blob: 0eda96bc471c79e994f3a0c66456fc6313f6a840 [file] [log] [blame]
Narayan Kamathc981c482012-11-02 10:59:05 +00001// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_SPARSE_SELFADJOINTVIEW_H
11#define EIGEN_SPARSE_SELFADJOINTVIEW_H
12
13namespace Eigen {
14
15/** \ingroup SparseCore_Module
16 * \class SparseSelfAdjointView
17 *
18 * \brief Pseudo expression to manipulate a triangular sparse matrix as a selfadjoint matrix.
19 *
20 * \param MatrixType the type of the dense matrix storing the coefficients
21 * \param UpLo can be either \c #Lower or \c #Upper
22 *
23 * This class is an expression of a sefladjoint matrix from a triangular part of a matrix
24 * with given dense storage of the coefficients. It is the return type of MatrixBase::selfadjointView()
25 * and most of the time this is the only way that it is used.
26 *
27 * \sa SparseMatrixBase::selfadjointView()
28 */
29template<typename Lhs, typename Rhs, int UpLo>
30class SparseSelfAdjointTimeDenseProduct;
31
32template<typename Lhs, typename Rhs, int UpLo>
33class DenseTimeSparseSelfAdjointProduct;
34
35namespace internal {
36
37template<typename MatrixType, unsigned int UpLo>
38struct traits<SparseSelfAdjointView<MatrixType,UpLo> > : traits<MatrixType> {
39};
40
41template<int SrcUpLo,int DstUpLo,typename MatrixType,int DestOrder>
42void permute_symm_to_symm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::Index>& _dest, const typename MatrixType::Index* perm = 0);
43
44template<int UpLo,typename MatrixType,int DestOrder>
45void permute_symm_to_fullsymm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::Index>& _dest, const typename MatrixType::Index* perm = 0);
46
47}
48
49template<typename MatrixType, unsigned int UpLo> class SparseSelfAdjointView
50 : public EigenBase<SparseSelfAdjointView<MatrixType,UpLo> >
51{
52 public:
53
54 typedef typename MatrixType::Scalar Scalar;
55 typedef typename MatrixType::Index Index;
56 typedef Matrix<Index,Dynamic,1> VectorI;
57 typedef typename MatrixType::Nested MatrixTypeNested;
58 typedef typename internal::remove_all<MatrixTypeNested>::type _MatrixTypeNested;
59
60 inline SparseSelfAdjointView(const MatrixType& matrix) : m_matrix(matrix)
61 {
62 eigen_assert(rows()==cols() && "SelfAdjointView is only for squared matrices");
63 }
64
65 inline Index rows() const { return m_matrix.rows(); }
66 inline Index cols() const { return m_matrix.cols(); }
67
68 /** \internal \returns a reference to the nested matrix */
69 const _MatrixTypeNested& matrix() const { return m_matrix; }
70 _MatrixTypeNested& matrix() { return m_matrix.const_cast_derived(); }
71
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -070072 /** \returns an expression of the matrix product between a sparse self-adjoint matrix \c *this and a sparse matrix \a rhs.
73 *
74 * Note that there is no algorithmic advantage of performing such a product compared to a general sparse-sparse matrix product.
75 * Indeed, the SparseSelfadjointView operand is first copied into a temporary SparseMatrix before computing the product.
76 */
77 template<typename OtherDerived>
78 SparseSparseProduct<typename OtherDerived::PlainObject, OtherDerived>
79 operator*(const SparseMatrixBase<OtherDerived>& rhs) const
80 {
81 return SparseSparseProduct<typename OtherDerived::PlainObject, OtherDerived>(*this, rhs.derived());
82 }
83
84 /** \returns an expression of the matrix product between a sparse matrix \a lhs and a sparse self-adjoint matrix \a rhs.
85 *
86 * Note that there is no algorithmic advantage of performing such a product compared to a general sparse-sparse matrix product.
