blob: f06653f1c1bea8728931e6dae843aac9df5c75d2 [file] [log] [blame]
Narayan Kamathc981c482012-11-02 10:59:05 +00001// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5// Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#ifndef EIGEN_QUATERNION_H
12#define EIGEN_QUATERNION_H
13namespace Eigen {
14
15
16/***************************************************************************
17* Definition of QuaternionBase<Derived>
18* The implementation is at the end of the file
19***************************************************************************/
20
21namespace internal {
22template<typename Other,
23 int OtherRows=Other::RowsAtCompileTime,
24 int OtherCols=Other::ColsAtCompileTime>
25struct quaternionbase_assign_impl;
26}
27
28/** \geometry_module \ingroup Geometry_Module
29 * \class QuaternionBase
30 * \brief Base class for quaternion expressions
31 * \tparam Derived derived type (CRTP)
32 * \sa class Quaternion
33 */
34template<class Derived>
35class QuaternionBase : public RotationBase<Derived, 3>
36{
37 typedef RotationBase<Derived, 3> Base;
38public:
39 using Base::operator*;
40 using Base::derived;
41
42 typedef typename internal::traits<Derived>::Scalar Scalar;
43 typedef typename NumTraits<Scalar>::Real RealScalar;
44 typedef typename internal::traits<Derived>::Coefficients Coefficients;
45 enum {
46 Flags = Eigen::internal::traits<Derived>::Flags
47 };
48
49 // typedef typename Matrix<Scalar,4,1> Coefficients;
50 /** the type of a 3D vector */
51 typedef Matrix<Scalar,3,1> Vector3;
52 /** the equivalent rotation matrix type */
53 typedef Matrix<Scalar,3,3> Matrix3;
54 /** the equivalent angle-axis type */
55 typedef AngleAxis<Scalar> AngleAxisType;
56
57
58
59 /** \returns the \c x coefficient */
60 inline Scalar x() const { return this->derived().coeffs().coeff(0); }
61 /** \returns the \c y coefficient */
62 inline Scalar y() const { return this->derived().coeffs().coeff(1); }
63 /** \returns the \c z coefficient */
64 inline Scalar z() const { return this->derived().coeffs().coeff(2); }
65 /** \returns the \c w coefficient */
66 inline Scalar w() const { return this->derived().coeffs().coeff(3); }
67
68 /** \returns a reference to the \c x coefficient */
69 inline Scalar& x() { return this->derived().coeffs().coeffRef(0); }
70 /** \returns a reference to the \c y coefficient */
71 inline Scalar& y() { return this->derived().coeffs().coeffRef(1); }
72 /** \returns a reference to the \c z coefficient */
73 inline Scalar& z() { return this->derived().coeffs().coeffRef(2); }
74 /** \returns a reference to the \c w coefficient */
75 inline Scalar& w() { return this->derived().coeffs().coeffRef(3); }
76
77 /** \returns a read-only vector expression of the imaginary part (x,y,z) */
78 inline const VectorBlock<const Coefficients,3> vec() const { return coeffs().template head<3>(); }
79
80 /** \returns a vector expression of the imaginary part (x,y,z) */
81 inline VectorBlock<Coefficients,3> vec() { return coeffs().template head<3>(); }
82
83 /** \returns a read-only vector expression of the coefficients (x,y,z,w) */
84 inline const typename internal::traits<Derived>::Coefficients& coeffs() const { return derived().coeffs(); }
85
86 /** \returns a vector expression of the coefficients (x,y,z,w) */
87 inline typename internal::traits<Derived>::Coefficients& coeffs() { return derived().coeffs(); }
88
89 EIGEN_STRONG_INLINE QuaternionBase<Derived>& operator=(const QuaternionBase<Derived>& other);
90 template<class OtherDerived> EIGEN_STRONG_INLINE Derived& operator=(const QuaternionBase<OtherDerived>& other);
91
92// disabled this copy operator as it is giving very strange compilation errors when compiling
93// test_stdvector with GCC 4.4.2. This looks like a GCC bug though, so feel free to re-enable it if it's
94// useful; however notice that we already have the templated operator= above and e.g. in MatrixBase
95// we didn't have to add, in addition to templated operator=, such a non-templated copy operator.
