blob: b95bf00ecff1f25deb98f994911ce52c41b08f5d [file] [log] [blame]
Narayan Kamathc981c482012-11-02 10:59:05 +00001// This file is part of Eigen, a lightweight C++ template library
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -07002// for linear algebra.
Narayan Kamathc981c482012-11-02 10:59:05 +00003//
4// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
5// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
12
13namespace Eigen {
14
15/** \geometry_module \ingroup Geometry_Module
16 *
17 * \class Hyperplane
18 *
19 * \brief A hyperplane
20 *
21 * A hyperplane is an affine subspace of dimension n-1 in a space of dimension n.
22 * For example, a hyperplane in a plane is a line; a hyperplane in 3-space is a plane.
23 *
24 * \param _Scalar the scalar type, i.e., the type of the coefficients
25 * \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
26 * Notice that the dimension of the hyperplane is _AmbientDim-1.
27 *
28 * This class represents an hyperplane as the zero set of the implicit equation
29 * \f$ n \cdot x + d = 0 \f$ where \f$ n \f$ is a unit normal vector of the plane (linear part)
30 * and \f$ d \f$ is the distance (offset) to the origin.
31 */
32template <typename _Scalar, int _AmbientDim>
33class Hyperplane
34{
35public:
36 EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim==Dynamic ? Dynamic : _AmbientDim+1)
37 enum { AmbientDimAtCompileTime = _AmbientDim };
38 typedef _Scalar Scalar;
39 typedef typename NumTraits<Scalar>::Real RealScalar;
40 typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType;
41 typedef Matrix<Scalar,int(AmbientDimAtCompileTime)==Dynamic
42 ? Dynamic
43 : int(AmbientDimAtCompileTime)+1,1> Coefficients;
44 typedef Block<Coefficients,AmbientDimAtCompileTime,1> NormalReturnType;
45
46 /** Default constructor without initialization */
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -070047 inline Hyperplane() {}
Narayan Kamathc981c482012-11-02 10:59:05 +000048
49 /** Constructs a dynamic-size hyperplane with \a _dim the dimension
50 * of the ambient space */
51 inline explicit Hyperplane(int _dim) : m_coeffs(_dim+1) {}
52
53 /** Construct a plane from its normal \a n and a point \a e onto the plane.
54 * \warning the vector normal is assumed to be normalized.
55 */
56 inline Hyperplane(const VectorType& n, const VectorType& e)
57 : m_coeffs(n.size()+1)
58 {
59 normal() = n;
60 offset() = -e.eigen2_dot(n);
61 }
62
63 /** Constructs a plane from its normal \a n and distance to the origin \a d
64 * such that the algebraic equation of the plane is \f$ n \cdot x + d = 0 \f$.
65 * \warning the vector normal is assumed to be normalized.
66 */
67 inline Hyperplane(const VectorType& n, Scalar d)
68 : m_coeffs(n.size()+1)
69 {
70 normal() = n;
71 offset() = d;
72 }
73
74 /** Constructs a hyperplane passing through the two points. If the dimension of the ambient space
75 * is greater than 2, then there isn't uniqueness, so an arbitrary choice is made.
76 */
77 static inline Hyperplane Through(const VectorType& p0, const VectorType& p1)
78 {
79 Hyperplane result(p0.size());
80 result.normal() = (p1 - p0).unitOrthogonal();
81 result.offset() = -result.normal().eigen2_dot(p0);
82 return result;
83 }
84
85 /** Constructs a hyperplane passing through the three points. The dimension of the ambient space
86 * is required to be exactly 3.
87 */
88 static inline Hyperplane Through(const VectorType& p0, const VectorType& p1, const VectorType& p2)
89 {
90 EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 3)
91 Hyperplane result(p0.size());
92 result.normal() = (p2 - p0).cross(p1 - p0).normalized();
93 result.offset() = -result.normal().eigen2_dot(p0);
94 return result;
95 }
96
97 /** Constructs a hyperplane passing through the parametrized line \a parametrized.
98 * If the dimension of the ambient space is greater than 2, then there isn't uniqueness,
99 * so an arbitrary choice is made.
100 */
101 // FIXME to be consitent with the rest this could be implemented as a static Through function ??
102 explicit Hyperplane(const ParametrizedLine<Scalar, AmbientDimAtCompileTime>& parametrized)
103 {
104 normal() = parametrized.direction().unitOrthogonal();
105 offset() = -normal().eigen2_dot(parametrized.origin());
106 }
107
108 ~Hyperplane() {}
109
110 /** \returns the dimension in which the plane holds */
111 inline int dim() const { return int(AmbientDimAtCompileTime)==Dynamic ? m_coeffs.size()-1 : int(AmbientDimAtCompileTime); }
112
113 /** normalizes \c *this */
114 void normalize(void)
115 {
116 m_coeffs /= normal().norm();
117 }
118
119 /** \returns the signed distance between the plane \c *this and a point \a p.
120 * \sa absDistance()
121 */
122 inline Scalar signedDistance(const VectorType& p) const { return p.eigen2_dot(normal()) + offset(); }
123
124 /** \returns the absolute distance between the plane \c *this and a point \a p.
125 * \sa signedDistance()
126 */
127 inline Scalar absDistance(const VectorType& p) const { return ei_abs(signedDistance(p)); }
128
129 /** \returns the projection of a point \a p onto the plane \c *this.
