| /* |
| * fio - the flexible io tester |
| * |
| * Copyright (C) 2005 Jens Axboe <axboe@suse.de> |
| * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk> |
| * |
| * The license below covers all files distributed with fio unless otherwise |
| * noted in the file itself. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| * |
| */ |
| #include <unistd.h> |
| #include <fcntl.h> |
| #include <string.h> |
| #include <limits.h> |
| #include <signal.h> |
| #include <time.h> |
| #include <locale.h> |
| #include <assert.h> |
| #include <time.h> |
| #include <inttypes.h> |
| #include <sys/stat.h> |
| #include <sys/wait.h> |
| #include <sys/ipc.h> |
| #include <sys/mman.h> |
| |
| #include "fio.h" |
| #ifndef FIO_NO_HAVE_SHM_H |
| #include <sys/shm.h> |
| #endif |
| #include "hash.h" |
| #include "smalloc.h" |
| #include "verify.h" |
| #include "trim.h" |
| #include "diskutil.h" |
| #include "cgroup.h" |
| #include "profile.h" |
| #include "lib/rand.h" |
| #include "memalign.h" |
| #include "server.h" |
| #include "lib/getrusage.h" |
| #include "idletime.h" |
| #include "err.h" |
| #include "lib/tp.h" |
| |
| static pthread_t disk_util_thread; |
| static pthread_cond_t du_cond; |
| static pthread_mutex_t du_lock; |
| |
| static struct fio_mutex *startup_mutex; |
| static struct flist_head *cgroup_list; |
| static char *cgroup_mnt; |
| static int exit_value; |
| static volatile int fio_abort; |
| static unsigned int nr_process = 0; |
| static unsigned int nr_thread = 0; |
| |
| struct io_log *agg_io_log[DDIR_RWDIR_CNT]; |
| |
| int groupid = 0; |
| unsigned int thread_number = 0; |
| unsigned int stat_number = 0; |
| int shm_id = 0; |
| int temp_stall_ts; |
| unsigned long done_secs = 0; |
| volatile int disk_util_exit = 0; |
| |
| #define PAGE_ALIGN(buf) \ |
| (char *) (((uintptr_t) (buf) + page_mask) & ~page_mask) |
| |
| #define JOB_START_TIMEOUT (5 * 1000) |
| |
| static void sig_int(int sig) |
| { |
| if (threads) { |
| if (is_backend) |
| fio_server_got_signal(sig); |
| else { |
| log_info("\nfio: terminating on signal %d\n", sig); |
| log_info_flush(); |
| exit_value = 128; |
| } |
| |
| fio_terminate_threads(TERMINATE_ALL); |
| } |
| } |
| |
| static void sig_show_status(int sig) |
| { |
| show_running_run_stats(); |
| } |
| |
| static void set_sig_handlers(void) |
| { |
| struct sigaction act; |
| |
| memset(&act, 0, sizeof(act)); |
| act.sa_handler = sig_int; |
| act.sa_flags = SA_RESTART; |
| sigaction(SIGINT, &act, NULL); |
| |
| memset(&act, 0, sizeof(act)); |
| act.sa_handler = sig_int; |
| act.sa_flags = SA_RESTART; |
| sigaction(SIGTERM, &act, NULL); |
| |
| /* Windows uses SIGBREAK as a quit signal from other applications */ |
| #ifdef WIN32 |
| memset(&act, 0, sizeof(act)); |
| act.sa_handler = sig_int; |
| act.sa_flags = SA_RESTART; |
| sigaction(SIGBREAK, &act, NULL); |
| #endif |
| |
| memset(&act, 0, sizeof(act)); |
| act.sa_handler = sig_show_status; |
| act.sa_flags = SA_RESTART; |
| sigaction(SIGUSR1, &act, NULL); |
| |
| if (is_backend) { |
| memset(&act, 0, sizeof(act)); |
| act.sa_handler = sig_int; |
| act.sa_flags = SA_RESTART; |
| sigaction(SIGPIPE, &act, NULL); |
| } |
| } |
| |
| /* |
| * Check if we are above the minimum rate given. |
| */ |
| static int __check_min_rate(struct thread_data *td, struct timeval *now, |
| enum fio_ddir ddir) |
| { |
| unsigned long long bytes = 0; |
| unsigned long iops = 0; |
| unsigned long spent; |
| unsigned long rate; |
| unsigned int ratemin = 0; |
| unsigned int rate_iops = 0; |
| unsigned int rate_iops_min = 0; |
| |
| assert(ddir_rw(ddir)); |
| |
| if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir]) |
| return 0; |
| |
| /* |
| * allow a 2 second settle period in the beginning |
| */ |
| if (mtime_since(&td->start, now) < 2000) |
| return 0; |
| |
| iops += td->this_io_blocks[ddir]; |
| bytes += td->this_io_bytes[ddir]; |
| ratemin += td->o.ratemin[ddir]; |
| rate_iops += td->o.rate_iops[ddir]; |
| rate_iops_min += td->o.rate_iops_min[ddir]; |
| |
| /* |
| * if rate blocks is set, sample is running |
| */ |
| if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) { |
| spent = mtime_since(&td->lastrate[ddir], now); |
| if (spent < td->o.ratecycle) |
| return 0; |
| |
| if (td->o.rate[ddir]) { |
| /* |
| * check bandwidth specified rate |
| */ |
| if (bytes < td->rate_bytes[ddir]) { |
| log_err("%s: min rate %u not met\n", td->o.name, |
| ratemin); |
| return 1; |
| } else { |
| if (spent) |
| rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent; |
| else |
| rate = 0; |
| |
| if (rate < ratemin || |
| bytes < td->rate_bytes[ddir]) { |
| log_err("%s: min rate %u not met, got" |
| " %luKB/sec\n", td->o.name, |
| ratemin, rate); |
| return 1; |
| } |
| } |
| } else { |
| /* |
| * checks iops specified rate |
| */ |
| if (iops < rate_iops) { |
| log_err("%s: min iops rate %u not met\n", |
| td->o.name, rate_iops); |
| return 1; |
| } else { |
| if (spent) |
| rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent; |
| else |
| rate = 0; |
| |
| if (rate < rate_iops_min || |
| iops < td->rate_blocks[ddir]) { |
| log_err("%s: min iops rate %u not met," |
| " got %lu\n", td->o.name, |
| rate_iops_min, rate); |
| } |
| } |
| } |
| } |
| |
| td->rate_bytes[ddir] = bytes; |
| td->rate_blocks[ddir] = iops; |
| memcpy(&td->lastrate[ddir], now, sizeof(*now)); |
| return 0; |
| } |
| |
| static int check_min_rate(struct thread_data *td, struct timeval *now, |
| uint64_t *bytes_done) |
| { |
| int ret = 0; |
| |
| if (bytes_done[DDIR_READ]) |
| ret |= __check_min_rate(td, now, DDIR_READ); |
| if (bytes_done[DDIR_WRITE]) |
| ret |= __check_min_rate(td, now, DDIR_WRITE); |
| if (bytes_done[DDIR_TRIM]) |
| ret |= __check_min_rate(td, now, DDIR_TRIM); |
| |
| return ret; |
| } |
| |
| /* |
| * When job exits, we can cancel the in-flight IO if we are using async |
| * io. Attempt to do so. |
| */ |
| static void cleanup_pending_aio(struct thread_data *td) |
| { |
| int r; |
| |
| /* |
| * get immediately available events, if any |
| */ |