87 * Indeed, the SparseSelfadjointView operand is first copied into a temporary SparseMatrix before computing the product.
88 */
89 template<typename OtherDerived> friend
90 SparseSparseProduct<OtherDerived, typename OtherDerived::PlainObject >
91 operator*(const SparseMatrixBase<OtherDerived>& lhs, const SparseSelfAdjointView& rhs)
92 {
93 return SparseSparseProduct<OtherDerived, typename OtherDerived::PlainObject>(lhs.derived(), rhs);
94 }
95
Narayan Kamathc981c482012-11-02 10:59:05 +000096 /** Efficient sparse self-adjoint matrix times dense vector/matrix product */
97 template<typename OtherDerived>
98 SparseSelfAdjointTimeDenseProduct<MatrixType,OtherDerived,UpLo>
99 operator*(const MatrixBase<OtherDerived>& rhs) const
100 {
101 return SparseSelfAdjointTimeDenseProduct<MatrixType,OtherDerived,UpLo>(m_matrix, rhs.derived());
102 }
103
104 /** Efficient dense vector/matrix times sparse self-adjoint matrix product */
105 template<typename OtherDerived> friend
106 DenseTimeSparseSelfAdjointProduct<OtherDerived,MatrixType,UpLo>
107 operator*(const MatrixBase<OtherDerived>& lhs, const SparseSelfAdjointView& rhs)
108 {
109 return DenseTimeSparseSelfAdjointProduct<OtherDerived,_MatrixTypeNested,UpLo>(lhs.derived(), rhs.m_matrix);
110 }
111
112 /** Perform a symmetric rank K update of the selfadjoint matrix \c *this:
113 * \f$ this = this + \alpha ( u u^* ) \f$ where \a u is a vector or matrix.
114 *
115 * \returns a reference to \c *this
116 *
117 * To perform \f$ this = this + \alpha ( u^* u ) \f$ you can simply
118 * call this function with u.adjoint().
119 */
120 template<typename DerivedU>
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700121 SparseSelfAdjointView& rankUpdate(const SparseMatrixBase<DerivedU>& u, const Scalar& alpha = Scalar(1));
Narayan Kamathc981c482012-11-02 10:59:05 +0000122
123 /** \internal triggered by sparse_matrix = SparseSelfadjointView; */
124 template<typename DestScalar,int StorageOrder> void evalTo(SparseMatrix<DestScalar,StorageOrder,Index>& _dest) const
125 {
126 internal::permute_symm_to_fullsymm<UpLo>(m_matrix, _dest);
127 }
128
129 template<typename DestScalar> void evalTo(DynamicSparseMatrix<DestScalar,ColMajor,Index>& _dest) const
130 {
131 // TODO directly evaluate into _dest;
132 SparseMatrix<DestScalar,ColMajor,Index> tmp(_dest.rows(),_dest.cols());
133 internal::permute_symm_to_fullsymm<UpLo>(m_matrix, tmp);
134 _dest = tmp;
135 }
136
137 /** \returns an expression of P H P^-1 */
138 SparseSymmetricPermutationProduct<_MatrixTypeNested,UpLo> twistedBy(const PermutationMatrix<Dynamic,Dynamic,Index>& perm) const
139 {
140 return SparseSymmetricPermutationProduct<_MatrixTypeNested,UpLo>(m_matrix, perm);
141 }
142
143 template<typename SrcMatrixType,int SrcUpLo>
144 SparseSelfAdjointView& operator=(const SparseSymmetricPermutationProduct<SrcMatrixType,SrcUpLo>& permutedMatrix)
145 {
146 permutedMatrix.evalTo(*this);
147 return *this;
148 }
149
150
151 SparseSelfAdjointView& operator=(const SparseSelfAdjointView& src)
152 {
153 PermutationMatrix<Dynamic> pnull;
154 return *this = src.twistedBy(pnull);
155 }
156
