blob: 9d7651f1fd41cb8fffa74b0ad90b767fcaea0228 [file] [log] [blame]
Narayan Kamathc981c482012-11-02 10:59:05 +00001// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2006-2008, 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_DOT_H
11#define EIGEN_DOT_H
12
13namespace Eigen {
14
15namespace internal {
16
17// helper function for dot(). The problem is that if we put that in the body of dot(), then upon calling dot
18// with mismatched types, the compiler emits errors about failing to instantiate cwiseProduct BEFORE
19// looking at the static assertions. Thus this is a trick to get better compile errors.
20template<typename T, typename U,
21// the NeedToTranspose condition here is taken straight from Assign.h
22 bool NeedToTranspose = T::IsVectorAtCompileTime
23 && U::IsVectorAtCompileTime
24 && ((int(T::RowsAtCompileTime) == 1 && int(U::ColsAtCompileTime) == 1)
25 | // FIXME | instead of || to please GCC 4.4.0 stupid warning "suggest parentheses around &&".
26 // revert to || as soon as not needed anymore.
27 (int(T::ColsAtCompileTime) == 1 && int(U::RowsAtCompileTime) == 1))
28>
29struct dot_nocheck
30{
31 typedef typename scalar_product_traits<typename traits<T>::Scalar,typename traits<U>::Scalar>::ReturnType ResScalar;
32 static inline ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b)
33 {
34 return a.template binaryExpr<scalar_conj_product_op<typename traits<T>::Scalar,typename traits<U>::Scalar> >(b).sum();
35 }
36};
37
38template<typename T, typename U>
39struct dot_nocheck<T, U, true>
40{
41 typedef typename scalar_product_traits<typename traits<T>::Scalar,typename traits<U>::Scalar>::ReturnType ResScalar;
42 static inline ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b)
43 {
44 return a.transpose().template binaryExpr<scalar_conj_product_op<typename traits<T>::Scalar,typename traits<U>::Scalar> >(b).sum();
45 }
46};
47
48} // end namespace internal
49
50/** \returns the dot product of *this with other.
51 *
52 * \only_for_vectors
53 *
54 * \note If the scalar type is complex numbers, then this function returns the hermitian
55 * (sesquilinear) dot product, conjugate-linear in the first variable and linear in the
56 * second variable.
57 *
58 * \sa squaredNorm(), norm()
59 */
60template<typename Derived>
61template<typename OtherDerived>
62typename internal::scalar_product_traits<typename internal::traits<Derived>::Scalar,typename internal::traits<OtherDerived>::Scalar>::ReturnType
63MatrixBase<Derived>::dot(const MatrixBase<OtherDerived>& other) const
64{
65 EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
66 EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
67 EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived)
68 typedef internal::scalar_conj_product_op<Scalar,typename OtherDerived::Scalar> func;
69 EIGEN_CHECK_BINARY_COMPATIBILIY(func,Scalar,typename OtherDerived::Scalar);
70
71 eigen_assert(size() == other.size());
72
73 return internal::dot_nocheck<Derived,OtherDerived>::run(*this, other);
74}
75
76#ifdef EIGEN2_SUPPORT
77/** \returns the dot product of *this with other, with the Eigen2 convention that the dot product is linear in the first variable
78 * (conjugating the second variable). Of course this only makes a difference in the complex case.
79 *
80 * This method is only available in EIGEN2_SUPPORT mode.
81 *
82 * \only_for_vectors
83 *
84 * \sa dot()
85 */
86template<typename Derived>
87template<typename OtherDerived>
88typename internal::traits<Derived>::Scalar
89MatrixBase<Derived>::eigen2_dot(const MatrixBase<OtherDerived>& other) const
90{
91 EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
92 EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
93 EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived)
94 EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
95 YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
96
97 eigen_assert(size() == other.size());
98
99 return internal::dot_nocheck<OtherDerived,Derived>::run(other,*this);
100}
101#endif
102
103
104//---------- implementation of L2 norm and related functions ----------
105
106/** \returns, for vectors, the squared \em l2 norm of \c *this, and for matrices the Frobenius norm.
107 * In both cases, it consists in the sum of the square of all the matrix entries.
108 * For vectors, this is also equals to the dot product of \c *this with itself.
109 *
110 * \sa dot(), norm()
111 */
112template<typename Derived>
113EIGEN_STRONG_INLINE typename NumTraits<typename internal::traits<Derived>::Scalar>::Real MatrixBase<Derived>::squaredNorm() const
114{
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700115 return numext::real((*this).cwiseAbs2().sum());
Narayan Kamathc981c482012-11-02 10:59:05 +0000116}
117
118/** \returns, for vectors, the \em l2 norm of \c *this, and for matrices the Frobenius norm.
119 * In both cases, it consists in the square root of the sum of the square of all the matrix entries.
120 * For vectors, this is also equals to the square root of the dot product of \c *this with itself.