| r = io_u_queued_complete(td, 0, NULL); |
| if (r < 0) |
| return; |
| |
| /* |
| * now cancel remaining active events |
| */ |
| if (td->io_ops->cancel) { |
| struct io_u *io_u; |
| int i; |
| |
| io_u_qiter(&td->io_u_all, io_u, i) { |
| if (io_u->flags & IO_U_F_FLIGHT) { |
| r = td->io_ops->cancel(td, io_u); |
| if (!r) |
| put_io_u(td, io_u); |
| } |
| } |
| } |
| |
| if (td->cur_depth) |
| r = io_u_queued_complete(td, td->cur_depth, NULL); |
| } |
| |
| /* |
| * Helper to handle the final sync of a file. Works just like the normal |
| * io path, just does everything sync. |
| */ |
| static int fio_io_sync(struct thread_data *td, struct fio_file *f) |
| { |
| struct io_u *io_u = __get_io_u(td); |
| int ret; |
| |
| if (!io_u) |
| return 1; |
| |
| io_u->ddir = DDIR_SYNC; |
| io_u->file = f; |
| |
| if (td_io_prep(td, io_u)) { |
| put_io_u(td, io_u); |
| return 1; |
| } |
| |
| requeue: |
| ret = td_io_queue(td, io_u); |
| if (ret < 0) { |
| td_verror(td, io_u->error, "td_io_queue"); |
| put_io_u(td, io_u); |
| return 1; |
| } else if (ret == FIO_Q_QUEUED) { |
| if (io_u_queued_complete(td, 1, NULL) < 0) |
| return 1; |
| } else if (ret == FIO_Q_COMPLETED) { |
| if (io_u->error) { |
| td_verror(td, io_u->error, "td_io_queue"); |
| return 1; |
| } |
| |
| if (io_u_sync_complete(td, io_u, NULL) < 0) |
| return 1; |
| } else if (ret == FIO_Q_BUSY) { |
| if (td_io_commit(td)) |
| return 1; |
| goto requeue; |
| } |
| |
| return 0; |
| } |
| |
| static int fio_file_fsync(struct thread_data *td, struct fio_file *f) |
| { |
| int ret; |
| |
| if (fio_file_open(f)) |
| return fio_io_sync(td, f); |
| |
| if (td_io_open_file(td, f)) |
| return 1; |
| |
| ret = fio_io_sync(td, f); |
| td_io_close_file(td, f); |
| return ret; |
| } |
| |
| static inline void __update_tv_cache(struct thread_data *td) |
| { |
| fio_gettime(&td->tv_cache, NULL); |
| } |
| |
| static inline void update_tv_cache(struct thread_data *td) |
| { |
| if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask) |
| __update_tv_cache(td); |
| } |
| |
| static inline int runtime_exceeded(struct thread_data *td, struct timeval *t) |
| { |
| if (in_ramp_time(td)) |
| return 0; |
| if (!td->o.timeout) |
| return 0; |
| if (utime_since(&td->epoch, t) >= td->o.timeout) |
| return 1; |
| |
| return 0; |
| } |
| |
| static int break_on_this_error(struct thread_data *td, enum fio_ddir ddir, |
| int *retptr) |
| { |
| int ret = *retptr; |
| |
| if (ret < 0 || td->error) { |
| int err = td->error; |
| enum error_type_bit eb; |
| |
| if (ret < 0) |
| err = -ret; |
| |
| eb = td_error_type(ddir, err); |
| if (!(td->o.continue_on_error & (1 << eb))) |
| return 1; |
| |
| if (td_non_fatal_error(td, eb, err)) { |
| /* |
| * Continue with the I/Os in case of |
| * a non fatal error. |
| */ |
| update_error_count(td, err); |
| td_clear_error(td); |
| *retptr = 0; |
| return 0; |
| } else if (td->o.fill_device && err == ENOSPC) { |
| /* |
| * We expect to hit this error if |
| * fill_device option is set. |
| */ |
| td_clear_error(td); |
| fio_mark_td_terminate(td); |
| return 1; |
| } else { |
| /* |
| * Stop the I/O in case of a fatal |
| * error. |
| */ |
| update_error_count(td, err); |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void check_update_rusage(struct thread_data *td) |
| { |
| if (td->update_rusage) { |
| td->update_rusage = 0; |
| update_rusage_stat(td); |
| fio_mutex_up(td->rusage_sem); |
| } |
| } |
| |
| /* |
| * The main verify engine. Runs over the writes we previously submitted, |
| * reads the blocks back in, and checks the crc/md5 of the data. |
| */ |
| static void do_verify(struct thread_data *td, uint64_t verify_bytes) |
| { |
| uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 }; |
| struct fio_file *f; |
| struct io_u *io_u; |
| int ret, min_events; |
| unsigned int i; |
| |
| dprint(FD_VERIFY, "starting loop\n"); |
| |
| /* |
| * sync io first and invalidate cache, to make sure we really |
| * read from disk. |
| */ |
| for_each_file(td, f, i) { |
| if (!fio_file_open(f)) |
| continue; |
| if (fio_io_sync(td, f)) |
| break; |
| if (file_invalidate_cache(td, f)) |
| break; |
| } |
| |
| check_update_rusage(td); |
| |
| if (td->error) |
| return; |
| |
| td_set_runstate(td, TD_VERIFYING); |
| |
| io_u = NULL; |
| while (!td->terminate) { |
| enum fio_ddir ddir; |
| int ret2, full; |
| |
| update_tv_cache(td); |
| check_update_rusage(td); |
| |
| if (runtime_exceeded(td, &td->tv_cache)) { |
| __update_tv_cache(td); |
| if (runtime_exceeded(td, &td->tv_cache)) { |
| fio_mark_td_terminate(td); |
| break; |
| } |
| } |
| |
| if (flow_threshold_exceeded(td)) |
| continue; |
| |
| if (!td->o.experimental_verify) { |
| io_u = __get_io_u(td); |
| if (!io_u) |
| break; |
| |
| if (get_next_verify(td, io_u)) { |
| put_io_u(td, io_u); |
| break; |
| } |
| |
| if (td_io_prep(td, io_u)) { |
| put_io_u(td, io_u); |
| break; |
| } |
| } else { |
| if (ddir_rw_sum(bytes_done) + td->o.rw_min_bs > verify_bytes) |
| break; |
| |
| while ((io_u = get_io_u(td)) != NULL) { |
| if (IS_ERR(io_u)) { |
| io_u = NULL; |
| ret = FIO_Q_BUSY; |
| goto reap; |
| } |
| |
| /* |
| * We are only interested in the places where |
| * we wrote or trimmed IOs. Turn those into |
| * reads for verification purposes. |
| */ |
| if (io_u->ddir == DDIR_READ) { |
| /* |
| * Pretend we issued it for rwmix |
| * accounting |
| */ |
| td->io_issues[DDIR_READ]++; |
| put_io_u(td, io_u); |
| continue; |
| } else if (io_u->ddir == DDIR_TRIM) { |
| io_u->ddir = DDIR_READ; |
| io_u->flags |= IO_U_F_TRIMMED; |
| break; |
| } else if (io_u->ddir == DDIR_WRITE) { |
| io_u->ddir = DDIR_READ; |
| break; |
| } else { |
| put_io_u(td, io_u); |
| continue; |
| } |
| } |
| |
| if (!io_u) |
| break; |
| } |
| |
| if (td->o.verify_async) |
| io_u->end_io = verify_io_u_async; |
| else |
| io_u->end_io = verify_io_u; |
| |
| ddir = io_u->ddir; |
| |
| ret = td_io_queue(td, io_u); |
| switch (ret) { |
| case FIO_Q_COMPLETED: |
| if (io_u->error) { |
| ret = -io_u->error; |
