blob: 19b8582a1b19ed797ca591e8a5745cf331b19861 [file] [log] [blame]
Narayan Kamathc981c482012-11-02 10:59:05 +00001// This file is part of Eigen, a lightweight C++ template library
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -07002// for linear algebra.
Narayan Kamathc981c482012-11-02 10:59:05 +00003//
4// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
11
12namespace Eigen {
13
14/** \geometry_module \ingroup Geometry_Module
15 *
16 * \class Rotation2D
17 *
18 * \brief Represents a rotation/orientation in a 2 dimensional space.
19 *
20 * \param _Scalar the scalar type, i.e., the type of the coefficients
21 *
22 * This class is equivalent to a single scalar representing a counter clock wise rotation
23 * as a single angle in radian. It provides some additional features such as the automatic
24 * conversion from/to a 2x2 rotation matrix. Moreover this class aims to provide a similar
25 * interface to Quaternion in order to facilitate the writing of generic algorithms
26 * dealing with rotations.
27 *
28 * \sa class Quaternion, class Transform
29 */
30template<typename _Scalar> struct ei_traits<Rotation2D<_Scalar> >
31{
32 typedef _Scalar Scalar;
33};
34
35template<typename _Scalar>
36class Rotation2D : public RotationBase<Rotation2D<_Scalar>,2>
37{
38 typedef RotationBase<Rotation2D<_Scalar>,2> Base;
39
40public:
41
42 using Base::operator*;
43
44 enum { Dim = 2 };
45 /** the scalar type of the coefficients */
46 typedef _Scalar Scalar;
47 typedef Matrix<Scalar,2,1> Vector2;
48 typedef Matrix<Scalar,2,2> Matrix2;
49
50protected:
51
52 Scalar m_angle;
53
54public:
55
56 /** Construct a 2D counter clock wise rotation from the angle \a a in radian. */
57 inline Rotation2D(Scalar a) : m_angle(a) {}
58
59 /** \returns the rotation angle */
60 inline Scalar angle() const { return m_angle; }
61
62 /** \returns a read-write reference to the rotation angle */
63 inline Scalar& angle() { return m_angle; }
64
65 /** \returns the inverse rotation */
66 inline Rotation2D inverse() const { return -m_angle; }
67
68 /** Concatenates two rotations */
69 inline Rotation2D operator*(const Rotation2D& other) const
70 { return m_angle + other.m_angle; }
71
72 /** Concatenates two rotations */
73 inline Rotation2D& operator*=(const Rotation2D& other)
74 { return m_angle += other.m_angle; return *this; }
75
76 /** Applies the rotation to a 2D vector */
77 Vector2 operator* (const Vector2& vec) const
78 { return toRotationMatrix() * vec; }
79
80 template<typename Derived>
81 Rotation2D& fromRotationMatrix(const MatrixBase<Derived>& m);
82 Matrix2 toRotationMatrix(void) const;
83
84 /** \returns the spherical interpolation between \c *this and \a other using
85 * parameter \a t. It is in fact equivalent to a linear interpolation.
86 */
87 inline Rotation2D slerp(Scalar t, const Rotation2D& other) const
88 { return m_angle * (1-t) + other.angle() * t; }
89
90 /** \returns \c *this with scalar type casted to \a NewScalarType
91 *
92 * Note that if \a NewScalarType is equal to the current scalar type of \c *this
93 * then this function smartly returns a const reference to \c *this.
94 */
95 template<typename NewScalarType>
96 inline typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type cast() const
97 { return typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type(*this); }
98
99 /** Copy constructor with scalar type conversion */
100 template<typename OtherScalarType>
101 inline explicit Rotation2D(const Rotation2D<OtherScalarType>& other)
102 {
103 m_angle = Scalar(other.angle());
104 }
105
106 /** \returns \c true if \c *this is approximately equal to \a other, within the precision
107 * determined by \a prec.
108 *
109 * \sa MatrixBase::isApprox() */
110 bool isApprox(const Rotation2D& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
111 { return ei_isApprox(m_angle,other.m_angle, prec); }
112};
113
114/** \ingroup Geometry_Module
115 * single precision 2D rotation type */
116typedef Rotation2D<float> Rotation2Df;
117/** \ingroup Geometry_Module
118 * double precision 2D rotation type */
119typedef Rotation2D<double> Rotation2Dd;
120
121/** Set \c *this from a 2x2 rotation matrix \a mat.
122 * In other words, this function extract the rotation angle
123 * from the rotation matrix.
124 */
125template<typename Scalar>
126template<typename Derived>
127Rotation2D<Scalar>& Rotation2D<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat)
128{
129 EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime==2 && Derived::ColsAtCompileTime==2,YOU_MADE_A_PROGRAMMING_MISTAKE)
130 m_angle = ei_atan2(mat.coeff(1,0), mat.coeff(0,0));
131 return *this;
132}
133
134/** Constructs and \returns an equivalent 2x2 rotation matrix.
135 */
136template<typename Scalar>
137typename Rotation2D<Scalar>::Matrix2
138Rotation2D<Scalar>::toRotationMatrix(void) const
139{
140 Scalar sinA = ei_sin(m_angle);
141 Scalar cosA = ei_cos(m_angle);
142 return (Matrix2() << cosA, -sinA, sinA, cosA).finished();
143}
144
145} // end namespace Eigen