blob: a2cc2a9e261cc4c4577756ddbe3bebdf102b864e [file] [log] [blame]
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -07001// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_SUITESPARSEQRSUPPORT_H
11#define EIGEN_SUITESPARSEQRSUPPORT_H
12
13namespace Eigen {
14
15 template<typename MatrixType> class SPQR;
16 template<typename SPQRType> struct SPQRMatrixQReturnType;
17 template<typename SPQRType> struct SPQRMatrixQTransposeReturnType;
18 template <typename SPQRType, typename Derived> struct SPQR_QProduct;
19 namespace internal {
20 template <typename SPQRType> struct traits<SPQRMatrixQReturnType<SPQRType> >
21 {
22 typedef typename SPQRType::MatrixType ReturnType;
23 };
24 template <typename SPQRType> struct traits<SPQRMatrixQTransposeReturnType<SPQRType> >
25 {
26 typedef typename SPQRType::MatrixType ReturnType;
27 };
28 template <typename SPQRType, typename Derived> struct traits<SPQR_QProduct<SPQRType, Derived> >
29 {
30 typedef typename Derived::PlainObject ReturnType;
31 };
32 } // End namespace internal
33
34/**
35 * \ingroup SPQRSupport_Module
36 * \class SPQR
37 * \brief Sparse QR factorization based on SuiteSparseQR library
38 *
39 * This class is used to perform a multithreaded and multifrontal rank-revealing QR decomposition
40 * of sparse matrices. The result is then used to solve linear leasts_square systems.
41 * Clearly, a QR factorization is returned such that A*P = Q*R where :
42 *
43 * P is the column permutation. Use colsPermutation() to get it.
44 *
45 * Q is the orthogonal matrix represented as Householder reflectors.
46 * Use matrixQ() to get an expression and matrixQ().transpose() to get the transpose.
47 * You can then apply it to a vector.
48 *
49 * R is the sparse triangular factor. Use matrixQR() to get it as SparseMatrix.
50 * NOTE : The Index type of R is always UF_long. You can get it with SPQR::Index
51 *
52 * \tparam _MatrixType The type of the sparse matrix A, must be a column-major SparseMatrix<>
53 * NOTE
54 *
55 */
56template<typename _MatrixType>
57class SPQR
58{
59 public:
60 typedef typename _MatrixType::Scalar Scalar;
61 typedef typename _MatrixType::RealScalar RealScalar;
62 typedef UF_long Index ;
63 typedef SparseMatrix<Scalar, ColMajor, Index> MatrixType;
64 typedef PermutationMatrix<Dynamic, Dynamic> PermutationType;
65 public:
66 SPQR()
67 : m_isInitialized(false),
68 m_ordering(SPQR_ORDERING_DEFAULT),
69 m_allow_tol(SPQR_DEFAULT_TOL),
70 m_tolerance (NumTraits<Scalar>::epsilon())
71 {
72 cholmod_l_start(&m_cc);
73 }
74
75 SPQR(const _MatrixType& matrix)
76 : m_isInitialized(false),
77 m_ordering(SPQR_ORDERING_DEFAULT),
78 m_allow_tol(SPQR_DEFAULT_TOL),
79 m_tolerance (NumTraits<Scalar>::epsilon())
80 {
81 cholmod_l_start(&m_cc);
82 compute(matrix);
83 }
84
85 ~SPQR()
86 {
87 SPQR_free();
88 cholmod_l_finish(&m_cc);
89 }
90 void SPQR_free()
91 {
92 cholmod_l_free_sparse(&m_H, &m_cc);
93 cholmod_l_free_sparse(&m_cR, &m_cc);
94 cholmod_l_free_dense(&m_HTau, &m_cc);
95 std::free(m_E);
96 std::free(m_HPinv);
97 }
98
99 void compute(const _MatrixType& matrix)
100 {
101 if(m_isInitialized) SPQR_free();
102
103 MatrixType mat(matrix);
104 cholmod_sparse A;
105 A = viewAsCholmod(mat);
106 Index col = matrix.cols();
107 m_rank = SuiteSparseQR<Scalar>(m_ordering, m_tolerance, col, &A,
108 &m_cR, &m_E, &m_H, &m_HPinv, &m_HTau, &m_cc);
109
110 if (!m_cR)
111 {
112 m_info = NumericalIssue;
113 m_isInitialized = false;
114 return;
115 }
116 m_info = Success;
117 m_isInitialized = true;
118 m_isRUpToDate = false;
119 }
120 /**
121 * Get the number of rows of the input matrix and the Q matrix
122 */
123 inline Index rows() const {return m_H->nrow; }
124
125 /**
126 * Get the number of columns of the input matrix.