96// Derived& operator=(const QuaternionBase& other)
97// { return operator=<Derived>(other); }
98
99 Derived& operator=(const AngleAxisType& aa);
100 template<class OtherDerived> Derived& operator=(const MatrixBase<OtherDerived>& m);
101
102 /** \returns a quaternion representing an identity rotation
103 * \sa MatrixBase::Identity()
104 */
105 static inline Quaternion<Scalar> Identity() { return Quaternion<Scalar>(1, 0, 0, 0); }
106
107 /** \sa QuaternionBase::Identity(), MatrixBase::setIdentity()
108 */
109 inline QuaternionBase& setIdentity() { coeffs() << 0, 0, 0, 1; return *this; }
110
111 /** \returns the squared norm of the quaternion's coefficients
112 * \sa QuaternionBase::norm(), MatrixBase::squaredNorm()
113 */
114 inline Scalar squaredNorm() const { return coeffs().squaredNorm(); }
115
116 /** \returns the norm of the quaternion's coefficients
117 * \sa QuaternionBase::squaredNorm(), MatrixBase::norm()
118 */
119 inline Scalar norm() const { return coeffs().norm(); }
120
121 /** Normalizes the quaternion \c *this
122 * \sa normalized(), MatrixBase::normalize() */
123 inline void normalize() { coeffs().normalize(); }
124 /** \returns a normalized copy of \c *this
125 * \sa normalize(), MatrixBase::normalized() */
126 inline Quaternion<Scalar> normalized() const { return Quaternion<Scalar>(coeffs().normalized()); }
127
128 /** \returns the dot product of \c *this and \a other
129 * Geometrically speaking, the dot product of two unit quaternions
130 * corresponds to the cosine of half the angle between the two rotations.
131 * \sa angularDistance()
132 */
133 template<class OtherDerived> inline Scalar dot(const QuaternionBase<OtherDerived>& other) const { return coeffs().dot(other.coeffs()); }
134
135 template<class OtherDerived> Scalar angularDistance(const QuaternionBase<OtherDerived>& other) const;
136
137 /** \returns an equivalent 3x3 rotation matrix */
138 Matrix3 toRotationMatrix() const;
139
140 /** \returns the quaternion which transform \a a into \a b through a rotation */
141 template<typename Derived1, typename Derived2>
142 Derived& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
143
144 template<class OtherDerived> EIGEN_STRONG_INLINE Quaternion<Scalar> operator* (const QuaternionBase<OtherDerived>& q) const;
145 template<class OtherDerived> EIGEN_STRONG_INLINE Derived& operator*= (const QuaternionBase<OtherDerived>& q);
146
147 /** \returns the quaternion describing the inverse rotation */
148 Quaternion<Scalar> inverse() const;
149
150 /** \returns the conjugated quaternion */
151 Quaternion<Scalar> conjugate() const;
152
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700153 template<class OtherDerived> Quaternion<Scalar> slerp(const Scalar& t, const QuaternionBase<OtherDerived>& other) const;
Narayan Kamathc981c482012-11-02 10:59:05 +0000154
155 /** \returns \c true if \c *this is approximately equal to \a other, within the precision
156 * determined by \a prec.
157 *
158 * \sa MatrixBase::isApprox() */
159 template<class OtherDerived>
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700160 bool isApprox(const QuaternionBase<OtherDerived>& other, const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const
Narayan Kamathc981c482012-11-02 10:59:05 +0000161 { return coeffs().isApprox(other.coeffs(), prec); }
162
163 /** return the result vector of \a v through the rotation*/
164 EIGEN_STRONG_INLINE Vector3 _transformVector(Vector3 v) const;
165
166 /** \returns \c *this with scalar type casted to \a NewScalarType
167 *
168 * Note that if \a NewScalarType is equal to the current scalar type of \c *this
169 * then this function smartly returns a const reference to \c *this.