157 template<typename SrcMatrixType,unsigned int SrcUpLo>
158 SparseSelfAdjointView& operator=(const SparseSelfAdjointView<SrcMatrixType,SrcUpLo>& src)
159 {
160 PermutationMatrix<Dynamic> pnull;
161 return *this = src.twistedBy(pnull);
162 }
163
164
165 // const SparseLLT<PlainObject, UpLo> llt() const;
166 // const SparseLDLT<PlainObject, UpLo> ldlt() const;
167
168 protected:
169
170 typename MatrixType::Nested m_matrix;
171 mutable VectorI m_countPerRow;
172 mutable VectorI m_countPerCol;
173};
174
175/***************************************************************************
176* Implementation of SparseMatrixBase methods
177***************************************************************************/
178
179template<typename Derived>
180template<unsigned int UpLo>
181const SparseSelfAdjointView<Derived, UpLo> SparseMatrixBase<Derived>::selfadjointView() const
182{
183 return derived();
184}
185
186template<typename Derived>
187template<unsigned int UpLo>
188SparseSelfAdjointView<Derived, UpLo> SparseMatrixBase<Derived>::selfadjointView()
189{
190 return derived();
191}
192
193/***************************************************************************
194* Implementation of SparseSelfAdjointView methods
195***************************************************************************/
196
197template<typename MatrixType, unsigned int UpLo>
198template<typename DerivedU>
199SparseSelfAdjointView<MatrixType,UpLo>&
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700200SparseSelfAdjointView<MatrixType,UpLo>::rankUpdate(const SparseMatrixBase<DerivedU>& u, const Scalar& alpha)
Narayan Kamathc981c482012-11-02 10:59:05 +0000201{
202 SparseMatrix<Scalar,MatrixType::Flags&RowMajorBit?RowMajor:ColMajor> tmp = u * u.adjoint();
203 if(alpha==Scalar(0))
204 m_matrix.const_cast_derived() = tmp.template triangularView<UpLo>();
205 else
206 m_matrix.const_cast_derived() += alpha * tmp.template triangularView<UpLo>();
207
208 return *this;
209}
210
211/***************************************************************************
212* Implementation of sparse self-adjoint time dense matrix
213***************************************************************************/
214
215namespace internal {
216template<typename Lhs, typename Rhs, int UpLo>
217struct traits<SparseSelfAdjointTimeDenseProduct<Lhs,Rhs,UpLo> >
218 : traits<ProductBase<SparseSelfAdjointTimeDenseProduct<Lhs,Rhs,UpLo>, Lhs, Rhs> >
219{
220 typedef Dense StorageKind;
221};
222}
223
224template<typename Lhs, typename Rhs, int UpLo>
225class SparseSelfAdjointTimeDenseProduct
226 : public ProductBase<SparseSelfAdjointTimeDenseProduct<Lhs,Rhs,UpLo>, Lhs, Rhs>
227{
228 public:
229 EIGEN_PRODUCT_PUBLIC_INTERFACE(SparseSelfAdjointTimeDenseProduct)
230
231 SparseSelfAdjointTimeDenseProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
232 {}
233
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700234 template<typename Dest> void scaleAndAddTo(Dest& dest, const Scalar& alpha) const
Narayan Kamathc981c482012-11-02 10:59:05 +0000235 {
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700236 EIGEN_ONLY_USED_FOR_DEBUG(alpha);