| clear_io_u(td, io_u); |
| } else if (io_u->resid) { |
| int bytes = io_u->xfer_buflen - io_u->resid; |
| |
| /* |
| * zero read, fail |
| */ |
| if (!bytes) { |
| td_verror(td, EIO, "full resid"); |
| put_io_u(td, io_u); |
| break; |
| } |
| |
| io_u->xfer_buflen = io_u->resid; |
| io_u->xfer_buf += bytes; |
| io_u->offset += bytes; |
| |
| if (ddir_rw(io_u->ddir)) |
| td->ts.short_io_u[io_u->ddir]++; |
| |
| f = io_u->file; |
| if (io_u->offset == f->real_file_size) |
| goto sync_done; |
| |
| requeue_io_u(td, &io_u); |
| } else { |
| sync_done: |
| ret = io_u_sync_complete(td, io_u, bytes_done); |
| if (ret < 0) |
| break; |
| } |
| continue; |
| case FIO_Q_QUEUED: |
| break; |
| case FIO_Q_BUSY: |
| requeue_io_u(td, &io_u); |
| ret2 = td_io_commit(td); |
| if (ret2 < 0) |
| ret = ret2; |
| break; |
| default: |
| assert(ret < 0); |
| td_verror(td, -ret, "td_io_queue"); |
| break; |
| } |
| |
| if (break_on_this_error(td, ddir, &ret)) |
| break; |
| |
| /* |
| * if we can queue more, do so. but check if there are |
| * completed io_u's first. Note that we can get BUSY even |
| * without IO queued, if the system is resource starved. |
| */ |
| reap: |
| full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth); |
| if (full || !td->o.iodepth_batch_complete) { |
| min_events = min(td->o.iodepth_batch_complete, |
| td->cur_depth); |
| /* |
| * if the queue is full, we MUST reap at least 1 event |
| */ |
| if (full && !min_events) |
| min_events = 1; |
| |
| do { |
| /* |
| * Reap required number of io units, if any, |
| * and do the verification on them through |
| * the callback handler |
| */ |
| if (io_u_queued_complete(td, min_events, bytes_done) < 0) { |
| ret = -1; |
| break; |
| } |
| } while (full && (td->cur_depth > td->o.iodepth_low)); |
| } |
| if (ret < 0) |
| break; |
| } |
| |
| check_update_rusage(td); |
| |
| if (!td->error) { |
| min_events = td->cur_depth; |
| |
| if (min_events) |
| ret = io_u_queued_complete(td, min_events, NULL); |
| } else |
| cleanup_pending_aio(td); |
| |
| td_set_runstate(td, TD_RUNNING); |
| |
| dprint(FD_VERIFY, "exiting loop\n"); |
| } |
| |
| static unsigned int exceeds_number_ios(struct thread_data *td) |
| { |
| unsigned long long number_ios; |
| |
| if (!td->o.number_ios) |
| return 0; |
| |
| number_ios = ddir_rw_sum(td->this_io_blocks); |
| number_ios += td->io_u_queued + td->io_u_in_flight; |
| |
| return number_ios >= td->o.number_ios; |
| } |
| |
| static int io_bytes_exceeded(struct thread_data *td) |
| { |
| unsigned long long bytes, limit; |
| |
| if (td_rw(td)) |
| bytes = td->this_io_bytes[DDIR_READ] + td->this_io_bytes[DDIR_WRITE]; |
| else if (td_write(td)) |
| bytes = td->this_io_bytes[DDIR_WRITE]; |
| else if (td_read(td)) |
| bytes = td->this_io_bytes[DDIR_READ]; |
| else |
| bytes = td->this_io_bytes[DDIR_TRIM]; |
| |
| if (td->o.io_limit) |
| limit = td->o.io_limit; |
| else |
| limit = td->o.size; |
| |
| return bytes >= limit || exceeds_number_ios(td); |
| } |
| |
| /* |
| * Main IO worker function. It retrieves io_u's to process and queues |
| * and reaps them, checking for rate and errors along the way. |
| * |
| * Returns number of bytes written and trimmed. |
| */ |
| static uint64_t do_io(struct thread_data *td) |
| { |
| uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 }; |
| unsigned int i; |
| int ret = 0; |
| uint64_t total_bytes, bytes_issued = 0; |
| |
| if (in_ramp_time(td)) |
| td_set_runstate(td, TD_RAMP); |
| else |
| td_set_runstate(td, TD_RUNNING); |
| |
| lat_target_init(td); |
| |
| /* |
| * If verify_backlog is enabled, we'll run the verify in this |
| * handler as well. For that case, we may need up to twice the |
| * amount of bytes. |
| */ |
| total_bytes = td->o.size; |
| if (td->o.verify != VERIFY_NONE && |
| (td_write(td) && td->o.verify_backlog)) |
| total_bytes += td->o.size; |
| |
| while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) || |
| (!flist_empty(&td->trim_list)) || !io_bytes_exceeded(td) || |
| td->o.time_based) { |
| struct timeval comp_time; |
| int min_evts = 0; |
| struct io_u *io_u; |
| int ret2, full; |
| enum fio_ddir ddir; |
| |
| check_update_rusage(td); |
| |
| if (td->terminate || td->done) |
| break; |
| |
| update_tv_cache(td); |
| |
| if (runtime_exceeded(td, &td->tv_cache)) { |
| __update_tv_cache(td); |
| if (runtime_exceeded(td, &td->tv_cache)) { |
| fio_mark_td_terminate(td); |
| break; |
| } |
| } |
| |
| if (flow_threshold_exceeded(td)) |
| continue; |
| |
| if (bytes_issued >= total_bytes) |
| break; |
| |
| io_u = get_io_u(td); |
| if (IS_ERR_OR_NULL(io_u)) { |
| int err = PTR_ERR(io_u); |
| |
| io_u = NULL; |
| if (err == -EBUSY) { |
| ret = FIO_Q_BUSY; |
| goto reap; |
| } |
| if (td->o.latency_target) |
| goto reap; |
| break; |
| } |
| |
| ddir = io_u->ddir; |
| |
| /* |
| * Add verification end_io handler if: |
| * - Asked to verify (!td_rw(td)) |
| * - Or the io_u is from our verify list (mixed write/ver) |
| */ |
| if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ && |
| ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) { |
| |
| if (!td->o.verify_pattern_bytes) { |
| io_u->rand_seed = __rand(&td->__verify_state); |
| if (sizeof(int) != sizeof(long *)) |
| io_u->rand_seed *= __rand(&td->__verify_state); |
| } |
| |
| if (td->o.verify_async) |
| io_u->end_io = verify_io_u_async; |
| else |
| io_u->end_io = verify_io_u; |
| td_set_runstate(td, TD_VERIFYING); |
| } else if (in_ramp_time(td)) |
| td_set_runstate(td, TD_RAMP); |
| else |
| td_set_runstate(td, TD_RUNNING); |
| |
| /* |
| * Always log IO before it's issued, so we know the specific |
| * order of it. The logged unit will track when the IO has |
| * completed. |
| */ |
| if (td_write(td) && io_u->ddir == DDIR_WRITE && |
| td->o.do_verify && |
| td->o.verify != VERIFY_NONE && |
| !td->o.experimental_verify) |
| log_io_piece(td, io_u); |
| |
| ret = td_io_queue(td, io_u); |
| switch (ret) { |
| case FIO_Q_COMPLETED: |
| if (io_u->error) { |
| ret = -io_u->error; |
| unlog_io_piece(td, io_u); |