121 *
122 * \sa dot(), squaredNorm()
123 */
124template<typename Derived>
125inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real MatrixBase<Derived>::norm() const
126{
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700127 using std::sqrt;
128 return sqrt(squaredNorm());
Narayan Kamathc981c482012-11-02 10:59:05 +0000129}
130
131/** \returns an expression of the quotient of *this by its own norm.
132 *
133 * \only_for_vectors
134 *
135 * \sa norm(), normalize()
136 */
137template<typename Derived>
138inline const typename MatrixBase<Derived>::PlainObject
139MatrixBase<Derived>::normalized() const
140{
141 typedef typename internal::nested<Derived>::type Nested;
142 typedef typename internal::remove_reference<Nested>::type _Nested;
143 _Nested n(derived());
144 return n / n.norm();
145}
146
147/** Normalizes the vector, i.e. divides it by its own norm.
148 *
149 * \only_for_vectors
150 *
151 * \sa norm(), normalized()
152 */
153template<typename Derived>
154inline void MatrixBase<Derived>::normalize()
155{
156 *this /= norm();
157}
158
159//---------- implementation of other norms ----------
160
161namespace internal {
162
163template<typename Derived, int p>
164struct lpNorm_selector
165{
166 typedef typename NumTraits<typename traits<Derived>::Scalar>::Real RealScalar;
167 static inline RealScalar run(const MatrixBase<Derived>& m)
168 {
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700169 using std::pow;
Narayan Kamathc981c482012-11-02 10:59:05 +0000170 return pow(m.cwiseAbs().array().pow(p).sum(), RealScalar(1)/p);
171 }
172};
173
174template<typename Derived>
175struct lpNorm_selector<Derived, 1>
176{
177 static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
178 {
179 return m.cwiseAbs().sum();
180 }
181};
182
183template<typename Derived>
184struct lpNorm_selector<Derived, 2>
185{
186 static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
187 {
188 return m.norm();
189 }
190};
191
192template<typename Derived>
193struct lpNorm_selector<Derived, Infinity>
194{
195 static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
196 {
197 return m.cwiseAbs().maxCoeff();
198 }
199};
200
201} // end namespace internal
202
203/** \returns the \f$ \ell^p \f$ norm of *this, that is, returns the p-th root of the sum of the p-th powers of the absolute values
204 * of the coefficients of *this. If \a p is the special value \a Eigen::Infinity, this function returns the \f$ \ell^\infty \f$
205 * norm, that is the maximum of the absolute values of the coefficients of *this.
206 *
207 * \sa norm()
208 */
209template<typename Derived>
210template<int p>
211inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
212MatrixBase<Derived>::lpNorm() const
213{
214 return internal::lpNorm_selector<Derived, p>::run(*this);
215}
216
217//---------- implementation of isOrthogonal / isUnitary ----------
218
219/** \returns true if *this is approximately orthogonal to \a other,
220 * within the precision given by \a prec.
221 *
222 * Example: \include MatrixBase_isOrthogonal.cpp
223 * Output: \verbinclude MatrixBase_isOrthogonal.out
224 */
225template<typename Derived>
226template<typename OtherDerived>
227bool MatrixBase<Derived>::isOrthogonal
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700228(const MatrixBase<OtherDerived>& other, const RealScalar& prec) const
Narayan Kamathc981c482012-11-02 10:59:05 +0000229{
230 typename internal::nested<Derived,2>::type nested(derived());
231 typename internal::nested<OtherDerived,2>::type otherNested(other.derived());
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700232 return numext::abs2(nested.dot(otherNested)) <= prec * prec * nested.squaredNorm() * otherNested.squaredNorm();
Narayan Kamathc981c482012-11-02 10:59:05 +0000233}
234
235/** \returns true if *this is approximately an unitary matrix,
236 * within the precision given by \a prec. In the case where the \a Scalar
237 * type is real numbers, a unitary matrix is an orthogonal matrix, whence the name.
238 *
239 * \note This can be used to check whether a family of vectors forms an orthonormal basis.
240 * Indeed, \c m.isUnitary() returns true if and only if the columns (equivalently, the rows) of m form an
241 * orthonormal basis.
242 *
243 * Example: \include MatrixBase_isUnitary.cpp
244 * Output: \verbinclude MatrixBase_isUnitary.out
245 */
246template<typename Derived>
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700247bool MatrixBase<Derived>::isUnitary(const RealScalar& prec) const
Narayan Kamathc981c482012-11-02 10:59:05 +0000248{
249 typename Derived::Nested nested(derived());
250 for(Index i = 0; i < cols(); ++i)
251 {
252 if(!internal::isApprox(nested.col(i).squaredNorm(), static_cast<RealScalar>(1), prec))
253 return false;
254 for(Index j = 0; j < i; ++j)
255 if(!internal::isMuchSmallerThan(nested.col(i).dot(nested.col(j)), static_cast<Scalar>(1), prec))
256 return false;
257 }
258 return true;
259}
260
261} // end namespace Eigen
262
263#endif // EIGEN_DOT_H