blob: 782bda33ab911f32340cb268652862fbbf4e4e27 [file] [log] [blame]
The Android Open Source Projectb07e1d92009-03-03 19:29:30 -08001
2/* @(#)e_jn.c 1.4 95/01/18 */
3/*
4 * ====================================================
5 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6 *
7 * Developed at SunSoft, a Sun Microsystems, Inc. business.
8 * Permission to use, copy, modify, and distribute this
9 * software is freely granted, provided that this notice
10 * is preserved.
11 * ====================================================
12 */
13
14/*
15 * __ieee754_jn(n, x), __ieee754_yn(n, x)
16 * floating point Bessel's function of the 1st and 2nd kind
17 * of order n
18 *
19 * Special cases:
20 * y0(0)=ieee_y1(0)=ieee_yn(n,0) = -inf with division by zero signal;
21 * y0(-ve)=ieee_y1(-ve)=ieee_yn(n,-ve) are NaN with invalid signal.
22 * Note 2. About ieee_jn(n,x), ieee_yn(n,x)
23 * For n=0, ieee_j0(x) is called,
24 * for n=1, ieee_j1(x) is called,
25 * for n<x, forward recursion us used starting
26 * from values of ieee_j0(x) and ieee_j1(x).
27 * for n>x, a continued fraction approximation to
28 * j(n,x)/j(n-1,x) is evaluated and then backward
29 * recursion is used starting from a supposed value
30 * for j(n,x). The resulting value of j(0,x) is
31 * compared with the actual value to correct the
32 * supposed value of j(n,x).
33 *
34 * yn(n,x) is similar in all respects, except
35 * that forward recursion is used for all
36 * values of n>1.
37 *
38 */
39
40#include "fdlibm.h"
41
42#ifdef __STDC__
43static const double
44#else
45static double
46#endif
47invsqrtpi= 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
48two = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
49one = 1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
50
51static double zero = 0.00000000000000000000e+00;
52
53#ifdef __STDC__
54 double __ieee754_jn(int n, double x)
55#else
56 double __ieee754_jn(n,x)
57 int n; double x;
58#endif
59{
60 int i,hx,ix,lx, sgn;
61 double a, b, temp, di;
62 double z, w;
63
64 /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
65 * Thus, J(-n,x) = J(n,-x)
66 */
67 hx = __HI(x);
68 ix = 0x7fffffff&hx;
69 lx = __LO(x);
70 /* if J(n,NaN) is NaN */
71 if((ix|((unsigned)(lx|-lx))>>31)>0x7ff00000) return x+x;
72 if(n<0){
73 n = -n;
74 x = -x;
75 hx ^= 0x80000000;
76 }
77 if(n==0) return(__ieee754_j0(x));
78 if(n==1) return(__ieee754_j1(x));
79 sgn = (n&1)&(hx>>31); /* even n -- 0, odd n -- sign(x) */
80 x = ieee_fabs(x);
81 if((ix|lx)==0||ix>=0x7ff00000) /* if x is 0 or inf */
82 b = zero;
83 else if((double)n<=x) {
84 /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
85 if(ix>=0x52D00000) { /* x > 2**302 */
86 /* (x >> n**2)
87 * Jn(x) = ieee_cos(x-(2n+1)*pi/4)*ieee_sqrt(2/x*pi)
88 * Yn(x) = ieee_sin(x-(2n+1)*pi/4)*ieee_sqrt(2/x*pi)
89 * Let s=ieee_sin(x), c=ieee_cos(x),
90 * xn=x-(2n+1)*pi/4, sqt2 = ieee_sqrt(2),then
91 *
92 * n sin(xn)*sqt2 cos(xn)*sqt2
93 * ----------------------------------
94 * 0 s-c c+s
95 * 1 -s-c -c+s
96 * 2 -s+c -c-s
97 * 3 s+c c-s
98 */
99 switch(n&3) {
100 case 0: temp = ieee_cos(x)+ieee_sin(x); break;
101 case 1: temp = -ieee_cos(x)+ieee_sin(x); break;
102 case 2: temp = -ieee_cos(x)-ieee_sin(x); break;
103 case 3: temp = ieee_cos(x)-ieee_sin(x); break;
104 }
105 b = invsqrtpi*temp/ieee_sqrt(x);
106 } else {
107 a = __ieee754_j0(x);
108 b = __ieee754_j1(x);
109 for(i=1;i<n;i++){
110 temp = b;
111 b = b*((double)(i+i)/x) - a; /* avoid underflow */
112 a = temp;
113 }
114 }
115 } else {
116 if(ix<0x3e100000) { /* x < 2**-29 */
117 /* x is tiny, return the first Taylor expansion of J(n,x)
118 * J(n,x) = 1/n!*(x/2)^n - ...
119 */
120 if(n>33) /* underflow */
121 b = zero;
122 else {
123 temp = x*0.5; b = temp;
124 for (a=one,i=2;i<=n;i++) {
125 a *= (double)i; /* a = n! */
126 b *= temp; /* b = (x/2)^n */
127 }
128 b = b/a;
129 }
130 } else {
131 /* use backward recurrence */
132 /* x x^2 x^2
133 * J(n,x)/J(n-1,x) = ---- ------ ------ .....