170 */
171 template<typename NewScalarType>
172 inline typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type cast() const
173 {
174 return typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type(derived());
175 }
176
177#ifdef EIGEN_QUATERNIONBASE_PLUGIN
178# include EIGEN_QUATERNIONBASE_PLUGIN
179#endif
180};
181
182/***************************************************************************
183* Definition/implementation of Quaternion<Scalar>
184***************************************************************************/
185
186/** \geometry_module \ingroup Geometry_Module
187 *
188 * \class Quaternion
189 *
190 * \brief The quaternion class used to represent 3D orientations and rotations
191 *
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700192 * \tparam _Scalar the scalar type, i.e., the type of the coefficients
193 * \tparam _Options controls the memory alignment of the coefficients. Can be \# AutoAlign or \# DontAlign. Default is AutoAlign.
Narayan Kamathc981c482012-11-02 10:59:05 +0000194 *
195 * This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of
196 * orientations and rotations of objects in three dimensions. Compared to other representations
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700197 * like Euler angles or 3x3 matrices, quaternions offer the following advantages:
Narayan Kamathc981c482012-11-02 10:59:05 +0000198 * \li \b compact storage (4 scalars)
199 * \li \b efficient to compose (28 flops),
200 * \li \b stable spherical interpolation
201 *
202 * The following two typedefs are provided for convenience:
203 * \li \c Quaternionf for \c float
204 * \li \c Quaterniond for \c double
205 *
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700206 * \warning Operations interpreting the quaternion as rotation have undefined behavior if the quaternion is not normalized.
207 *
Narayan Kamathc981c482012-11-02 10:59:05 +0000208 * \sa class AngleAxis, class Transform
209 */
210
211namespace internal {
212template<typename _Scalar,int _Options>
213struct traits<Quaternion<_Scalar,_Options> >
214{
215 typedef Quaternion<_Scalar,_Options> PlainObject;
216 typedef _Scalar Scalar;
217 typedef Matrix<_Scalar,4,1,_Options> Coefficients;
218 enum{
219 IsAligned = internal::traits<Coefficients>::Flags & AlignedBit,
220 Flags = IsAligned ? (AlignedBit | LvalueBit) : LvalueBit
221 };
222};
223}
224
225template<typename _Scalar, int _Options>
226class Quaternion : public QuaternionBase<Quaternion<_Scalar,_Options> >
227{
228 typedef QuaternionBase<Quaternion<_Scalar,_Options> > Base;
229 enum { IsAligned = internal::traits<Quaternion>::IsAligned };
230
231public:
232 typedef _Scalar Scalar;
233
234 EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Quaternion)
235 using Base::operator*=;
236
237 typedef typename internal::traits<Quaternion>::Coefficients Coefficients;
238 typedef typename Base::AngleAxisType AngleAxisType;
239
240 /** Default constructor leaving the quaternion uninitialized. */
241 inline Quaternion() {}
242
243 /** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from
244 * its four coefficients \a w, \a x, \a y and \a z.
245 *
246 * \warning Note the order of the arguments: the real \a w coefficient first,
247 * while internally the coefficients are stored in the following order:
248 * [\c x, \c y, \c z, \c w]
249 */
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700250 inline Quaternion(const Scalar& w, const Scalar& x, const Scalar& y, const Scalar& z) : m_coeffs(x, y, z, w){}
Narayan Kamathc981c482012-11-02 10:59:05 +0000251
252 /** Constructs and initialize a quaternion from the array data */
253 inline Quaternion(const Scalar* data) : m_coeffs(data) {}
254
255 /** Copy constructor */
256 template<class Derived> EIGEN_STRONG_INLINE Quaternion(const QuaternionBase<Derived>& other) { this->Base::operator=(other); }
257
258 /** Constructs and initializes a quaternion from the angle-axis \a aa */
259 explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; }
260
261 /** Constructs and initializes a quaternion from either:
262 * - a rotation matrix expression,
263 * - a 4D vector expression representing quaternion coefficients.