127 */
128 inline Index cols() const { return m_cR->ncol; }
129
130 /** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A.
131 *
132 * \sa compute()
133 */
134 template<typename Rhs>
135 inline const internal::solve_retval<SPQR, Rhs> solve(const MatrixBase<Rhs>& B) const
136 {
137 eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()");
138 eigen_assert(this->rows()==B.rows()
139 && "SPQR::solve(): invalid number of rows of the right hand side matrix B");
140 return internal::solve_retval<SPQR, Rhs>(*this, B.derived());
141 }
142
143 template<typename Rhs, typename Dest>
144 void _solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
145 {
146 eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()");
147 eigen_assert(b.cols()==1 && "This method is for vectors only");
148
149 //Compute Q^T * b
150 typename Dest::PlainObject y;
151 y = matrixQ().transpose() * b;
152 // Solves with the triangular matrix R
153 Index rk = this->rank();
154 y.topRows(rk) = this->matrixR().topLeftCorner(rk, rk).template triangularView<Upper>().solve(y.topRows(rk));
155 y.bottomRows(cols()-rk).setZero();
156 // Apply the column permutation
157 dest.topRows(cols()) = colsPermutation() * y.topRows(cols());
158
159 m_info = Success;
160 }
161
162 /** \returns the sparse triangular factor R. It is a sparse matrix
163 */
164 const MatrixType matrixR() const
165 {
166 eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()");
167 if(!m_isRUpToDate) {
168 m_R = viewAsEigen<Scalar,ColMajor, typename MatrixType::Index>(*m_cR);
169 m_isRUpToDate = true;
170 }
171 return m_R;
172 }
173 /// Get an expression of the matrix Q
174 SPQRMatrixQReturnType<SPQR> matrixQ() const
175 {
176 return SPQRMatrixQReturnType<SPQR>(*this);
177 }
178 /// Get the permutation that was applied to columns of A
179 PermutationType colsPermutation() const
180 {
181 eigen_assert(m_isInitialized && "Decomposition is not initialized.");
182 Index n = m_cR->ncol;
183 PermutationType colsPerm(n);
184 for(Index j = 0; j <n; j++) colsPerm.indices()(j) = m_E[j];
185 return colsPerm;
186
187 }
188 /**
189 * Gets the rank of the matrix.
190 * It should be equal to matrixQR().cols if the matrix is full-rank
191 */
192 Index rank() const
193 {
194 eigen_assert(m_isInitialized && "Decomposition is not initialized.");
195 return m_cc.SPQR_istat[4];
196 }
197 /// Set the fill-reducing ordering method to be used
198 void setSPQROrdering(int ord) { m_ordering = ord;}
199 /// Set the tolerance tol to treat columns with 2-norm < =tol as zero
200 void setPivotThreshold(const RealScalar& tol) { m_tolerance = tol; }
201
202 /** \returns a pointer to the SPQR workspace */
203 cholmod_common *cholmodCommon() const { return &m_cc; }
204
205
206 /** \brief Reports whether previous computation was successful.
207 *
208 * \returns \c Success if computation was succesful,
209 * \c NumericalIssue if the sparse QR can not be computed
210 */
211 ComputationInfo info() const
212 {
213 eigen_assert(m_isInitialized && "Decomposition is not initialized.");
214 return m_info;
215 }
216 protected:
217 bool m_isInitialized;
218 bool m_analysisIsOk;
219 bool m_factorizationIsOk;
220 mutable bool m_isRUpToDate;
221 mutable ComputationInfo m_info;
222 int m_ordering; // Ordering method to use, see SPQR's manual
223 int m_allow_tol; // Allow to use some tolerance during numerical factorization.