Narayan Kamathc981c482012-11-02 10:59:05 +0000237 // TODO use alpha
238 eigen_assert(alpha==Scalar(1) && "alpha != 1 is not implemented yet, sorry");
239 typedef typename internal::remove_all<Lhs>::type _Lhs;
Narayan Kamathc981c482012-11-02 10:59:05 +0000240 typedef typename _Lhs::InnerIterator LhsInnerIterator;
241 enum {
242 LhsIsRowMajor = (_Lhs::Flags&RowMajorBit)==RowMajorBit,
243 ProcessFirstHalf =
244 ((UpLo&(Upper|Lower))==(Upper|Lower))
245 || ( (UpLo&Upper) && !LhsIsRowMajor)
246 || ( (UpLo&Lower) && LhsIsRowMajor),
247 ProcessSecondHalf = !ProcessFirstHalf
248 };
249 for (Index j=0; j<m_lhs.outerSize(); ++j)
250 {
251 LhsInnerIterator i(m_lhs,j);
252 if (ProcessSecondHalf)
253 {
254 while (i && i.index()<j) ++i;
255 if(i && i.index()==j)
256 {
257 dest.row(j) += i.value() * m_rhs.row(j);
258 ++i;
259 }
260 }
261 for(; (ProcessFirstHalf ? i && i.index() < j : i) ; ++i)
262 {
263 Index a = LhsIsRowMajor ? j : i.index();
264 Index b = LhsIsRowMajor ? i.index() : j;
265 typename Lhs::Scalar v = i.value();
266 dest.row(a) += (v) * m_rhs.row(b);
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700267 dest.row(b) += numext::conj(v) * m_rhs.row(a);
Narayan Kamathc981c482012-11-02 10:59:05 +0000268 }
269 if (ProcessFirstHalf && i && (i.index()==j))
270 dest.row(j) += i.value() * m_rhs.row(j);
271 }
272 }
273
274 private:
275 SparseSelfAdjointTimeDenseProduct& operator=(const SparseSelfAdjointTimeDenseProduct&);
276};
277
278namespace internal {
279template<typename Lhs, typename Rhs, int UpLo>
280struct traits<DenseTimeSparseSelfAdjointProduct<Lhs,Rhs,UpLo> >
281 : traits<ProductBase<DenseTimeSparseSelfAdjointProduct<Lhs,Rhs,UpLo>, Lhs, Rhs> >
282{};
283}
284
285template<typename Lhs, typename Rhs, int UpLo>
286class DenseTimeSparseSelfAdjointProduct
287 : public ProductBase<DenseTimeSparseSelfAdjointProduct<Lhs,Rhs,UpLo>, Lhs, Rhs>
288{
289 public:
290 EIGEN_PRODUCT_PUBLIC_INTERFACE(DenseTimeSparseSelfAdjointProduct)
291
292 DenseTimeSparseSelfAdjointProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
293 {}
294
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700295 template<typename Dest> void scaleAndAddTo(Dest& /*dest*/, const Scalar& /*alpha*/) const
Narayan Kamathc981c482012-11-02 10:59:05 +0000296 {
297 // TODO
298 }
299
300 private:
301 DenseTimeSparseSelfAdjointProduct& operator=(const DenseTimeSparseSelfAdjointProduct&);
302};
303
304/***************************************************************************
305* Implementation of symmetric copies and permutations
306***************************************************************************/
307namespace internal {
308
309template<typename MatrixType, int UpLo>
310struct traits<SparseSymmetricPermutationProduct<MatrixType,UpLo> > : traits<MatrixType> {
311};
312
313template<int UpLo,typename MatrixType,int DestOrder>
314void permute_symm_to_fullsymm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::Index>& _dest, const typename MatrixType::Index* perm)
315{
316 typedef typename MatrixType::Index Index;
317 typedef typename MatrixType::Scalar Scalar;
318 typedef SparseMatrix<Scalar,DestOrder,Index> Dest;