264 */
265 template<typename Derived>
266 explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; }
267
268 /** Explicit copy constructor with scalar conversion */
269 template<typename OtherScalar, int OtherOptions>
270 explicit inline Quaternion(const Quaternion<OtherScalar, OtherOptions>& other)
271 { m_coeffs = other.coeffs().template cast<Scalar>(); }
272
273 template<typename Derived1, typename Derived2>
274 static Quaternion FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
275
276 inline Coefficients& coeffs() { return m_coeffs;}
277 inline const Coefficients& coeffs() const { return m_coeffs;}
278
279 EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(IsAligned)
280
281protected:
282 Coefficients m_coeffs;
283
284#ifndef EIGEN_PARSED_BY_DOXYGEN
285 static EIGEN_STRONG_INLINE void _check_template_params()
286 {
287 EIGEN_STATIC_ASSERT( (_Options & DontAlign) == _Options,
288 INVALID_MATRIX_TEMPLATE_PARAMETERS)
289 }
290#endif
291};
292
293/** \ingroup Geometry_Module
294 * single precision quaternion type */
295typedef Quaternion<float> Quaternionf;
296/** \ingroup Geometry_Module
297 * double precision quaternion type */
298typedef Quaternion<double> Quaterniond;
299
300/***************************************************************************
301* Specialization of Map<Quaternion<Scalar>>
302***************************************************************************/
303
304namespace internal {
305 template<typename _Scalar, int _Options>
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700306 struct traits<Map<Quaternion<_Scalar>, _Options> > : traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> >
Narayan Kamathc981c482012-11-02 10:59:05 +0000307 {
Narayan Kamathc981c482012-11-02 10:59:05 +0000308 typedef Map<Matrix<_Scalar,4,1>, _Options> Coefficients;
Narayan Kamathc981c482012-11-02 10:59:05 +0000309 };
310}
311
312namespace internal {
313 template<typename _Scalar, int _Options>
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700314 struct traits<Map<const Quaternion<_Scalar>, _Options> > : traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> >
Narayan Kamathc981c482012-11-02 10:59:05 +0000315 {
Narayan Kamathc981c482012-11-02 10:59:05 +0000316 typedef Map<const Matrix<_Scalar,4,1>, _Options> Coefficients;
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700317 typedef traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> > TraitsBase;
Narayan Kamathc981c482012-11-02 10:59:05 +0000318 enum {
Narayan Kamathc981c482012-11-02 10:59:05 +0000319 Flags = TraitsBase::Flags & ~LvalueBit
320 };
321 };
322}
323
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700324/** \ingroup Geometry_Module
325 * \brief Quaternion expression mapping a constant memory buffer
Narayan Kamathc981c482012-11-02 10:59:05 +0000326 *
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700327 * \tparam _Scalar the type of the Quaternion coefficients
328 * \tparam _Options see class Map
Narayan Kamathc981c482012-11-02 10:59:05 +0000329 *
330 * This is a specialization of class Map for Quaternion. This class allows to view
331 * a 4 scalar memory buffer as an Eigen's Quaternion object.
332 *
333 * \sa class Map, class Quaternion, class QuaternionBase
334 */
335template<typename _Scalar, int _Options>
336class Map<const Quaternion<_Scalar>, _Options >
337 : public QuaternionBase<Map<const Quaternion<_Scalar>, _Options> >
338{
339 typedef QuaternionBase<Map<const Quaternion<_Scalar>, _Options> > Base;
340
341 public:
342 typedef _Scalar Scalar;
343 typedef typename internal::traits<Map>::Coefficients Coefficients;
344 EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Map)
345 using Base::operator*=;
346
347 /** Constructs a Mapped Quaternion object from the pointer \a coeffs
348 *
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700349 * The pointer \a coeffs must reference the four coefficients of Quaternion in the following order:
Narayan Kamathc981c482012-11-02 10:59:05 +0000350 * \code *coeffs == {x, y, z, w} \endcode
351 *
352 * If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */
353 EIGEN_STRONG_INLINE Map(const Scalar* coeffs) : m_coeffs(coeffs) {}
354
355 inline const Coefficients& coeffs() const { return m_coeffs;}
356
357 protected:
358 const Coefficients m_coeffs;
359};
360
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700361/** \ingroup Geometry_Module
362 * \brief Expression of a quaternion from a memory buffer
Narayan Kamathc981c482012-11-02 10:59:05 +0000363 *
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700364 * \tparam _Scalar the type of the Quaternion coefficients
365 * \tparam _Options see class Map
Narayan Kamathc981c482012-11-02 10:59:05 +0000366 *
367 * This is a specialization of class Map for Quaternion. This class allows to view
368 * a 4 scalar memory buffer as an Eigen's Quaternion object.