224 RealScalar m_tolerance; // treat columns with 2-norm below this tolerance as zero
225 mutable cholmod_sparse *m_cR; // The sparse R factor in cholmod format
226 mutable MatrixType m_R; // The sparse matrix R in Eigen format
227 mutable Index *m_E; // The permutation applied to columns
228 mutable cholmod_sparse *m_H; //The householder vectors
229 mutable Index *m_HPinv; // The row permutation of H
230 mutable cholmod_dense *m_HTau; // The Householder coefficients
231 mutable Index m_rank; // The rank of the matrix
232 mutable cholmod_common m_cc; // Workspace and parameters
233 template<typename ,typename > friend struct SPQR_QProduct;
234};
235
236template <typename SPQRType, typename Derived>
237struct SPQR_QProduct : ReturnByValue<SPQR_QProduct<SPQRType,Derived> >
238{
239 typedef typename SPQRType::Scalar Scalar;
240 typedef typename SPQRType::Index Index;
241 //Define the constructor to get reference to argument types
242 SPQR_QProduct(const SPQRType& spqr, const Derived& other, bool transpose) : m_spqr(spqr),m_other(other),m_transpose(transpose) {}
243
244 inline Index rows() const { return m_transpose ? m_spqr.rows() : m_spqr.cols(); }
245 inline Index cols() const { return m_other.cols(); }
246 // Assign to a vector
247 template<typename ResType>
248 void evalTo(ResType& res) const
249 {
250 cholmod_dense y_cd;
251 cholmod_dense *x_cd;
252 int method = m_transpose ? SPQR_QTX : SPQR_QX;
253 cholmod_common *cc = m_spqr.cholmodCommon();
254 y_cd = viewAsCholmod(m_other.const_cast_derived());
255 x_cd = SuiteSparseQR_qmult<Scalar>(method, m_spqr.m_H, m_spqr.m_HTau, m_spqr.m_HPinv, &y_cd, cc);
256 res = Matrix<Scalar,ResType::RowsAtCompileTime,ResType::ColsAtCompileTime>::Map(reinterpret_cast<Scalar*>(x_cd->x), x_cd->nrow, x_cd->ncol);
257 cholmod_l_free_dense(&x_cd, cc);
258 }
259 const SPQRType& m_spqr;
260 const Derived& m_other;
261 bool m_transpose;
262
263};
264template<typename SPQRType>
265struct SPQRMatrixQReturnType{
266
267 SPQRMatrixQReturnType(const SPQRType& spqr) : m_spqr(spqr) {}
268 template<typename Derived>
269 SPQR_QProduct<SPQRType, Derived> operator*(const MatrixBase<Derived>& other)
270 {
271 return SPQR_QProduct<SPQRType,Derived>(m_spqr,other.derived(),false);
272 }
273 SPQRMatrixQTransposeReturnType<SPQRType> adjoint() const
274 {
275 return SPQRMatrixQTransposeReturnType<SPQRType>(m_spqr);
276 }
277 // To use for operations with the transpose of Q
278 SPQRMatrixQTransposeReturnType<SPQRType> transpose() const
279 {
280 return SPQRMatrixQTransposeReturnType<SPQRType>(m_spqr);
281 }
282 const SPQRType& m_spqr;
283};
284
285template<typename SPQRType>
286struct SPQRMatrixQTransposeReturnType{
287 SPQRMatrixQTransposeReturnType(const SPQRType& spqr) : m_spqr(spqr) {}
288 template<typename Derived>
289 SPQR_QProduct<SPQRType,Derived> operator*(const MatrixBase<Derived>& other)
290 {
291 return SPQR_QProduct<SPQRType,Derived>(m_spqr,other.derived(), true);
292 }
293 const SPQRType& m_spqr;
294};
295
296namespace internal {
297
298template<typename _MatrixType, typename Rhs>
299struct solve_retval<SPQR<_MatrixType>, Rhs>
300 : solve_retval_base<SPQR<_MatrixType>, Rhs>
301{
302 typedef SPQR<_MatrixType> Dec;
303 EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
304
305 template<typename Dest> void evalTo(Dest& dst) const
306 {
307 dec()._solve(rhs(),dst);
308 }
309};
310
311} // end namespace internal
312
313}// End namespace Eigen
314#endif