134 * 2n - 2(n+1) - 2(n+2)
135 *
136 * 1 1 1
137 * (for large x) = ---- ------ ------ .....
138 * 2n 2(n+1) 2(n+2)
139 * -- - ------ - ------ -
140 * x x x
141 *
142 * Let w = 2n/x and h=2/x, then the above quotient
143 * is equal to the continued fraction:
144 * 1
145 * = -----------------------
146 * 1
147 * w - -----------------
148 * 1
149 * w+h - ---------
150 * w+2h - ...
151 *
152 * To determine how many terms needed, let
153 * Q(0) = w, Q(1) = w(w+h) - 1,
154 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
155 * When Q(k) > 1e4 good for single
156 * When Q(k) > 1e9 good for double
157 * When Q(k) > 1e17 good for quadruple
158 */
159 /* determine k */
160 double t,v;
161 double q0,q1,h,tmp; int k,m;
162 w = (n+n)/(double)x; h = 2.0/(double)x;
163 q0 = w; z = w+h; q1 = w*z - 1.0; k=1;
164 while(q1<1.0e9) {
165 k += 1; z += h;
166 tmp = z*q1 - q0;
167 q0 = q1;
168 q1 = tmp;
169 }
170 m = n+n;
171 for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
172 a = t;
173 b = one;
174 /* estimate ieee_log((2/x)^n*n!) = n*ieee_log(2/x)+n*ln(n)
175 * Hence, if n*(ieee_log(2n/x)) > ...
176 * single 8.8722839355e+01
177 * double 7.09782712893383973096e+02
178 * long double 1.1356523406294143949491931077970765006170e+04
179 * then recurrent value may overflow and the result is
180 * likely underflow to zero
181 */
182 tmp = n;
183 v = two/x;
184 tmp = tmp*__ieee754_log(ieee_fabs(v*tmp));
185 if(tmp<7.09782712893383973096e+02) {
186 for(i=n-1,di=(double)(i+i);i>0;i--){
187 temp = b;
188 b *= di;
189 b = b/x - a;
190 a = temp;
191 di -= two;
192 }
193 } else {
194 for(i=n-1,di=(double)(i+i);i>0;i--){
195 temp = b;
196 b *= di;
197 b = b/x - a;
198 a = temp;
199 di -= two;
200 /* scale b to avoid spurious overflow */
201 if(b>1e100) {
202 a /= b;
203 t /= b;
204 b = one;
205 }
206 }
207 }
208 b = (t*__ieee754_j0(x)/b);
209 }
210 }
211 if(sgn==1) return -b; else return b;
212}
213
214#ifdef __STDC__
215 double __ieee754_yn(int n, double x)
216#else
217 double __ieee754_yn(n,x)
218 int n; double x;
219#endif
220{
221 int i,hx,ix,lx;
222 int sign;
223 double a, b, temp;
224
225 hx = __HI(x);
226 ix = 0x7fffffff&hx;
227 lx = __LO(x);
228 /* if Y(n,NaN) is NaN */
229 if((ix|((unsigned)(lx|-lx))>>31)>0x7ff00000) return x+x;
230 if((ix|lx)==0) return -one/zero;
231 if(hx<0) return zero/zero;
232 sign = 1;
233 if(n<0){
234 n = -n;
235 sign = 1 - ((n&1)<<1);
236 }
237 if(n==0) return(__ieee754_y0(x));
238 if(n==1) return(sign*__ieee754_y1(x));
239 if(ix==0x7ff00000) return zero;
240 if(ix>=0x52D00000) { /* x > 2**302 */
241 /* (x >> n**2)
242 * Jn(x) = ieee_cos(x-(2n+1)*pi/4)*ieee_sqrt(2/x*pi)
243 * Yn(x) = ieee_sin(x-(2n+1)*pi/4)*ieee_sqrt(2/x*pi)
244 * Let s=ieee_sin(x), c=ieee_cos(x),
245 * xn=x-(2n+1)*pi/4, sqt2 = ieee_sqrt(2),then
246 *
247 * n sin(xn)*sqt2 cos(xn)*sqt2
248 * ----------------------------------
249 * 0 s-c c+s
250 * 1 -s-c -c+s
251 * 2 -s+c -c-s
252 * 3 s+c c-s
253 */
254 switch(n&3) {
255 case 0: temp = ieee_sin(x)-ieee_cos(x); break;
256 case 1: temp = -ieee_sin(x)-ieee_cos(x); break;
257 case 2: temp = -ieee_sin(x)+ieee_cos(x); break;
258 case 3: temp = ieee_sin(x)+ieee_cos(x); break;
259 }
260 b = invsqrtpi*temp/ieee_sqrt(x);
261 } else {
262 a = __ieee754_y0(x);
263 b = __ieee754_y1(x);
264 /* quit if b is -inf */
265 for(i=1;i<n&&(__HI(b) != 0xfff00000);i++){
266 temp = b;
267 b = ((double)(i+i)/x)*b - a;
268 a = temp;
269 }
270 }
271 if(sign>0) return b; else return -b;
272}