blob: 553d38c7449e7572d2ea0c1fb74d007c0390188a [file] [log] [blame]
Narayan Kamathc981c482012-11-02 10:59:05 +00001// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_ANGLEAXIS_H
11#define EIGEN_ANGLEAXIS_H
12
13namespace Eigen {
14
15/** \geometry_module \ingroup Geometry_Module
16 *
17 * \class AngleAxis
18 *
19 * \brief Represents a 3D rotation as a rotation angle around an arbitrary 3D axis
20 *
21 * \param _Scalar the scalar type, i.e., the type of the coefficients.
22 *
23 * \warning When setting up an AngleAxis object, the axis vector \b must \b be \b normalized.
24 *
25 * The following two typedefs are provided for convenience:
26 * \li \c AngleAxisf for \c float
27 * \li \c AngleAxisd for \c double
28 *
29 * Combined with MatrixBase::Unit{X,Y,Z}, AngleAxis can be used to easily
30 * mimic Euler-angles. Here is an example:
31 * \include AngleAxis_mimic_euler.cpp
32 * Output: \verbinclude AngleAxis_mimic_euler.out
33 *
34 * \note This class is not aimed to be used to store a rotation transformation,
35 * but rather to make easier the creation of other rotation (Quaternion, rotation Matrix)
36 * and transformation objects.
37 *
38 * \sa class Quaternion, class Transform, MatrixBase::UnitX()
39 */
40
41namespace internal {
42template<typename _Scalar> struct traits<AngleAxis<_Scalar> >
43{
44 typedef _Scalar Scalar;
45};
46}
47
48template<typename _Scalar>
49class AngleAxis : public RotationBase<AngleAxis<_Scalar>,3>
50{
51 typedef RotationBase<AngleAxis<_Scalar>,3> Base;
52
53public:
54
55 using Base::operator*;
56
57 enum { Dim = 3 };
58 /** the scalar type of the coefficients */
59 typedef _Scalar Scalar;
60 typedef Matrix<Scalar,3,3> Matrix3;
61 typedef Matrix<Scalar,3,1> Vector3;
62 typedef Quaternion<Scalar> QuaternionType;
63
64protected:
65
66 Vector3 m_axis;
67 Scalar m_angle;
68
69public:
70
71 /** Default constructor without initialization. */
72 AngleAxis() {}
73 /** Constructs and initialize the angle-axis rotation from an \a angle in radian
74 * and an \a axis which \b must \b be \b normalized.
75 *
76 * \warning If the \a axis vector is not normalized, then the angle-axis object
77 * represents an invalid rotation. */
78 template<typename Derived>
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -070079 inline AngleAxis(const Scalar& angle, const MatrixBase<Derived>& axis) : m_axis(axis), m_angle(angle) {}
Narayan Kamathc981c482012-11-02 10:59:05 +000080 /** Constructs and initialize the angle-axis rotation from a quaternion \a q. */
81 template<typename QuatDerived> inline explicit AngleAxis(const QuaternionBase<QuatDerived>& q) { *this = q; }
82 /** Constructs and initialize the angle-axis rotation from a 3x3 rotation matrix. */
83 template<typename Derived>
84 inline explicit AngleAxis(const MatrixBase<Derived>& m) { *this = m; }
85
86 Scalar angle() const { return m_angle; }
87 Scalar& angle() { return m_angle; }
88
89 const Vector3& axis() const { return m_axis; }
90 Vector3& axis() { return m_axis; }
91
92 /** Concatenates two rotations */
93 inline QuaternionType operator* (const AngleAxis& other) const
94 { return QuaternionType(*this) * QuaternionType(other); }
95
96 /** Concatenates two rotations */
97 inline QuaternionType operator* (const QuaternionType& other) const
98 { return QuaternionType(*this) * other; }
99
100 /** Concatenates two rotations */
101 friend inline QuaternionType operator* (const QuaternionType& a, const AngleAxis& b)
102 { return a * QuaternionType(b); }
103
104 /** \returns the inverse rotation, i.e., an angle-axis with opposite rotation angle */
105 AngleAxis inverse() const
106 { return AngleAxis(-m_angle, m_axis); }
107
108 template<class QuatDerived>
109 AngleAxis& operator=(const QuaternionBase<QuatDerived>& q);
110 template<typename Derived>
111 AngleAxis& operator=(const MatrixBase<Derived>& m);
112
113 template<typename Derived>
114 AngleAxis& fromRotationMatrix(const MatrixBase<Derived>& m);
115 Matrix3 toRotationMatrix(void) const;
116
117 /** \returns \c *this with scalar type casted to \a NewScalarType
118 *
119 * Note that if \a NewScalarType is equal to the current scalar type of \c *this
120 * then this function smartly returns a const reference to \c *this.
