *multi, |
| 2689 | struct SessionHandle *data) |
| 2690 | { |
| 2691 | struct closure *cl = multi->closure; |
| 2692 | struct closure *p = NULL; |
| 2693 | bool add = TRUE; |
| 2694 | |
| 2695 | /* Before adding, scan through all the other currently kept handles and see |
| 2696 | if there are any connections still referring to them and kill them if |
| 2697 | not. */ |
| 2698 | while(cl) { |
| 2699 | struct closure *n; |
| 2700 | bool inuse = FALSE; |
| 2701 | int i; |
| 2702 | |
| 2703 | for(i=0; i< multi->connc->num; i++) { |
| 2704 | if(multi->connc->connects[i] && |
| 2705 | (multi->connc->connects[i]->data == cl->easy_handle)) { |
| 2706 | inuse = TRUE; |
| 2707 | break; |
| 2708 | } |
| 2709 | } |
| 2710 | |
| 2711 | n = cl->next; |
| 2712 | |
| 2713 | if(!inuse) { |
| 2714 | /* cl->easy_handle is now killable */ |
| 2715 | |
| 2716 | /* unmark it as not having a connection around that uses it anymore */ |
| 2717 | cl->easy_handle->state.shared_conn= NULL; |
| 2718 | |
| 2719 | if(cl->easy_handle->state.closed) { |
| 2720 | infof(data, "Delayed kill of easy handle %p\n", cl->easy_handle); |
| 2721 | /* close handle only if curl_easy_cleanup() already has been called |
| 2722 | for this easy handle */ |
| 2723 | Curl_close(cl->easy_handle); |
| 2724 | } |
| 2725 | if(p) |
| 2726 | p->next = n; |
| 2727 | else |
| 2728 | multi->closure = n; |
| 2729 | free(cl); |
| 2730 | } else { |
| 2731 | if(cl->easy_handle == data) |
| 2732 | add = FALSE; |
| 2733 | |
| 2734 | p = cl; |
| 2735 | } |
| 2736 | |
| 2737 | cl = n; |
| 2738 | } |
| 2739 | |
| 2740 | if (add) { |
| 2741 | cl = calloc(1, sizeof(struct closure)); |
| 2742 | if(!cl) |
| 2743 | return CURLM_OUT_OF_MEMORY; |
| 2744 | |
| 2745 | cl->easy_handle = data; |
| 2746 | cl->next = multi->closure; |
| 2747 | multi->closure = cl; |
| 2748 | } |
| 2749 | |
| 2750 | return CURLM_OK; |
| 2751 | } |
| 2752 | |
| 2753 | #ifdef DEBUGBUILD |
| 2754 | void Curl_multi_dump(const struct Curl_multi *multi_handle) |
| 2755 | { |
| 2756 | struct Curl_multi *multi=(struct Curl_multi *)multi_handle; |
| 2757 | struct Curl_one_easy *easy; |
| 2758 | int i; |
| 2759 | fprintf(stderr, "* Multi status: %d handles, %d alive\n", |
| 2760 | multi->num_easy, multi->num_alive); |
| 2761 | for(easy=multi->easy.next; easy != &multi->easy; easy = easy->next) { |
| 2762 | if(easy->state < CURLM_STATE_COMPLETED) { |
| 2763 | /* only display handles that are not completed */ |
| 2764 | fprintf(stderr, "handle %p, state %s, %d sockets\n", |
| 2765 | (void *)easy->easy_handle, |
| 2766 | statename[easy->state], easy->numsocks); |
| 2767 | for(i=0; i < easy->numsocks; i++) { |
| 2768 | curl_socket_t s = easy->sockets[i]; |
| 2769 | struct Curl_sh_entry *entry = |
| 2770 | Curl_hash_pick(multi->sockhash, (char *)&s, sizeof(s)); |
| 2771 | |
| 2772 | fprintf(stderr, "%d ", (int)s); |
| 2773 | if(!entry) { |
| 2774 | fprintf(stderr, "INTERNAL CONFUSION\n"); |
| 2775 | continue; |
| 2776 | } |
| 2777 | fprintf(stderr, "[%s %s] ", |
| 2778 | entry->action&CURL_POLL_IN?"RECVING":"", |
| 2779 | entry->action&CURL_POLL_OUT?"SENDING":""); |
| 2780 | } |
| 2781 | if(easy->numsocks) |
| 2782 | fprintf(stderr, "\n"); |
| 2783 | } |
| 2784 | } |
| 2785 | } |
| 2786 | #endif |