blob: f183d31de2a652282e9ba622ab414d65a54ddf9c [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_COMPLEX_NEON_H
#define EIGEN_COMPLEX_NEON_H
namespace Eigen {
namespace internal {
static uint32x4_t p4ui_CONJ_XOR = EIGEN_INIT_NEON_PACKET4(0x00000000, 0x80000000, 0x00000000, 0x80000000);
static uint32x2_t p2ui_CONJ_XOR = EIGEN_INIT_NEON_PACKET2(0x00000000, 0x80000000);
//---------- float ----------
struct Packet2cf
{
EIGEN_STRONG_INLINE Packet2cf() {}
EIGEN_STRONG_INLINE explicit Packet2cf(const Packet4f& a) : v(a) {}
Packet4f v;
};
template<> struct packet_traits<std::complex<float> > : default_packet_traits
{
typedef Packet2cf type;
enum {
Vectorizable = 1,
AlignedOnScalar = 1,
size = 2,
HasAdd = 1,
HasSub = 1,
HasMul = 1,
HasDiv = 1,
HasNegate = 1,
HasAbs = 0,
HasAbs2 = 0,
HasMin = 0,
HasMax = 0,
HasSetLinear = 0
};
};
template<> struct unpacket_traits<Packet2cf> { typedef std::complex<float> type; enum {size=2}; };
template<> EIGEN_STRONG_INLINE Packet2cf pset1<Packet2cf>(const std::complex<float>& from)
{
float32x2_t r64;
r64 = vld1_f32((float *)&from);
return Packet2cf(vcombine_f32(r64, r64));
}
template<> EIGEN_STRONG_INLINE Packet2cf padd<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(padd<Packet4f>(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet2cf psub<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(psub<Packet4f>(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet2cf pnegate(const Packet2cf& a) { return Packet2cf(pnegate<Packet4f>(a.v)); }
template<> EIGEN_STRONG_INLINE Packet2cf pconj(const Packet2cf& a)
{
Packet4ui b = vreinterpretq_u32_f32(a.v);
return Packet2cf(vreinterpretq_f32_u32(veorq_u32(b, p4ui_CONJ_XOR)));
}
template<> EIGEN_STRONG_INLINE Packet2cf pmul<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
{
Packet4f v1, v2;
// Get the real values of a | a1_re | a1_re | a2_re | a2_re |
v1 = vcombine_f32(vdup_lane_f32(vget_low_f32(a.v), 0), vdup_lane_f32(vget_high_f32(a.v), 0));
// Get the real values of a | a1_im | a1_im | a2_im | a2_im |
v2 = vcombine_f32(vdup_lane_f32(vget_low_f32(a.v), 1), vdup_lane_f32(vget_high_f32(a.v), 1));
// Multiply the real a with b
v1 = vmulq_f32(v1, b.v);
// Multiply the imag a with b
v2 = vmulq_f32(v2, b.v);
// Conjugate v2
v2 = vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(v2), p4ui_CONJ_XOR));
// Swap real/imag elements in v2.
v2 = vrev64q_f32(v2);
// Add and return the result
return Packet2cf(vaddq_f32(v1, v2));
}
template<> EIGEN_STRONG_INLINE Packet2cf pand <Packet2cf>(const Packet2cf& a, const Packet2cf& b)
{
return Packet2cf(vreinterpretq_f32_u32(vorrq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v))));
}
template<> EIGEN_STRONG_INLINE Packet2cf por <Packet2cf>(const Packet2cf& a, const Packet2cf& b)
{
return Packet2cf(vreinterpretq_f32_u32(vorrq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v))));
}
template<> EIGEN_STRONG_INLINE Packet2cf pxor <Packet2cf>(const Packet2cf& a, const Packet2cf& b)
{
return Packet2cf(vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v))));
}
template<> EIGEN_STRONG_INLINE Packet2cf pandnot<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
{
return Packet2cf(vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v))));
}
template<> EIGEN_STRONG_INLINE Packet2cf pload<Packet2cf>(const std::complex<float>* from) { EIGEN_DEBUG_ALIGNED_LOAD return Packet2cf(pload<Packet4f>((const float*)from)); }
template<> EIGEN_STRONG_INLINE Packet2cf ploadu<Packet2cf>(const std::complex<float>* from) { EIGEN_DEBUG_UNALIGNED_LOAD return Packet2cf(ploadu<Packet4f>((const float*)from)); }
template<> EIGEN_STRONG_INLINE Packet2cf ploaddup<Packet2cf>(const std::complex<float>* from) { return pset1<Packet2cf>(*from); }
