blob: fd8af3b8cf06229f6dcfe7590d9d7179dc5f344e [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com>
// Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr>
// Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr>
// Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SVD_H
#define EIGEN_SVD_H
namespace Eigen {
/** \ingroup SVD_Module
*
*
* \class SVDBase
*
* \brief Mother class of SVD classes algorithms
*
* \param MatrixType the type of the matrix of which we are computing the SVD decomposition
* SVD decomposition consists in decomposing any n-by-p matrix \a A as a product
* \f[ A = U S V^* \f]
* where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal;
* the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left
* and right \em singular \em vectors of \a A respectively.
*
* Singular values are always sorted in decreasing order.
*
*
* You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the
* smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual
* singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix,
* and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving.
*
* If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to
* terminate in finite (and reasonable) time.
* \sa MatrixBase::genericSvd()
*/
template<typename _MatrixType>
class SVDBase
{
public:
typedef _MatrixType MatrixType;
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
typedef typename MatrixType::Index Index;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime),
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime),
MatrixOptions = MatrixType::Options
};
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime,
MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime>
MatrixUType;
typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime,
MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime>
MatrixVType;
typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType;
typedef typename internal::plain_row_type<MatrixType>::type RowType;
typedef typename internal::plain_col_type<MatrixType>::type ColType;
typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime,
MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime>
WorkMatrixType;
/** \brief Method performing the decomposition of given matrix using custom options.
*
* \param matrix the matrix to decompose
* \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
* By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU,
* #ComputeFullV, #ComputeThinV.
*
* Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
* available with the (non-default) FullPivHouseholderQR preconditioner.
*/
SVDBase& compute(const MatrixType& matrix, unsigned int computationOptions);
/** \brief Method performing the decomposition of given matrix using current options.
*
* \param matrix the matrix to decompose
*
* This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int).
*/
//virtual SVDBase& compute(const MatrixType& matrix) = 0;
SVDBase& compute(const MatrixType& matrix);
/** \returns the \a U matrix.
*
* For the SVDBase decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p,
* the U matrix is n-by-n if you asked for #ComputeFullU, and is n-by-m if you asked for #ComputeThinU.
*
* The \a m first columns of \a U are the left singular vectors of the matrix being decomposed.
*
* This method asserts that you asked for \a U to be computed.
*/
const MatrixUType& matrixU() const
{
eigen_assert(m_isInitialized && "SVD is not initialized.");
eigen_assert(computeU() && "This SVD decomposition didn't compute U. Did you ask for it?");
return m_matrixU;
}
/** \returns the \a V matrix.
*
* For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p,
* the V matrix is p-by-p if you asked for #ComputeFullV, and is p-by-m if you asked for ComputeThinV.
*
* The \a m first columns of \a V are the right singular vectors of the matrix being decomposed.
*
* This method asserts that you asked for \a V to be computed.
*/
const MatrixVType& matrixV() const
{
eigen_assert(m_isInitialized && "SVD is not initialized.");
eigen_assert(computeV() && "This SVD decomposition didn't compute V. Did you ask for it?");
return m_matrixV;
}
/** \returns the vector of singular values.
*
* For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, the
* returned vector has size \a m. Singular values are always sorted in decreasing order.
*/
const SingularValuesType& singularValues() const
{
eigen_assert(m_isInitialized && "SVD is not initialized.");
return m_singularValues;
}
/** \returns the number of singular values that are not exactly 0 */
Index nonzeroSingularValues() const
{
eigen_assert(m_isInitialized && "SVD is not initialized.");
return m_nonzeroSingularValues;
}
/** \returns true if \a U (full or thin) is asked for in this SVD decomposition */
inline bool computeU() const { return m_computeFullU || m_computeThinU; }
/** \returns true if \a V (full or thin) is asked for in this SVD decomposition */
inline bool computeV() const { return m_computeFullV || m_computeThinV; }
inline Index rows() const { return m_rows; }
inline Index cols() const { return m_cols; }
protected:
// return true if already allocated
bool allocate(Index rows, Index cols, unsigned int computationOptions) ;
MatrixUType m_matrixU;
MatrixVType m_matrixV;
SingularValuesType m_singularValues;
bool m_isInitialized, m_isAllocated;
bool m_computeFullU, m_computeThinU;
bool m_computeFullV, m_computeThinV;
unsigned int m_computationOptions;
Index m_nonzeroSingularValues, m_rows, m_cols, m_diagSize;
/** \brief Default Constructor.
*
* Default constructor of SVDBase
*/
SVDBase()
: m_isInitialized(false),
m_isAllocated(false),
m_computationOptions(0),
m_rows(-1), m_cols(-1)
{}
};
template<typename MatrixType>
bool SVDBase<MatrixType>::allocate(Index rows, Index cols, unsigned int computationOptions)
{
eigen_assert(rows >= 0 && cols >= 0);
if (m_isAllocated &&
rows == m_rows &&
cols == m_cols &&
computationOptions == m_computationOptions)
{
return true;
}
m_rows = rows;
m_cols = cols;
m_isInitialized = false;
m_isAllocated = true;
m_computationOptions = computationOptions;
m_computeFullU = (computationOptions & ComputeFullU) != 0;
m_computeThinU = (computationOptions & ComputeThinU) != 0;
m_computeFullV = (computationOptions & ComputeFullV) != 0;
m_computeThinV = (computationOptions & ComputeThinV) != 0;
eigen_assert(!(m_computeFullU && m_computeThinU) && "SVDBase: you can't ask for both full and thin U");
eigen_assert(!(m_computeFullV && m_computeThinV) && "SVDBase: you can't ask for both full and thin V");
eigen_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) &&
"SVDBase: thin U and V are only available when your matrix has a dynamic number of columns.");
m_diagSize = (std::min)(m_rows, m_cols);
m_singularValues.resize(m_diagSize);
if(RowsAtCompileTime==Dynamic)
m_matrixU.resize(m_rows, m_computeFullU ? m_rows
: m_computeThinU ? m_diagSize
: 0);
if(ColsAtCompileTime==Dynamic)
m_matrixV.resize(m_cols, m_computeFullV ? m_cols
: m_computeThinV ? m_diagSize
: 0);
return false;
}
}// end namespace
#endif // EIGEN_SVD_H