| clear_io_u(td, io_u); |
| } else if (io_u->resid) { |
| int bytes = io_u->xfer_buflen - io_u->resid; |
| struct fio_file *f = io_u->file; |
| |
| bytes_issued += bytes; |
| |
| trim_io_piece(td, io_u); |
| |
| /* |
| * zero read, fail |
| */ |
| if (!bytes) { |
| unlog_io_piece(td, io_u); |
| td_verror(td, EIO, "full resid"); |
| put_io_u(td, io_u); |
| break; |
| } |
| |
| io_u->xfer_buflen = io_u->resid; |
| io_u->xfer_buf += bytes; |
| io_u->offset += bytes; |
| |
| if (ddir_rw(io_u->ddir)) |
| td->ts.short_io_u[io_u->ddir]++; |
| |
| if (io_u->offset == f->real_file_size) |
| goto sync_done; |
| |
| requeue_io_u(td, &io_u); |
| } else { |
| sync_done: |
| if (__should_check_rate(td, DDIR_READ) || |
| __should_check_rate(td, DDIR_WRITE) || |
| __should_check_rate(td, DDIR_TRIM)) |
| fio_gettime(&comp_time, NULL); |
| |
| ret = io_u_sync_complete(td, io_u, bytes_done); |
| if (ret < 0) |
| break; |
| bytes_issued += io_u->xfer_buflen; |
| } |
| break; |
| case FIO_Q_QUEUED: |
| /* |
| * if the engine doesn't have a commit hook, |
| * the io_u is really queued. if it does have such |
| * a hook, it has to call io_u_queued() itself. |
| */ |
| if (td->io_ops->commit == NULL) |
| io_u_queued(td, io_u); |
| bytes_issued += io_u->xfer_buflen; |
| break; |
| case FIO_Q_BUSY: |
| unlog_io_piece(td, io_u); |
| requeue_io_u(td, &io_u); |
| ret2 = td_io_commit(td); |
| if (ret2 < 0) |
| ret = ret2; |
| break; |
| default: |
| assert(ret < 0); |
| put_io_u(td, io_u); |
| break; |
| } |
| |
| if (break_on_this_error(td, ddir, &ret)) |
| break; |
| |
| /* |
| * See if we need to complete some commands. Note that we |
| * can get BUSY even without IO queued, if the system is |
| * resource starved. |
| */ |
| reap: |
| full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth); |
| if (full || !td->o.iodepth_batch_complete) { |
| min_evts = min(td->o.iodepth_batch_complete, |
| td->cur_depth); |
| /* |
| * if the queue is full, we MUST reap at least 1 event |
| */ |
| if (full && !min_evts) |
| min_evts = 1; |
| |
| if (__should_check_rate(td, DDIR_READ) || |
| __should_check_rate(td, DDIR_WRITE) || |
| __should_check_rate(td, DDIR_TRIM)) |
| fio_gettime(&comp_time, NULL); |
| |
| do { |
| ret = io_u_queued_complete(td, min_evts, bytes_done); |
| if (ret < 0) |
| break; |
| |
| } while (full && (td->cur_depth > td->o.iodepth_low)); |
| } |
| |
| if (ret < 0) |
| break; |
| if (!ddir_rw_sum(bytes_done) && !(td->io_ops->flags & FIO_NOIO)) |
| continue; |
| |
| if (!in_ramp_time(td) && should_check_rate(td, bytes_done)) { |
| if (check_min_rate(td, &comp_time, bytes_done)) { |
| if (exitall_on_terminate) |
| fio_terminate_threads(td->groupid); |
| td_verror(td, EIO, "check_min_rate"); |
| break; |
| } |
| } |
| if (!in_ramp_time(td) && td->o.latency_target) |
| lat_target_check(td); |
| |
| if (td->o.thinktime) { |
| unsigned long long b; |
| |
| b = ddir_rw_sum(td->io_blocks); |
| if (!(b % td->o.thinktime_blocks)) { |
| int left; |
| |
| io_u_quiesce(td); |
| |
| if (td->o.thinktime_spin) |
| usec_spin(td->o.thinktime_spin); |
| |
| left = td->o.thinktime - td->o.thinktime_spin; |
| if (left) |
| usec_sleep(td, left); |
| } |
| } |
| } |
| |
| check_update_rusage(td); |
| |
| if (td->trim_entries) |
| log_err("fio: %lu trim entries leaked?\n", td->trim_entries); |
| |
| if (td->o.fill_device && td->error == ENOSPC) { |
| td->error = 0; |
| fio_mark_td_terminate(td); |
| } |
| if (!td->error) { |
| struct fio_file *f; |
| |
| i = td->cur_depth; |
| if (i) { |
| ret = io_u_queued_complete(td, i, bytes_done); |
| if (td->o.fill_device && td->error == ENOSPC) |
| td->error = 0; |
| } |
| |
| if (should_fsync(td) && td->o.end_fsync) { |
| td_set_runstate(td, TD_FSYNCING); |
| |
| for_each_file(td, f, i) { |
| if (!fio_file_fsync(td, f)) |
| continue; |
| |
| log_err("fio: end_fsync failed for file %s\n", |
| f->file_name); |
| } |
| } |
| } else |
| cleanup_pending_aio(td); |
| |
| /* |
| * stop job if we failed doing any IO |
| */ |
| if (!ddir_rw_sum(td->this_io_bytes)) |
| td->done = 1; |
| |
| return bytes_done[DDIR_WRITE] + bytes_done[DDIR_TRIM]; |
| } |
| |
| static void cleanup_io_u(struct thread_data *td) |
| { |
| struct io_u *io_u; |
| |
| while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) { |
| |
| if (td->io_ops->io_u_free) |
| td->io_ops->io_u_free(td, io_u); |
| |
| fio_memfree(io_u, sizeof(*io_u)); |
| } |
| |
| free_io_mem(td); |
| |
| io_u_rexit(&td->io_u_requeues); |
| io_u_qexit(&td->io_u_freelist); |
| io_u_qexit(&td->io_u_all); |
| } |
| |
| static int init_io_u(struct thread_data *td) |
| { |
| struct io_u *io_u; |
| unsigned int max_bs, min_write; |
| int cl_align, i, max_units; |
| int data_xfer = 1, err; |
| char *p; |
| |
| max_units = td->o.iodepth; |
| max_bs = td_max_bs(td); |
| min_write = td->o.min_bs[DDIR_WRITE]; |
| td->orig_buffer_size = (unsigned long long) max_bs |
| * (unsigned long long) max_units; |
| |
| if ((td->io_ops->flags & FIO_NOIO) || !(td_read(td) || td_write(td))) |
| data_xfer = 0; |
| |
| err = 0; |
| err += io_u_rinit(&td->io_u_requeues, td->o.iodepth); |
| err += io_u_qinit(&td->io_u_freelist, td->o.iodepth); |
| err += io_u_qinit(&td->io_u_all, td->o.iodepth); |
| |
| if (err) { |
| log_err("fio: failed setting up IO queues\n"); |
| return 1; |
| } |
| |
| /* |
| * if we may later need to do address alignment, then add any |
| * possible adjustment here so that we don't cause a buffer |
| * overflow later. this adjustment may be too much if we get |
| * lucky and the allocator gives us an aligned address. |
| */ |
| if (td->o.odirect || td->o.mem_align || td->o.oatomic || |
| (td->io_ops->flags & FIO_RAWIO)) |
| td->orig_buffer_size += page_mask + td->o.mem_align; |
| |
| if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) { |
| unsigned long bs; |
| |
| bs = td->orig_buffer_size + td->o.hugepage_size - 1; |
| td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1); |
| } |
| |
| if (td->orig_buffer_size != (size_t) td->orig_buffer_size) { |