template<> EIGEN_STRONG_INLINE void pstore <std::complex<float> >(std::complex<float> * to, const Packet2cf& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((float*)to, from.v); }
template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<float> >(std::complex<float> * to, const Packet2cf& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((float*)to, from.v); }
template<> EIGEN_STRONG_INLINE void prefetch<std::complex<float> >(const std::complex<float> * addr) { __pld((float *)addr); }
template<> EIGEN_STRONG_INLINE std::complex<float> pfirst<Packet2cf>(const Packet2cf& a)
{
std::complex<float> EIGEN_ALIGN16 x[2];
vst1q_f32((float *)x, a.v);
return x[0];
}
template<> EIGEN_STRONG_INLINE Packet2cf preverse(const Packet2cf& a)
{
float32x2_t a_lo, a_hi;
Packet4f a_r128;
a_lo = vget_low_f32(a.v);
a_hi = vget_high_f32(a.v);
a_r128 = vcombine_f32(a_hi, a_lo);
return Packet2cf(a_r128);
}
template<> EIGEN_STRONG_INLINE Packet2cf pcplxflip<Packet2cf>(const Packet2cf& a)
{
return Packet2cf(vrev64q_f32(a.v));
}
template<> EIGEN_STRONG_INLINE std::complex<float> predux<Packet2cf>(const Packet2cf& a)
{
float32x2_t a1, a2;
std::complex<float> s;
a1 = vget_low_f32(a.v);
a2 = vget_high_f32(a.v);
a2 = vadd_f32(a1, a2);
vst1_f32((float *)&s, a2);
return s;
}
template<> EIGEN_STRONG_INLINE Packet2cf preduxp<Packet2cf>(const Packet2cf* vecs)
{
Packet4f sum1, sum2, sum;
// Add the first two 64-bit float32x2_t of vecs[0]
sum1 = vcombine_f32(vget_low_f32(vecs[0].v), vget_low_f32(vecs[1].v));
sum2 = vcombine_f32(vget_high_f32(vecs[0].v), vget_high_f32(vecs[1].v));
sum = vaddq_f32(sum1, sum2);
return Packet2cf(sum);
}
template<> EIGEN_STRONG_INLINE std::complex<float> predux_mul<Packet2cf>(const Packet2cf& a)
{
float32x2_t a1, a2, v1, v2, prod;
std::complex<float> s;
a1 = vget_low_f32(a.v);
a2 = vget_high_f32(a.v);
// Get the real values of a | a1_re | a1_re | a2_re | a2_re |
v1 = vdup_lane_f32(a1, 0);
// Get the real values of a | a1_im | a1_im | a2_im | a2_im |
v2 = vdup_lane_f32(a1, 1);
// Multiply the real a with b
v1 = vmul_f32(v1, a2);
// Multiply the imag a with b
v2 = vmul_f32(v2, a2);
// Conjugate v2
v2 = vreinterpret_f32_u32(veor_u32(vreinterpret_u32_f32(v2), p2ui_CONJ_XOR));
// Swap real/imag elements in v2.
v2 = vrev64_f32(v2);
// Add v1, v2
prod = vadd_f32(v1, v2);
vst1_f32((float *)&s, prod);
return s;
}
template<int Offset>
struct palign_impl<Offset,Packet2cf>
{
EIGEN_STRONG_INLINE static void run(Packet2cf& first, const Packet2cf& second)
{
if (Offset==1)
{
first.v = vextq_f32(first.v, second.v, 2);
}
}
};
template<> struct conj_helper<Packet2cf, Packet2cf, false,true>
{
EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const
{ return padd(pmul(x,y),c); }
EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const
{
return internal::pmul(a, pconj(b));
}
};
template<> struct conj_helper<Packet2cf, Packet2cf, true,false>
{
EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const
{ return padd(pmul(x,y),c); }
EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const
{
return internal::pmul(pconj(a), b);
}
};
template<> struct conj_helper<Packet2cf, Packet2cf, true,true>
{
EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const
{ return padd(pmul(x,y),c); }
EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const
{
return pconj(internal::pmul(a, b));
}
};
template<> EIGEN_STRONG_INLINE Packet2cf pdiv<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
{
// TODO optimize it for AltiVec
Packet2cf res = conj_helper<Packet2cf,Packet2cf,false,true>().pmul(a,b);
Packet4f s, rev_s;
// this computes the norm
s = vmulq_f32(b.v, b.v);
rev_s = vrev64q_f32(s);
return Packet2cf(pdiv(res.v, vaddq_f32(s,rev_s)));
}
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_COMPLEX_NEON_H