369 *
370 * \sa class Map, class Quaternion, class QuaternionBase
371 */
372template<typename _Scalar, int _Options>
373class Map<Quaternion<_Scalar>, _Options >
374 : public QuaternionBase<Map<Quaternion<_Scalar>, _Options> >
375{
376 typedef QuaternionBase<Map<Quaternion<_Scalar>, _Options> > Base;
377
378 public:
379 typedef _Scalar Scalar;
380 typedef typename internal::traits<Map>::Coefficients Coefficients;
381 EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Map)
382 using Base::operator*=;
383
384 /** Constructs a Mapped Quaternion object from the pointer \a coeffs
385 *
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700386 * The pointer \a coeffs must reference the four coefficients of Quaternion in the following order:
Narayan Kamathc981c482012-11-02 10:59:05 +0000387 * \code *coeffs == {x, y, z, w} \endcode
388 *
389 * If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */
390 EIGEN_STRONG_INLINE Map(Scalar* coeffs) : m_coeffs(coeffs) {}
391
392 inline Coefficients& coeffs() { return m_coeffs; }
393 inline const Coefficients& coeffs() const { return m_coeffs; }
394
395 protected:
396 Coefficients m_coeffs;
397};
398
399/** \ingroup Geometry_Module
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700400 * Map an unaligned array of single precision scalars as a quaternion */
Narayan Kamathc981c482012-11-02 10:59:05 +0000401typedef Map<Quaternion<float>, 0> QuaternionMapf;
402/** \ingroup Geometry_Module
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700403 * Map an unaligned array of double precision scalars as a quaternion */
Narayan Kamathc981c482012-11-02 10:59:05 +0000404typedef Map<Quaternion<double>, 0> QuaternionMapd;
405/** \ingroup Geometry_Module
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700406 * Map a 16-byte aligned array of single precision scalars as a quaternion */
Narayan Kamathc981c482012-11-02 10:59:05 +0000407typedef Map<Quaternion<float>, Aligned> QuaternionMapAlignedf;
408/** \ingroup Geometry_Module
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700409 * Map a 16-byte aligned array of double precision scalars as a quaternion */
Narayan Kamathc981c482012-11-02 10:59:05 +0000410typedef Map<Quaternion<double>, Aligned> QuaternionMapAlignedd;
411
412/***************************************************************************
413* Implementation of QuaternionBase methods
414***************************************************************************/
415
416// Generic Quaternion * Quaternion product
417// This product can be specialized for a given architecture via the Arch template argument.
418namespace internal {
419template<int Arch, class Derived1, class Derived2, typename Scalar, int _Options> struct quat_product
420{
421 static EIGEN_STRONG_INLINE Quaternion<Scalar> run(const QuaternionBase<Derived1>& a, const QuaternionBase<Derived2>& b){
422 return Quaternion<Scalar>
423 (
424 a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(),
425 a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(),
426 a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(),
427 a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x()
428 );
429 }
430};
431}
432
433/** \returns the concatenation of two rotations as a quaternion-quaternion product */
434template <class Derived>
435template <class OtherDerived>
436EIGEN_STRONG_INLINE Quaternion<typename internal::traits<Derived>::Scalar>
437QuaternionBase<Derived>::operator* (const QuaternionBase<OtherDerived>& other) const
438{
439 EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename OtherDerived::Scalar>::value),
440 YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
441 return internal::quat_product<Architecture::Target, Derived, OtherDerived,
442 typename internal::traits<Derived>::Scalar,
443 internal::traits<Derived>::IsAligned && internal::traits<OtherDerived>::IsAligned>::run(*this, other);
444}
445
446/** \sa operator*(Quaternion) */
447template <class Derived>
448template <class OtherDerived>
449EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator*= (const QuaternionBase<OtherDerived>& other)
450{
451 derived() = derived() * other.derived();
452 return derived();
453}
454
455/** Rotation of a vector by a quaternion.
456 * \remarks If the quaternion is used to rotate several points (>1)
457 * then it is much more efficient to first convert it to a 3x3 Matrix.