| log_err("fio: IO memory too large. Reduce max_bs or iodepth\n"); |
| return 1; |
| } |
| |
| if (data_xfer && allocate_io_mem(td)) |
| return 1; |
| |
| if (td->o.odirect || td->o.mem_align || td->o.oatomic || |
| (td->io_ops->flags & FIO_RAWIO)) |
| p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align; |
| else |
| p = td->orig_buffer; |
| |
| cl_align = os_cache_line_size(); |
| |
| for (i = 0; i < max_units; i++) { |
| void *ptr; |
| |
| if (td->terminate) |
| return 1; |
| |
| ptr = fio_memalign(cl_align, sizeof(*io_u)); |
| if (!ptr) { |
| log_err("fio: unable to allocate aligned memory\n"); |
| break; |
| } |
| |
| io_u = ptr; |
| memset(io_u, 0, sizeof(*io_u)); |
| INIT_FLIST_HEAD(&io_u->verify_list); |
| dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i); |
| |
| if (data_xfer) { |
| io_u->buf = p; |
| dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf); |
| |
| if (td_write(td)) |
| io_u_fill_buffer(td, io_u, min_write, max_bs); |
| if (td_write(td) && td->o.verify_pattern_bytes) { |
| /* |
| * Fill the buffer with the pattern if we are |
| * going to be doing writes. |
| */ |
| fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0); |
| } |
| } |
| |
| io_u->index = i; |
| io_u->flags = IO_U_F_FREE; |
| io_u_qpush(&td->io_u_freelist, io_u); |
| |
| /* |
| * io_u never leaves this stack, used for iteration of all |
| * io_u buffers. |
| */ |
| io_u_qpush(&td->io_u_all, io_u); |
| |
| if (td->io_ops->io_u_init) { |
| int ret = td->io_ops->io_u_init(td, io_u); |
| |
| if (ret) { |
| log_err("fio: failed to init engine data: %d\n", ret); |
| return 1; |
| } |
| } |
| |
| p += max_bs; |
| } |
| |
| return 0; |
| } |
| |
| static int switch_ioscheduler(struct thread_data *td) |
| { |
| char tmp[256], tmp2[128]; |
| FILE *f; |
| int ret; |
| |
| if (td->io_ops->flags & FIO_DISKLESSIO) |
| return 0; |
| |
| sprintf(tmp, "%s/queue/scheduler", td->sysfs_root); |
| |
| f = fopen(tmp, "r+"); |
| if (!f) { |
| if (errno == ENOENT) { |
| log_err("fio: os or kernel doesn't support IO scheduler" |
| " switching\n"); |
| return 0; |
| } |
| td_verror(td, errno, "fopen iosched"); |
| return 1; |
| } |
| |
| /* |
| * Set io scheduler. |
| */ |
| ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f); |
| if (ferror(f) || ret != 1) { |
| td_verror(td, errno, "fwrite"); |
| fclose(f); |
| return 1; |
| } |
| |
| rewind(f); |
| |
| /* |
| * Read back and check that the selected scheduler is now the default. |
| */ |
| ret = fread(tmp, sizeof(tmp), 1, f); |
| if (ferror(f) || ret < 0) { |
| td_verror(td, errno, "fread"); |
| fclose(f); |
| return 1; |
| } |
| tmp[sizeof(tmp) - 1] = '\0'; |
| |
| |
| sprintf(tmp2, "[%s]", td->o.ioscheduler); |
| if (!strstr(tmp, tmp2)) { |
| log_err("fio: io scheduler %s not found\n", td->o.ioscheduler); |
| td_verror(td, EINVAL, "iosched_switch"); |
| fclose(f); |
| return 1; |
| } |
| |
| fclose(f); |
| return 0; |
| } |
| |
| static int keep_running(struct thread_data *td) |
| { |
| unsigned long long limit; |
| |
| if (td->done) |
| return 0; |
| if (td->o.time_based) |
| return 1; |
| if (td->o.loops) { |
| td->o.loops--; |
| return 1; |
| } |
| if (exceeds_number_ios(td)) |
| return 0; |
| |
| if (td->o.io_limit) |
| limit = td->o.io_limit; |
| else |
| limit = td->o.size; |
| |
| if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) { |
| uint64_t diff; |
| |
| /* |
| * If the difference is less than the minimum IO size, we |
| * are done. |
| */ |
| diff = limit - ddir_rw_sum(td->io_bytes); |
| if (diff < td_max_bs(td)) |
| return 0; |
| |
| if (fio_files_done(td)) |
| return 0; |
| |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static int exec_string(struct thread_options *o, const char *string, const char *mode) |
| { |
| int ret, newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1; |
| char *str; |
| |
| str = malloc(newlen); |
| sprintf(str, "%s &> %s.%s.txt", string, o->name, mode); |
| |
| log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode); |
| ret = system(str); |
| if (ret == -1) |
| log_err("fio: exec of cmd <%s> failed\n", str); |
| |
| free(str); |
| return ret; |
| } |
| |
| /* |
| * Dry run to compute correct state of numberio for verification. |
| */ |
| static uint64_t do_dry_run(struct thread_data *td) |
| { |
| uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 }; |
| |
| td_set_runstate(td, TD_RUNNING); |
| |
| while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) || |
| (!flist_empty(&td->trim_list)) || !io_bytes_exceeded(td)) { |
| struct io_u *io_u; |
| int ret; |
| |
| if (td->terminate || td->done) |
| break; |
| |
| io_u = get_io_u(td); |
| if (!io_u) |
| break; |
| |
| io_u->flags |= IO_U_F_FLIGHT; |
| io_u->error = 0; |
| io_u->resid = 0; |
| if (ddir_rw(acct_ddir(io_u))) |
| td->io_issues[acct_ddir(io_u)]++; |
| if (ddir_rw(io_u->ddir)) { |
| io_u_mark_depth(td, 1); |
| td->ts.total_io_u[io_u->ddir]++; |
| } |
| |
| if (td_write(td) && io_u->ddir == DDIR_WRITE && |
| td->o.do_verify && |
| td->o.verify != VERIFY_NONE && |
| !td->o.experimental_verify) |
| log_io_piece(td, io_u); |
| |
| ret = io_u_sync_complete(td, io_u, bytes_done); |
| (void) ret; |
| } |
| |
| return bytes_done[DDIR_WRITE] + bytes_done[DDIR_TRIM]; |
| } |
| |
| /* |
| * Entry point for the thread based jobs. The process based jobs end up |
| * here as well, after a little setup. |
| */ |
| static void *thread_main(void *data) |
| { |
| unsigned long long elapsed; |
| struct thread_data *td = data; |
| struct thread_options *o = &td->o; |
| pthread_condattr_t attr; |
| int clear_state; |
| int ret; |
| |
| if (!o->use_thread) { |
| setsid(); |
| td->pid = getpid(); |
| } else |
| td->pid = gettid(); |
| |
| fio_local_clock_init(o->use_thread); |
| |
| dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid); |
| |
| if (is_backend) |
| fio_server_send_start(td); |
| |
| INIT_FLIST_HEAD(&td->io_log_list); |
| INIT_FLIST_HEAD(&td->io_hist_list); |
| INIT_FLIST_HEAD(&td->verify_list); |
| INIT_FLIST_HEAD(&td->trim_list); |