121 */
122 template<typename NewScalarType>
123 inline typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type cast() const
124 { return typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type(*this); }
125
126 /** Copy constructor with scalar type conversion */
127 template<typename OtherScalarType>
128 inline explicit AngleAxis(const AngleAxis<OtherScalarType>& other)
129 {
130 m_axis = other.axis().template cast<Scalar>();
131 m_angle = Scalar(other.angle());
132 }
133
134 static inline const AngleAxis Identity() { return AngleAxis(0, Vector3::UnitX()); }
135
136 /** \returns \c true if \c *this is approximately equal to \a other, within the precision
137 * determined by \a prec.
138 *
139 * \sa MatrixBase::isApprox() */
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700140 bool isApprox(const AngleAxis& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
Narayan Kamathc981c482012-11-02 10:59:05 +0000141 { return m_axis.isApprox(other.m_axis, prec) && internal::isApprox(m_angle,other.m_angle, prec); }
142};
143
144/** \ingroup Geometry_Module
145 * single precision angle-axis type */
146typedef AngleAxis<float> AngleAxisf;
147/** \ingroup Geometry_Module
148 * double precision angle-axis type */
149typedef AngleAxis<double> AngleAxisd;
150
151/** Set \c *this from a \b unit quaternion.
152 * The axis is normalized.
153 *
154 * \warning As any other method dealing with quaternion, if the input quaternion
155 * is not normalized then the result is undefined.
156 */
157template<typename Scalar>
158template<typename QuatDerived>
159AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionBase<QuatDerived>& q)
160{
161 using std::acos;
162 using std::min;
163 using std::max;
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700164 using std::sqrt;
Narayan Kamathc981c482012-11-02 10:59:05 +0000165 Scalar n2 = q.vec().squaredNorm();
166 if (n2 < NumTraits<Scalar>::dummy_precision()*NumTraits<Scalar>::dummy_precision())
167 {
168 m_angle = 0;
169 m_axis << 1, 0, 0;
170 }
171 else
172 {
173 m_angle = Scalar(2)*acos((min)((max)(Scalar(-1),q.w()),Scalar(1)));
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700174 m_axis = q.vec() / sqrt(n2);
Narayan Kamathc981c482012-11-02 10:59:05 +0000175 }
176 return *this;
177}
178
179/** Set \c *this from a 3x3 rotation matrix \a mat.
180 */
181template<typename Scalar>
182template<typename Derived>
183AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const MatrixBase<Derived>& mat)
184{
185 // Since a direct conversion would not be really faster,
186 // let's use the robust Quaternion implementation:
187 return *this = QuaternionType(mat);
188}
189
190/**
191* \brief Sets \c *this from a 3x3 rotation matrix.
192**/
193template<typename Scalar>
194template<typename Derived>
195AngleAxis<Scalar>& AngleAxis<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat)
196{
197 return *this = QuaternionType(mat);
198}
199
200/** Constructs and \returns an equivalent 3x3 rotation matrix.
201 */
202template<typename Scalar>
203typename AngleAxis<Scalar>::Matrix3
204AngleAxis<Scalar>::toRotationMatrix(void) const
205{
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700206 using std::sin;
207 using std::cos;
Narayan Kamathc981c482012-11-02 10:59:05 +0000208 Matrix3 res;
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700209 Vector3 sin_axis = sin(m_angle) * m_axis;
210 Scalar c = cos(m_angle);
Narayan Kamathc981c482012-11-02 10:59:05 +0000211 Vector3 cos1_axis = (Scalar(1)-c) * m_axis;
212
213 Scalar tmp;
214 tmp = cos1_axis.x() * m_axis.y();
215 res.coeffRef(0,1) = tmp - sin_axis.z();
216 res.coeffRef(1,0) = tmp + sin_axis.z();
217
218 tmp = cos1_axis.x() * m_axis.z();
219 res.coeffRef(0,2) = tmp + sin_axis.y();
220 res.coeffRef(2,0) = tmp - sin_axis.y();
221
222 tmp = cos1_axis.y() * m_axis.z();
223 res.coeffRef(1,2) = tmp - sin_axis.x();
224 res.coeffRef(2,1) = tmp + sin_axis.x();
225
226 res.diagonal() = (cos1_axis.cwiseProduct(m_axis)).array() + c;
227
228 return res;
229}
230
231} // end namespace Eigen
232
233#endif // EIGEN_ANGLEAXIS_H