458 * Comparison of the operation cost for n transformations:
459 * - Quaternion2: 30n
460 * - Via a Matrix3: 24 + 15n
461 */
462template <class Derived>
463EIGEN_STRONG_INLINE typename QuaternionBase<Derived>::Vector3
464QuaternionBase<Derived>::_transformVector(Vector3 v) const
465{
466 // Note that this algorithm comes from the optimization by hand
467 // of the conversion to a Matrix followed by a Matrix/Vector product.
468 // It appears to be much faster than the common algorithm found
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700469 // in the literature (30 versus 39 flops). It also requires two
Narayan Kamathc981c482012-11-02 10:59:05 +0000470 // Vector3 as temporaries.
471 Vector3 uv = this->vec().cross(v);
472 uv += uv;
473 return v + this->w() * uv + this->vec().cross(uv);
474}
475
476template<class Derived>
477EIGEN_STRONG_INLINE QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(const QuaternionBase<Derived>& other)
478{
479 coeffs() = other.coeffs();
480 return derived();
481}
482
483template<class Derived>
484template<class OtherDerived>
485EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const QuaternionBase<OtherDerived>& other)
486{
487 coeffs() = other.coeffs();
488 return derived();
489}
490
491/** Set \c *this from an angle-axis \a aa and returns a reference to \c *this
492 */
493template<class Derived>
494EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const AngleAxisType& aa)
495{
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700496 using std::cos;
497 using std::sin;
Narayan Kamathc981c482012-11-02 10:59:05 +0000498 Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700499 this->w() = cos(ha);
500 this->vec() = sin(ha) * aa.axis();
Narayan Kamathc981c482012-11-02 10:59:05 +0000501 return derived();
502}
503
504/** Set \c *this from the expression \a xpr:
505 * - if \a xpr is a 4x1 vector, then \a xpr is assumed to be a quaternion
506 * - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix
507 * and \a xpr is converted to a quaternion
508 */
509
510template<class Derived>
511template<class MatrixDerived>
512inline Derived& QuaternionBase<Derived>::operator=(const MatrixBase<MatrixDerived>& xpr)
513{
514 EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename MatrixDerived::Scalar>::value),
515 YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
516 internal::quaternionbase_assign_impl<MatrixDerived>::run(*this, xpr.derived());
517 return derived();
518}
519
520/** Convert the quaternion to a 3x3 rotation matrix. The quaternion is required to
521 * be normalized, otherwise the result is undefined.
522 */
523template<class Derived>
524inline typename QuaternionBase<Derived>::Matrix3
525QuaternionBase<Derived>::toRotationMatrix(void) const
526{
527 // NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!)
528 // if not inlined then the cost of the return by value is huge ~ +35%,
529 // however, not inlining this function is an order of magnitude slower, so
530 // it has to be inlined, and so the return by value is not an issue
531 Matrix3 res;
532
533 const Scalar tx = Scalar(2)*this->x();
534 const Scalar ty = Scalar(2)*this->y();
535 const Scalar tz = Scalar(2)*this->z();
536 const Scalar twx = tx*this->w();
537 const Scalar twy = ty*this->w();
538 const Scalar twz = tz*this->w();
539 const Scalar txx = tx*this->x();
540 const Scalar txy = ty*this->x();
541 const Scalar txz = tz*this->x();
542 const Scalar tyy = ty*this->y();
543 const Scalar tyz = tz*this->y();
544 const Scalar tzz = tz*this->z();
545
546 res.coeffRef(0,0) = Scalar(1)-(tyy+tzz);
547 res.coeffRef(0,1) = txy-twz;
548 res.coeffRef(0,2) = txz+twy;
549 res.coeffRef(1,0) = txy+twz;
550 res.coeffRef(1,1) = Scalar(1)-(txx+tzz);
551 res.coeffRef(1,2) = tyz-twx;
552 res.coeffRef(2,0) = txz-twy;
553 res.coeffRef(2,1) = tyz+twx;
554 res.coeffRef(2,2) = Scalar(1)-(txx+tyy);
555
556 return res;
557}
558
559/** Sets \c *this to be a quaternion representing a rotation between
560 * the two arbitrary vectors \a a and \a b. In other words, the built
561 * rotation represent a rotation sending the line of direction \a a
562 * to the line of direction \a b, both lines passing through the origin.
563 *
564 * \returns a reference to \c *this.
