blob: 24d6bf17946323e29dd90f04ee2c464d3523a42d [file] [log] [blame]
Carlos Hernandez7faaa9f2014-08-05 17:53:32 -07001// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10/*
11 * NOTE: This file comes from a partly modified version of files slu_[s,d,c,z]defs.h
12 * -- SuperLU routine (version 4.1) --
13 * Univ. of California Berkeley, Xerox Palo Alto Research Center,
14 * and Lawrence Berkeley National Lab.
15 * November, 2010
16 *
17 * Global data structures used in LU factorization -
18 *
19 * nsuper: #supernodes = nsuper + 1, numbered [0, nsuper].
20 * (xsup,supno): supno[i] is the supernode no to which i belongs;
21 * xsup(s) points to the beginning of the s-th supernode.
22 * e.g. supno 0 1 2 2 3 3 3 4 4 4 4 4 (n=12)
23 * xsup 0 1 2 4 7 12
24 * Note: dfs will be performed on supernode rep. relative to the new
25 * row pivoting ordering
26 *
27 * (xlsub,lsub): lsub[*] contains the compressed subscript of
28 * rectangular supernodes; xlsub[j] points to the starting
29 * location of the j-th column in lsub[*]. Note that xlsub
30 * is indexed by column.
31 * Storage: original row subscripts
32 *
33 * During the course of sparse LU factorization, we also use
34 * (xlsub,lsub) for the purpose of symmetric pruning. For each
35 * supernode {s,s+1,...,t=s+r} with first column s and last
36 * column t, the subscript set
37 * lsub[j], j=xlsub[s], .., xlsub[s+1]-1
38 * is the structure of column s (i.e. structure of this supernode).
39 * It is used for the storage of numerical values.
40 * Furthermore,
41 * lsub[j], j=xlsub[t], .., xlsub[t+1]-1
42 * is the structure of the last column t of this supernode.
43 * It is for the purpose of symmetric pruning. Therefore, the
44 * structural subscripts can be rearranged without making physical
45 * interchanges among the numerical values.
46 *
47 * However, if the supernode has only one column, then we
48 * only keep one set of subscripts. For any subscript interchange
49 * performed, similar interchange must be done on the numerical
50 * values.
51 *
52 * The last column structures (for pruning) will be removed
53 * after the numercial LU factorization phase.
54 *
55 * (xlusup,lusup): lusup[*] contains the numerical values of the
56 * rectangular supernodes; xlusup[j] points to the starting
57 * location of the j-th column in storage vector lusup[*]
58 * Note: xlusup is indexed by column.
59 * Each rectangular supernode is stored by column-major
60 * scheme, consistent with Fortran 2-dim array storage.
61 *
62 * (xusub,ucol,usub): ucol[*] stores the numerical values of
63 * U-columns outside the rectangular supernodes. The row
64 * subscript of nonzero ucol[k] is stored in usub[k].
65 * xusub[i] points to the starting location of column i in ucol.
66 * Storage: new row subscripts; that is subscripts of PA.
67 */
68
69#ifndef EIGEN_LU_STRUCTS
70#define EIGEN_LU_STRUCTS
71namespace Eigen {
72namespace internal {
73
74typedef enum {LUSUP, UCOL, LSUB, USUB, LLVL, ULVL} MemType;
75
76template <typename IndexVector, typename ScalarVector>
77struct LU_GlobalLU_t {
78 typedef typename IndexVector::Scalar Index;
79 IndexVector xsup; //First supernode column ... xsup(s) points to the beginning of the s-th supernode
80 IndexVector supno; // Supernode number corresponding to this column (column to supernode mapping)
81 ScalarVector lusup; // nonzero values of L ordered by columns
82 IndexVector lsub; // Compressed row indices of L rectangular supernodes.
83 IndexVector xlusup; // pointers to the beginning of each column in lusup
84 IndexVector xlsub; // pointers to the beginning of each column in lsub
85 Index nzlmax; // Current max size of lsub
86 Index nzlumax; // Current max size of lusup
87 ScalarVector ucol; // nonzero values of U ordered by columns
88 IndexVector usub; // row indices of U columns in ucol
89 IndexVector xusub; // Pointers to the beginning of each column of U in ucol
90 Index nzumax; // Current max size of ucol
91 Index n; // Number of columns in the matrix
92 Index num_expansions;
93};
94
95// Values to set for performance
96template <typename Index>
97struct perfvalues {
98 Index panel_size; // a panel consists of at most <panel_size> consecutive columns
99 Index relax; // To control degree of relaxing supernodes. If the number of nodes (columns)
100 // in a subtree of the elimination tree is less than relax, this subtree is considered
101 // as one supernode regardless of the row structures of those columns
102 Index maxsuper; // The maximum size for a supernode in complete LU
103 Index rowblk; // The minimum row dimension for 2-D blocking to be used;
104 Index colblk; // The minimum column dimension for 2-D blocking to be used;
105 Index fillfactor; // The estimated fills factors for L and U, compared with A
106};
107
108} // end namespace internal
109
110} // end namespace Eigen
111#endif // EIGEN_LU_STRUCTS