319 typedef Matrix<Index,Dynamic,1> VectorI;
320
321 Dest& dest(_dest.derived());
322 enum {
323 StorageOrderMatch = int(Dest::IsRowMajor) == int(MatrixType::IsRowMajor)
324 };
325
326 Index size = mat.rows();
327 VectorI count;
328 count.resize(size);
329 count.setZero();
330 dest.resize(size,size);
331 for(Index j = 0; j<size; ++j)
332 {
333 Index jp = perm ? perm[j] : j;
334 for(typename MatrixType::InnerIterator it(mat,j); it; ++it)
335 {
336 Index i = it.index();
337 Index r = it.row();
338 Index c = it.col();
339 Index ip = perm ? perm[i] : i;
340 if(UpLo==(Upper|Lower))
341 count[StorageOrderMatch ? jp : ip]++;
342 else if(r==c)
343 count[ip]++;
344 else if(( UpLo==Lower && r>c) || ( UpLo==Upper && r<c))
345 {
346 count[ip]++;
347 count[jp]++;
348 }
349 }
350 }
351 Index nnz = count.sum();
352
353 // reserve space
354 dest.resizeNonZeros(nnz);
355 dest.outerIndexPtr()[0] = 0;
356 for(Index j=0; j<size; ++j)
357 dest.outerIndexPtr()[j+1] = dest.outerIndexPtr()[j] + count[j];
358 for(Index j=0; j<size; ++j)
359 count[j] = dest.outerIndexPtr()[j];
360
361 // copy data
362 for(Index j = 0; j<size; ++j)
363 {
364 for(typename MatrixType::InnerIterator it(mat,j); it; ++it)
365 {
366 Index i = it.index();
367 Index r = it.row();
368 Index c = it.col();
369
370 Index jp = perm ? perm[j] : j;
371 Index ip = perm ? perm[i] : i;
372
373 if(UpLo==(Upper|Lower))
374 {
375 Index k = count[StorageOrderMatch ? jp : ip]++;
376 dest.innerIndexPtr()[k] = StorageOrderMatch ? ip : jp;
377 dest.valuePtr()[k] = it.value();
378 }
379 else if(r==c)
380 {
381 Index k = count[ip]++;
382 dest.innerIndexPtr()[k] = ip;
383 dest.valuePtr()[k] = it.value();
384 }
385 else if(( (UpLo&Lower)==Lower && r>c) || ( (UpLo&Upper)==Upper && r<c))
386 {
387 if(!StorageOrderMatch)
388 std::swap(ip,jp);
389 Index k = count[jp]++;
390 dest.innerIndexPtr()[k] = ip;
391 dest.valuePtr()[k] = it.value();
392 k = count[ip]++;
393 dest.innerIndexPtr()[k] = jp;
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700394 dest.valuePtr()[k] = numext::conj(it.value());
Narayan Kamathc981c482012-11-02 10:59:05 +0000395 }
396 }
397 }
398}
399
400template<int _SrcUpLo,int _DstUpLo,typename MatrixType,int DstOrder>
401void permute_symm_to_symm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DstOrder,typename MatrixType::Index>& _dest, const typename MatrixType::Index* perm)
402{
403 typedef typename MatrixType::Index Index;
404 typedef typename MatrixType::Scalar Scalar;
405 SparseMatrix<Scalar,DstOrder,Index>& dest(_dest.derived());
406 typedef Matrix<Index,Dynamic,1> VectorI;
407 enum {
408 SrcOrder = MatrixType::IsRowMajor ? RowMajor : ColMajor,
409 StorageOrderMatch = int(SrcOrder) == int(DstOrder),
410 DstUpLo = DstOrder==RowMajor ? (_DstUpLo==Upper ? Lower : Upper) : _DstUpLo,
411 SrcUpLo = SrcOrder==RowMajor ? (_SrcUpLo==Upper ? Lower : Upper) : _SrcUpLo
412 };
413
414 Index size = mat.rows();
415 VectorI count(size);
416 count.setZero();
417 dest.resize(size,size);
418 for(Index j = 0; j<size; ++j)
419 {
420 Index jp = perm ? perm[j] : j;
421 for(typename MatrixType::InnerIterator it(mat,j); it; ++it)