130 */
131 inline VectorType projection(const VectorType& p) const { return p - signedDistance(p) * normal(); }
132
133 /** \returns a constant reference to the unit normal vector of the plane, which corresponds
134 * to the linear part of the implicit equation.
135 */
136 inline const NormalReturnType normal() const { return NormalReturnType(*const_cast<Coefficients*>(&m_coeffs),0,0,dim(),1); }
137
138 /** \returns a non-constant reference to the unit normal vector of the plane, which corresponds
139 * to the linear part of the implicit equation.
140 */
141 inline NormalReturnType normal() { return NormalReturnType(m_coeffs,0,0,dim(),1); }
142
143 /** \returns the distance to the origin, which is also the "constant term" of the implicit equation
144 * \warning the vector normal is assumed to be normalized.
145 */
146 inline const Scalar& offset() const { return m_coeffs.coeff(dim()); }
147
148 /** \returns a non-constant reference to the distance to the origin, which is also the constant part
149 * of the implicit equation */
150 inline Scalar& offset() { return m_coeffs(dim()); }
151
152 /** \returns a constant reference to the coefficients c_i of the plane equation:
153 * \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$
154 */
155 inline const Coefficients& coeffs() const { return m_coeffs; }
156
157 /** \returns a non-constant reference to the coefficients c_i of the plane equation:
158 * \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$
159 */
160 inline Coefficients& coeffs() { return m_coeffs; }
161
162 /** \returns the intersection of *this with \a other.
163 *
164 * \warning The ambient space must be a plane, i.e. have dimension 2, so that \c *this and \a other are lines.
165 *
166 * \note If \a other is approximately parallel to *this, this method will return any point on *this.
167 */
168 VectorType intersection(const Hyperplane& other)
169 {
170 EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2)
171 Scalar det = coeffs().coeff(0) * other.coeffs().coeff(1) - coeffs().coeff(1) * other.coeffs().coeff(0);
172 // since the line equations ax+by=c are normalized with a^2+b^2=1, the following tests
173 // whether the two lines are approximately parallel.
174 if(ei_isMuchSmallerThan(det, Scalar(1)))
175 { // special case where the two lines are approximately parallel. Pick any point on the first line.
176 if(ei_abs(coeffs().coeff(1))>ei_abs(coeffs().coeff(0)))
177 return VectorType(coeffs().coeff(1), -coeffs().coeff(2)/coeffs().coeff(1)-coeffs().coeff(0));
178 else
179 return VectorType(-coeffs().coeff(2)/coeffs().coeff(0)-coeffs().coeff(1), coeffs().coeff(0));
180 }
181 else
182 { // general case
183 Scalar invdet = Scalar(1) / det;
184 return VectorType(invdet*(coeffs().coeff(1)*other.coeffs().coeff(2)-other.coeffs().coeff(1)*coeffs().coeff(2)),
185 invdet*(other.coeffs().coeff(0)*coeffs().coeff(2)-coeffs().coeff(0)*other.coeffs().coeff(2)));
186 }
187 }
188
189 /** Applies the transformation matrix \a mat to \c *this and returns a reference to \c *this.
190 *
191 * \param mat the Dim x Dim transformation matrix
192 * \param traits specifies whether the matrix \a mat represents an Isometry
193 * or a more generic Affine transformation. The default is Affine.
194 */
195 template<typename XprType>
196 inline Hyperplane& transform(const MatrixBase<XprType>& mat, TransformTraits traits = Affine)
197 {
198 if (traits==Affine)
199 normal() = mat.inverse().transpose() * normal();
200 else if (traits==Isometry)
201 normal() = mat * normal();
202 else
203 {
204 ei_assert("invalid traits value in Hyperplane::transform()");
205 }
206 return *this;
207 }
208
209 /** Applies the transformation \a t to \c *this and returns a reference to \c *this.
210 *
211 * \param t the transformation of dimension Dim
212 * \param traits specifies whether the transformation \a t represents an Isometry
213 * or a more generic Affine transformation. The default is Affine.
214 * Other kind of transformations are not supported.
215 */
216 inline Hyperplane& transform(const Transform<Scalar,AmbientDimAtCompileTime>& t,
217 TransformTraits traits = Affine)
218 {
219 transform(t.linear(), traits);
220 offset() -= t.translation().eigen2_dot(normal());
221 return *this;
222 }
223
224 /** \returns \c *this with scalar type casted to \a NewScalarType
225 *
226 * Note that if \a NewScalarType is equal to the current scalar type of \c *this
227 * then this function smartly returns a const reference to \c *this.
228 */
229 template<typename NewScalarType>
230 inline typename internal::cast_return_type<Hyperplane,
231 Hyperplane<NewScalarType,AmbientDimAtCompileTime> >::type cast() const
232 {
233 return typename internal::cast_return_type<Hyperplane,
234 Hyperplane<NewScalarType,AmbientDimAtCompileTime> >::type(*this);
235 }
236
237 /** Copy constructor with scalar type conversion */
238 template<typename OtherScalarType>
239 inline explicit Hyperplane(const Hyperplane<OtherScalarType,AmbientDimAtCompileTime>& other)
240 { m_coeffs = other.coeffs().template cast<Scalar>(); }
241
242 /** \returns \c true if \c *this is approximately equal to \a other, within the precision
243 * determined by \a prec.
244 *
245 * \sa MatrixBase::isApprox() */
246 bool isApprox(const Hyperplane& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
247 { return m_coeffs.isApprox(other.m_coeffs, prec); }
248
249protected:
250
251 Coefficients m_coeffs;
252};
253
254} // end namespace Eigen