| INIT_FLIST_HEAD(&td->next_rand_list); |
| pthread_mutex_init(&td->io_u_lock, NULL); |
| td->io_hist_tree = RB_ROOT; |
| |
| pthread_condattr_init(&attr); |
| pthread_cond_init(&td->verify_cond, &attr); |
| pthread_cond_init(&td->free_cond, &attr); |
| |
| td_set_runstate(td, TD_INITIALIZED); |
| dprint(FD_MUTEX, "up startup_mutex\n"); |
| fio_mutex_up(startup_mutex); |
| dprint(FD_MUTEX, "wait on td->mutex\n"); |
| fio_mutex_down(td->mutex); |
| dprint(FD_MUTEX, "done waiting on td->mutex\n"); |
| |
| /* |
| * A new gid requires privilege, so we need to do this before setting |
| * the uid. |
| */ |
| if (o->gid != -1U && setgid(o->gid)) { |
| td_verror(td, errno, "setgid"); |
| goto err; |
| } |
| if (o->uid != -1U && setuid(o->uid)) { |
| td_verror(td, errno, "setuid"); |
| goto err; |
| } |
| |
| /* |
| * If we have a gettimeofday() thread, make sure we exclude that |
| * thread from this job |
| */ |
| if (o->gtod_cpu) |
| fio_cpu_clear(&o->cpumask, o->gtod_cpu); |
| |
| /* |
| * Set affinity first, in case it has an impact on the memory |
| * allocations. |
| */ |
| if (o->cpumask_set) { |
| if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) { |
| ret = fio_cpus_split(&o->cpumask, td->thread_number - 1); |
| if (!ret) { |
| log_err("fio: no CPUs set\n"); |
| log_err("fio: Try increasing number of available CPUs\n"); |
| td_verror(td, EINVAL, "cpus_split"); |
| goto err; |
| } |
| } |
| ret = fio_setaffinity(td->pid, o->cpumask); |
| if (ret == -1) { |
| td_verror(td, errno, "cpu_set_affinity"); |
| goto err; |
| } |
| } |
| |
| #ifdef CONFIG_LIBNUMA |
| /* numa node setup */ |
| if (o->numa_cpumask_set || o->numa_memmask_set) { |
| struct bitmask *mask; |
| int ret; |
| |
| if (numa_available() < 0) { |
| td_verror(td, errno, "Does not support NUMA API\n"); |
| goto err; |
| } |
| |
| if (o->numa_cpumask_set) { |
| mask = numa_parse_nodestring(o->numa_cpunodes); |
| ret = numa_run_on_node_mask(mask); |
| numa_free_nodemask(mask); |
| if (ret == -1) { |
| td_verror(td, errno, \ |
| "numa_run_on_node_mask failed\n"); |
| goto err; |
| } |
| } |
| |
| if (o->numa_memmask_set) { |
| |
| mask = NULL; |
| if (o->numa_memnodes) |
| mask = numa_parse_nodestring(o->numa_memnodes); |
| |
| switch (o->numa_mem_mode) { |
| case MPOL_INTERLEAVE: |
| numa_set_interleave_mask(mask); |
| break; |
| case MPOL_BIND: |
| numa_set_membind(mask); |
| break; |
| case MPOL_LOCAL: |
| numa_set_localalloc(); |
| break; |
| case MPOL_PREFERRED: |
| numa_set_preferred(o->numa_mem_prefer_node); |
| break; |
| case MPOL_DEFAULT: |
| default: |
| break; |
| } |
| |
| if (mask) |
| numa_free_nodemask(mask); |
| |
| } |
| } |
| #endif |
| |
| if (fio_pin_memory(td)) |
| goto err; |
| |
| /* |
| * May alter parameters that init_io_u() will use, so we need to |
| * do this first. |
| */ |
| if (init_iolog(td)) |
| goto err; |
| |
| if (init_io_u(td)) |
| goto err; |
| |
| if (o->verify_async && verify_async_init(td)) |
| goto err; |
| |
| if (o->ioprio) { |
| ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio); |
| if (ret == -1) { |
| td_verror(td, errno, "ioprio_set"); |
| goto err; |
| } |
| } |
| |
| if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt)) |
| goto err; |
| |
| errno = 0; |
| if (nice(o->nice) == -1 && errno != 0) { |
| td_verror(td, errno, "nice"); |
| goto err; |
| } |
| |
| if (o->ioscheduler && switch_ioscheduler(td)) |
| goto err; |
| |
| if (!o->create_serialize && setup_files(td)) |
| goto err; |
| |
| if (td_io_init(td)) |
| goto err; |
| |
| if (init_random_map(td)) |
| goto err; |
| |
| if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun")) |
| goto err; |
| |
| if (o->pre_read) { |
| if (pre_read_files(td) < 0) |
| goto err; |
| } |
| |
| if (td->flags & TD_F_COMPRESS_LOG) |
| tp_init(&td->tp_data); |
| |
| fio_verify_init(td); |
| |
| fio_gettime(&td->epoch, NULL); |
| fio_getrusage(&td->ru_start); |
| clear_state = 0; |
| while (keep_running(td)) { |
| uint64_t verify_bytes; |
| |
| fio_gettime(&td->start, NULL); |
| memcpy(&td->bw_sample_time, &td->start, sizeof(td->start)); |
| memcpy(&td->iops_sample_time, &td->start, sizeof(td->start)); |
| memcpy(&td->tv_cache, &td->start, sizeof(td->start)); |
| |
| if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] || |
| o->ratemin[DDIR_TRIM]) { |
| memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time, |
| sizeof(td->bw_sample_time)); |
| memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time, |
| sizeof(td->bw_sample_time)); |
| memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time, |
| sizeof(td->bw_sample_time)); |
| } |
| |
| if (clear_state) |
| clear_io_state(td); |
| |
| prune_io_piece_log(td); |
| |
| if (td->o.verify_only && (td_write(td) || td_rw(td))) |
| verify_bytes = do_dry_run(td); |
| else |
| verify_bytes = do_io(td); |
| |
| clear_state = 1; |
| |
| if (td_read(td) && td->io_bytes[DDIR_READ]) { |
| elapsed = utime_since_now(&td->start); |
| td->ts.runtime[DDIR_READ] += elapsed; |
| } |
| if (td_write(td) && td->io_bytes[DDIR_WRITE]) { |
| elapsed = utime_since_now(&td->start); |
| td->ts.runtime[DDIR_WRITE] += elapsed; |
| } |
| if (td_trim(td) && td->io_bytes[DDIR_TRIM]) { |
| elapsed = utime_since_now(&td->start); |
| td->ts.runtime[DDIR_TRIM] += elapsed; |
| } |
| |
| if (td->error || td->terminate) |
| break; |
| |
| if (!o->do_verify || |
| o->verify == VERIFY_NONE || |
| (td->io_ops->flags & FIO_UNIDIR)) |
| continue; |
| |
| clear_io_state(td); |
| |
| fio_gettime(&td->start, NULL); |
| |
| do_verify(td, verify_bytes); |
| |
| td->ts.runtime[DDIR_READ] += utime_since_now(&td->start); |
| |
| if (td->error || td->terminate) |
| break; |
| } |
| |
| update_rusage_stat(td); |
| td->ts.runtime[DDIR_READ] = (td->ts.runtime[DDIR_READ] + 999) / 1000; |
| td->ts.runtime[DDIR_WRITE] = (td->ts.runtime[DDIR_WRITE] + 999) / 1000; |
| td->ts.runtime[DDIR_TRIM] = (td->ts.runtime[DDIR_TRIM] + 999) / 1000; |
| td->ts.total_run_time = mtime_since_now(&td->epoch); |
| td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ]; |