422 {
423 Index i = it.index();
424 if((int(SrcUpLo)==int(Lower) && i<j) || (int(SrcUpLo)==int(Upper) && i>j))
425 continue;
426
427 Index ip = perm ? perm[i] : i;
428 count[int(DstUpLo)==int(Lower) ? (std::min)(ip,jp) : (std::max)(ip,jp)]++;
429 }
430 }
431 dest.outerIndexPtr()[0] = 0;
432 for(Index j=0; j<size; ++j)
433 dest.outerIndexPtr()[j+1] = dest.outerIndexPtr()[j] + count[j];
434 dest.resizeNonZeros(dest.outerIndexPtr()[size]);
435 for(Index j=0; j<size; ++j)
436 count[j] = dest.outerIndexPtr()[j];
437
438 for(Index j = 0; j<size; ++j)
439 {
440
441 for(typename MatrixType::InnerIterator it(mat,j); it; ++it)
442 {
443 Index i = it.index();
444 if((int(SrcUpLo)==int(Lower) && i<j) || (int(SrcUpLo)==int(Upper) && i>j))
445 continue;
446
447 Index jp = perm ? perm[j] : j;
448 Index ip = perm? perm[i] : i;
449
450 Index k = count[int(DstUpLo)==int(Lower) ? (std::min)(ip,jp) : (std::max)(ip,jp)]++;
451 dest.innerIndexPtr()[k] = int(DstUpLo)==int(Lower) ? (std::max)(ip,jp) : (std::min)(ip,jp);
452
453 if(!StorageOrderMatch) std::swap(ip,jp);
454 if( ((int(DstUpLo)==int(Lower) && ip<jp) || (int(DstUpLo)==int(Upper) && ip>jp)))
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700455 dest.valuePtr()[k] = numext::conj(it.value());
Narayan Kamathc981c482012-11-02 10:59:05 +0000456 else
457 dest.valuePtr()[k] = it.value();
458 }
459 }
460}
461
462}
463
464template<typename MatrixType,int UpLo>
465class SparseSymmetricPermutationProduct
466 : public EigenBase<SparseSymmetricPermutationProduct<MatrixType,UpLo> >
467{
468 public:
469 typedef typename MatrixType::Scalar Scalar;
470 typedef typename MatrixType::Index Index;
471 protected:
472 typedef PermutationMatrix<Dynamic,Dynamic,Index> Perm;
473 public:
474 typedef Matrix<Index,Dynamic,1> VectorI;
475 typedef typename MatrixType::Nested MatrixTypeNested;
476 typedef typename internal::remove_all<MatrixTypeNested>::type _MatrixTypeNested;
477
478 SparseSymmetricPermutationProduct(const MatrixType& mat, const Perm& perm)
479 : m_matrix(mat), m_perm(perm)
480 {}
481
482 inline Index rows() const { return m_matrix.rows(); }
483 inline Index cols() const { return m_matrix.cols(); }
484
485 template<typename DestScalar, int Options, typename DstIndex>
486 void evalTo(SparseMatrix<DestScalar,Options,DstIndex>& _dest) const
487 {
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -0700488// internal::permute_symm_to_fullsymm<UpLo>(m_matrix,_dest,m_perm.indices().data());
489 SparseMatrix<DestScalar,(Options&RowMajor)==RowMajor ? ColMajor : RowMajor, DstIndex> tmp;
490 internal::permute_symm_to_fullsymm<UpLo>(m_matrix,tmp,m_perm.indices().data());
491 _dest = tmp;
Narayan Kamathc981c482012-11-02 10:59:05 +0000492 }
493
494 template<typename DestType,unsigned int DestUpLo> void evalTo(SparseSelfAdjointView<DestType,DestUpLo>& dest) const
495 {
496 internal::permute_symm_to_symm<UpLo,DestUpLo>(m_matrix,dest.matrix(),m_perm.indices().data());
497 }
498
499 protected:
500 MatrixTypeNested m_matrix;
501 const Perm& m_perm;
502
503};
504
505} // end namespace Eigen
506
507#endif // EIGEN_SPARSE_SELFADJOINTVIEW_H