565 *
566 * Note that the two input vectors do \b not have to be normalized, and
567 * do not need to have the same norm.
568 */
569template<class Derived>
570template<typename Derived1, typename Derived2>
571inline Derived& QuaternionBase<Derived>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
572{
573 using std::max;
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700574 using std::sqrt;
Narayan Kamathc981c482012-11-02 10:59:05 +0000575 Vector3 v0 = a.normalized();
576 Vector3 v1 = b.normalized();
577 Scalar c = v1.dot(v0);
578
579 // if dot == -1, vectors are nearly opposites
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700580 // => accurately compute the rotation axis by computing the
Narayan Kamathc981c482012-11-02 10:59:05 +0000581 // intersection of the two planes. This is done by solving:
582 // x^T v0 = 0
583 // x^T v1 = 0
584 // under the constraint:
585 // ||x|| = 1
586 // which yields a singular value problem
587 if (c < Scalar(-1)+NumTraits<Scalar>::dummy_precision())
588 {
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700589 c = (max)(c,Scalar(-1));
Narayan Kamathc981c482012-11-02 10:59:05 +0000590 Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose();
591 JacobiSVD<Matrix<Scalar,2,3> > svd(m, ComputeFullV);
592 Vector3 axis = svd.matrixV().col(2);
593
594 Scalar w2 = (Scalar(1)+c)*Scalar(0.5);
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700595 this->w() = sqrt(w2);
596 this->vec() = axis * sqrt(Scalar(1) - w2);
Narayan Kamathc981c482012-11-02 10:59:05 +0000597 return derived();
598 }
599 Vector3 axis = v0.cross(v1);
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700600 Scalar s = sqrt((Scalar(1)+c)*Scalar(2));
Narayan Kamathc981c482012-11-02 10:59:05 +0000601 Scalar invs = Scalar(1)/s;
602 this->vec() = axis * invs;
603 this->w() = s * Scalar(0.5);
604
605 return derived();
606}
607
608
609/** Returns a quaternion representing a rotation between
610 * the two arbitrary vectors \a a and \a b. In other words, the built
611 * rotation represent a rotation sending the line of direction \a a
612 * to the line of direction \a b, both lines passing through the origin.
613 *
614 * \returns resulting quaternion
615 *
616 * Note that the two input vectors do \b not have to be normalized, and
617 * do not need to have the same norm.
618 */
619template<typename Scalar, int Options>
620template<typename Derived1, typename Derived2>
621Quaternion<Scalar,Options> Quaternion<Scalar,Options>::FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
622{
623 Quaternion quat;
624 quat.setFromTwoVectors(a, b);
625 return quat;
626}
627
628
629/** \returns the multiplicative inverse of \c *this
630 * Note that in most cases, i.e., if you simply want the opposite rotation,
631 * and/or the quaternion is normalized, then it is enough to use the conjugate.
632 *
633 * \sa QuaternionBase::conjugate()
634 */
635template <class Derived>
636inline Quaternion<typename internal::traits<Derived>::Scalar> QuaternionBase<Derived>::inverse() const
637{
638 // FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite() ??
639 Scalar n2 = this->squaredNorm();
640 if (n2 > 0)
641 return Quaternion<Scalar>(conjugate().coeffs() / n2);
642 else
643 {
644 // return an invalid result to flag the error
645 return Quaternion<Scalar>(Coefficients::Zero());
646 }
647}
648
649/** \returns the conjugate of the \c *this which is equal to the multiplicative inverse
650 * if the quaternion is normalized.
651 * The conjugate of a quaternion represents the opposite rotation.
652 *
653 * \sa Quaternion2::inverse()
654 */
655template <class Derived>
656inline Quaternion<typename internal::traits<Derived>::Scalar>
657QuaternionBase<Derived>::conjugate() const
658{
659 return Quaternion<Scalar>(this->w(),-this->x(),-this->y(),-this->z());
660}
661
662/** \returns the angle (in radian) between two rotations
663 * \sa dot()
664 */
665template <class Derived>
666template <class OtherDerived>
667inline typename internal::traits<Derived>::Scalar
668QuaternionBase<Derived>::angularDistance(const QuaternionBase<OtherDerived>& other) const
669{
670 using std::acos;
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700671 using std::abs;
672 Scalar d = abs(this->dot(other));
673 if (d>=Scalar(1))
Narayan Kamathc981c482012-11-02 10:59:05 +0000674 return Scalar(0);
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700675 return Scalar(2) * acos(d);
Narayan Kamathc981c482012-11-02 10:59:05 +0000676}
677
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700678
679
Narayan Kamathc981c482012-11-02 10:59:05 +0000680/** \returns the spherical linear interpolation between the two quaternions
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700681 * \c *this and \a other at the parameter \a t in [0;1].