| td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE]; |
| td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM]; |
| |
| fio_unpin_memory(td); |
| |
| fio_writeout_logs(td); |
| |
| if (td->flags & TD_F_COMPRESS_LOG) |
| tp_exit(&td->tp_data); |
| |
| if (o->exec_postrun) |
| exec_string(o, o->exec_postrun, (const char *)"postrun"); |
| |
| if (exitall_on_terminate) |
| fio_terminate_threads(td->groupid); |
| |
| err: |
| if (td->error) |
| log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error, |
| td->verror); |
| |
| if (o->verify_async) |
| verify_async_exit(td); |
| |
| close_and_free_files(td); |
| cleanup_io_u(td); |
| close_ioengine(td); |
| cgroup_shutdown(td, &cgroup_mnt); |
| |
| if (o->cpumask_set) { |
| int ret = fio_cpuset_exit(&o->cpumask); |
| |
| td_verror(td, ret, "fio_cpuset_exit"); |
| } |
| |
| /* |
| * do this very late, it will log file closing as well |
| */ |
| if (o->write_iolog_file) |
| write_iolog_close(td); |
| |
| fio_mutex_remove(td->mutex); |
| td->mutex = NULL; |
| |
| td_set_runstate(td, TD_EXITED); |
| |
| /* |
| * Do this last after setting our runstate to exited, so we |
| * know that the stat thread is signaled. |
| */ |
| check_update_rusage(td); |
| |
| return (void *) (uintptr_t) td->error; |
| } |
| |
| |
| /* |
| * We cannot pass the td data into a forked process, so attach the td and |
| * pass it to the thread worker. |
| */ |
| static int fork_main(int shmid, int offset) |
| { |
| struct thread_data *td; |
| void *data, *ret; |
| |
| #if !defined(__hpux) && !defined(CONFIG_NO_SHM) |
| data = shmat(shmid, NULL, 0); |
| if (data == (void *) -1) { |
| int __err = errno; |
| |
| perror("shmat"); |
| return __err; |
| } |
| #else |
| /* |
| * HP-UX inherits shm mappings? |
| */ |
| data = threads; |
| #endif |
| |
| td = data + offset * sizeof(struct thread_data); |
| ret = thread_main(td); |
| shmdt(data); |
| return (int) (uintptr_t) ret; |
| } |
| |
| static void dump_td_info(struct thread_data *td) |
| { |
| log_err("fio: job '%s' hasn't exited in %lu seconds, it appears to " |
| "be stuck. Doing forceful exit of this job.\n", td->o.name, |
| (unsigned long) time_since_now(&td->terminate_time)); |
| } |
| |
| /* |
| * Run over the job map and reap the threads that have exited, if any. |
| */ |
| static void reap_threads(unsigned int *nr_running, unsigned int *t_rate, |
| unsigned int *m_rate) |
| { |
| struct thread_data *td; |
| unsigned int cputhreads, realthreads, pending; |
| int i, status, ret; |
| |
| /* |
| * reap exited threads (TD_EXITED -> TD_REAPED) |
| */ |
| realthreads = pending = cputhreads = 0; |
| for_each_td(td, i) { |
| int flags = 0; |
| |
| /* |
| * ->io_ops is NULL for a thread that has closed its |
| * io engine |
| */ |
| if (td->io_ops && !strcmp(td->io_ops->name, "cpuio")) |
| cputhreads++; |
| else |
| realthreads++; |
| |
| if (!td->pid) { |
| pending++; |
| continue; |
| } |
| if (td->runstate == TD_REAPED) |
| continue; |
| if (td->o.use_thread) { |
| if (td->runstate == TD_EXITED) { |
| td_set_runstate(td, TD_REAPED); |
| goto reaped; |
| } |
| continue; |
| } |
| |
| flags = WNOHANG; |
| if (td->runstate == TD_EXITED) |
| flags = 0; |
| |
| /* |
| * check if someone quit or got killed in an unusual way |
| */ |
| ret = waitpid(td->pid, &status, flags); |
| if (ret < 0) { |
| if (errno == ECHILD) { |
| log_err("fio: pid=%d disappeared %d\n", |
| (int) td->pid, td->runstate); |
| td->sig = ECHILD; |
| td_set_runstate(td, TD_REAPED); |
| goto reaped; |
| } |
| perror("waitpid"); |
| } else if (ret == td->pid) { |
| if (WIFSIGNALED(status)) { |
| int sig = WTERMSIG(status); |
| |
| if (sig != SIGTERM && sig != SIGUSR2) |
| log_err("fio: pid=%d, got signal=%d\n", |
| (int) td->pid, sig); |
| td->sig = sig; |
| td_set_runstate(td, TD_REAPED); |
| goto reaped; |
| } |
| if (WIFEXITED(status)) { |
| if (WEXITSTATUS(status) && !td->error) |
| td->error = WEXITSTATUS(status); |
| |
| td_set_runstate(td, TD_REAPED); |
| goto reaped; |
| } |
| } |
| |
| /* |
| * If the job is stuck, do a forceful timeout of it and |
| * move on. |
| */ |
| if (td->terminate && |
| time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) { |
| dump_td_info(td); |
| td_set_runstate(td, TD_REAPED); |
| goto reaped; |
| } |
| |
| /* |
| * thread is not dead, continue |
| */ |
| pending++; |
| continue; |
| reaped: |
| (*nr_running)--; |
| (*m_rate) -= ddir_rw_sum(td->o.ratemin); |
| (*t_rate) -= ddir_rw_sum(td->o.rate); |
| if (!td->pid) |
| pending--; |
| |
| if (td->error) |
| exit_value++; |
| |
| done_secs += mtime_since_now(&td->epoch) / 1000; |
| profile_td_exit(td); |
| } |
| |
| if (*nr_running == cputhreads && !pending && realthreads) |
| fio_terminate_threads(TERMINATE_ALL); |
| } |
| |
| static void do_usleep(unsigned int usecs) |
| { |
| check_for_running_stats(); |
| usleep(usecs); |
| } |
| |
| /* |
| * Main function for kicking off and reaping jobs, as needed. |
| */ |
| static void run_threads(void) |
| { |
| struct thread_data *td; |
| unsigned int i, todo, nr_running, m_rate, t_rate, nr_started; |
| uint64_t spent; |
| |
| if (fio_gtod_offload && fio_start_gtod_thread()) |
| return; |
| |
| fio_idle_prof_init(); |
| |
| set_sig_handlers(); |
| |
| nr_thread = nr_process = 0; |
| for_each_td(td, i) { |
| if (td->o.use_thread) |
| nr_thread++; |
| else |
| nr_process++; |
| } |
| |
| if (output_format == FIO_OUTPUT_NORMAL) { |
| log_info("Starting "); |
| if (nr_thread) |
| log_info("%d thread%s", nr_thread, |
| nr_thread > 1 ? "s" : ""); |
| if (nr_process) { |
| if (nr_thread) |
| log_info(" and "); |
| log_info("%d process%s", nr_process, |
| nr_process > 1 ? "es" : ""); |
| } |
| log_info("\n"); |
| log_info_flush(); |
| } |
| |
| todo = thread_number; |
| nr_running = 0; |
| nr_started = 0; |
| m_rate = t_rate = 0; |
| |
| for_each_td(td, i) { |
| print_status_init(td->thread_number - 1); |
| |
| if (!td->o.create_serialize) |
| continue; |
| |
| /* |
| * do file setup here so it happens sequentially, |