682 *
683 * This represents an interpolation for a constant motion between \c *this and \a other,
684 * see also http://en.wikipedia.org/wiki/Slerp.
Narayan Kamathc981c482012-11-02 10:59:05 +0000685 */
686template <class Derived>
687template <class OtherDerived>
688Quaternion<typename internal::traits<Derived>::Scalar>
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700689QuaternionBase<Derived>::slerp(const Scalar& t, const QuaternionBase<OtherDerived>& other) const
Narayan Kamathc981c482012-11-02 10:59:05 +0000690{
691 using std::acos;
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700692 using std::sin;
693 using std::abs;
Narayan Kamathc981c482012-11-02 10:59:05 +0000694 static const Scalar one = Scalar(1) - NumTraits<Scalar>::epsilon();
695 Scalar d = this->dot(other);
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700696 Scalar absD = abs(d);
Narayan Kamathc981c482012-11-02 10:59:05 +0000697
698 Scalar scale0;
699 Scalar scale1;
700
701 if(absD>=one)
702 {
703 scale0 = Scalar(1) - t;
704 scale1 = t;
705 }
706 else
707 {
708 // theta is the angle between the 2 quaternions
709 Scalar theta = acos(absD);
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700710 Scalar sinTheta = sin(theta);
Narayan Kamathc981c482012-11-02 10:59:05 +0000711
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700712 scale0 = sin( ( Scalar(1) - t ) * theta) / sinTheta;
713 scale1 = sin( ( t * theta) ) / sinTheta;
Narayan Kamathc981c482012-11-02 10:59:05 +0000714 }
715 if(d<0) scale1 = -scale1;
716
717 return Quaternion<Scalar>(scale0 * coeffs() + scale1 * other.coeffs());
718}
719
720namespace internal {
721
722// set from a rotation matrix
723template<typename Other>
724struct quaternionbase_assign_impl<Other,3,3>
725{
726 typedef typename Other::Scalar Scalar;
727 typedef DenseIndex Index;
728 template<class Derived> static inline void run(QuaternionBase<Derived>& q, const Other& mat)
729 {
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700730 using std::sqrt;
Narayan Kamathc981c482012-11-02 10:59:05 +0000731 // This algorithm comes from "Quaternion Calculus and Fast Animation",
732 // Ken Shoemake, 1987 SIGGRAPH course notes
733 Scalar t = mat.trace();
734 if (t > Scalar(0))
735 {
736 t = sqrt(t + Scalar(1.0));
737 q.w() = Scalar(0.5)*t;
738 t = Scalar(0.5)/t;
739 q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t;
740 q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t;
741 q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t;
742 }
743 else
744 {
745 DenseIndex i = 0;
746 if (mat.coeff(1,1) > mat.coeff(0,0))
747 i = 1;
748 if (mat.coeff(2,2) > mat.coeff(i,i))
749 i = 2;
750 DenseIndex j = (i+1)%3;
751 DenseIndex k = (j+1)%3;
752
753 t = sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0));
754 q.coeffs().coeffRef(i) = Scalar(0.5) * t;
755 t = Scalar(0.5)/t;
756 q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t;
757 q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t;
758 q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t;
759 }
760 }
761};
762
763// set from a vector of coefficients assumed to be a quaternion
764template<typename Other>
765struct quaternionbase_assign_impl<Other,4,1>
766{
767 typedef typename Other::Scalar Scalar;
768 template<class Derived> static inline void run(QuaternionBase<Derived>& q, const Other& vec)
769 {
770 q.coeffs() = vec;
771 }
772};
773
774} // end namespace internal
775
776} // end namespace Eigen
777
778#endif // EIGEN_QUATERNION_H