| * we don't want X number of threads getting their |
| * client data interspersed on disk |
| */ |
| if (setup_files(td)) { |
| exit_value++; |
| if (td->error) |
| log_err("fio: pid=%d, err=%d/%s\n", |
| (int) td->pid, td->error, td->verror); |
| td_set_runstate(td, TD_REAPED); |
| todo--; |
| } else { |
| struct fio_file *f; |
| unsigned int j; |
| |
| /* |
| * for sharing to work, each job must always open |
| * its own files. so close them, if we opened them |
| * for creation |
| */ |
| for_each_file(td, f, j) { |
| if (fio_file_open(f)) |
| td_io_close_file(td, f); |
| } |
| } |
| } |
| |
| /* start idle threads before io threads start to run */ |
| fio_idle_prof_start(); |
| |
| set_genesis_time(); |
| |
| while (todo) { |
| struct thread_data *map[REAL_MAX_JOBS]; |
| struct timeval this_start; |
| int this_jobs = 0, left; |
| |
| /* |
| * create threads (TD_NOT_CREATED -> TD_CREATED) |
| */ |
| for_each_td(td, i) { |
| if (td->runstate != TD_NOT_CREATED) |
| continue; |
| |
| /* |
| * never got a chance to start, killed by other |
| * thread for some reason |
| */ |
| if (td->terminate) { |
| todo--; |
| continue; |
| } |
| |
| if (td->o.start_delay) { |
| spent = utime_since_genesis(); |
| |
| if (td->o.start_delay > spent) |
| continue; |
| } |
| |
| if (td->o.stonewall && (nr_started || nr_running)) { |
| dprint(FD_PROCESS, "%s: stonewall wait\n", |
| td->o.name); |
| break; |
| } |
| |
| init_disk_util(td); |
| |
| td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED); |
| td->update_rusage = 0; |
| |
| /* |
| * Set state to created. Thread will transition |
| * to TD_INITIALIZED when it's done setting up. |
| */ |
| td_set_runstate(td, TD_CREATED); |
| map[this_jobs++] = td; |
| nr_started++; |
| |
| if (td->o.use_thread) { |
| int ret; |
| |
| dprint(FD_PROCESS, "will pthread_create\n"); |
| ret = pthread_create(&td->thread, NULL, |
| thread_main, td); |
| if (ret) { |
| log_err("pthread_create: %s\n", |
| strerror(ret)); |
| nr_started--; |
| break; |
| } |
| ret = pthread_detach(td->thread); |
| if (ret) |
| log_err("pthread_detach: %s", |
| strerror(ret)); |
| } else { |
| pid_t pid; |
| dprint(FD_PROCESS, "will fork\n"); |
| pid = fork(); |
| if (!pid) { |
| int ret = fork_main(shm_id, i); |
| |
| _exit(ret); |
| } else if (i == fio_debug_jobno) |
| *fio_debug_jobp = pid; |
| } |
| dprint(FD_MUTEX, "wait on startup_mutex\n"); |
| if (fio_mutex_down_timeout(startup_mutex, 10)) { |
| log_err("fio: job startup hung? exiting.\n"); |
| fio_terminate_threads(TERMINATE_ALL); |
| fio_abort = 1; |
| nr_started--; |
| break; |
| } |
| dprint(FD_MUTEX, "done waiting on startup_mutex\n"); |
| } |
| |
| /* |
| * Wait for the started threads to transition to |
| * TD_INITIALIZED. |
| */ |
| fio_gettime(&this_start, NULL); |
| left = this_jobs; |
| while (left && !fio_abort) { |
| if (mtime_since_now(&this_start) > JOB_START_TIMEOUT) |
| break; |
| |
| do_usleep(100000); |
| |
| for (i = 0; i < this_jobs; i++) { |
| td = map[i]; |
| if (!td) |
| continue; |
| if (td->runstate == TD_INITIALIZED) { |
| map[i] = NULL; |
| left--; |
| } else if (td->runstate >= TD_EXITED) { |
| map[i] = NULL; |
| left--; |
| todo--; |
| nr_running++; /* work-around... */ |
| } |
| } |
| } |
| |
| if (left) { |
| log_err("fio: %d job%s failed to start\n", left, |
| left > 1 ? "s" : ""); |
| for (i = 0; i < this_jobs; i++) { |
| td = map[i]; |
| if (!td) |
| continue; |
| kill(td->pid, SIGTERM); |
| } |
| break; |
| } |
| |
| /* |
| * start created threads (TD_INITIALIZED -> TD_RUNNING). |
| */ |
| for_each_td(td, i) { |
| if (td->runstate != TD_INITIALIZED) |
| continue; |
| |
| if (in_ramp_time(td)) |
| td_set_runstate(td, TD_RAMP); |
| else |
| td_set_runstate(td, TD_RUNNING); |
| nr_running++; |
| nr_started--; |
| m_rate += ddir_rw_sum(td->o.ratemin); |
| t_rate += ddir_rw_sum(td->o.rate); |
| todo--; |
| fio_mutex_up(td->mutex); |
| } |
| |
| reap_threads(&nr_running, &t_rate, &m_rate); |
| |
| if (todo) |
| do_usleep(100000); |
| } |
| |
| while (nr_running) { |
| reap_threads(&nr_running, &t_rate, &m_rate); |
| do_usleep(10000); |
| } |
| |
| fio_idle_prof_stop(); |
| |
| update_io_ticks(); |
| } |
| |
| static void wait_for_disk_thread_exit(void) |
| { |
| void *ret; |
| |
| disk_util_start_exit(); |
| pthread_cond_signal(&du_cond); |
| pthread_join(disk_util_thread, &ret); |
| } |
| |
| static void free_disk_util(void) |
| { |
| disk_util_prune_entries(); |
| |
| pthread_cond_destroy(&du_cond); |
| } |
| |
| static void *disk_thread_main(void *data) |
| { |
| int ret = 0; |
| |
| fio_mutex_up(startup_mutex); |
| |
| while (!ret) { |
| uint64_t sec = DISK_UTIL_MSEC / 1000; |
| uint64_t nsec = (DISK_UTIL_MSEC % 1000) * 1000000; |
| struct timespec ts; |
| struct timeval tv; |
| |
| gettimeofday(&tv, NULL); |
| ts.tv_sec = tv.tv_sec + sec; |
| ts.tv_nsec = (tv.tv_usec * 1000) + nsec; |
| if (ts.tv_nsec > 1000000000ULL) { |
| ts.tv_nsec -= 1000000000ULL; |
| ts.tv_sec++; |
| } |
| |
| ret = pthread_cond_timedwait(&du_cond, &du_lock, &ts); |
| if (ret != ETIMEDOUT) |
| break; |
| |
| ret = update_io_ticks(); |
| |
| if (!is_backend) |
| print_thread_status(); |
| } |
| |
| return NULL; |
| } |
| |
| static int create_disk_util_thread(void) |
| { |
| int ret; |
| |
| setup_disk_util(); |
| |
| pthread_cond_init(&du_cond, NULL); |
| pthread_mutex_init(&du_lock, NULL); |
| |
| ret = pthread_create(&disk_util_thread, NULL, disk_thread_main, NULL); |
| if (ret) { |
| log_err("Can't create disk util thread: %s\n", strerror(ret)); |
| return 1; |
| } |
| |
| dprint(FD_MUTEX, "wait on startup_mutex\n"); |
| fio_mutex_down(startup_mutex); |
| dprint(FD_MUTEX, "done waiting on startup_mutex\n"); |
| return 0; |
| } |
| |
| int fio_backend(void) |
| { |
| struct thread_data *td; |
| int i; |
| |
| if (exec_profile) { |
| if (load_profile(exec_profile)) |
| return 1; |
| free(exec_profile); |
| exec_profile = NULL; |
| } |
| if (!thread_number) |
| return 0; |
| |
| if (write_bw_log) { |
| struct log_params p = { |
| .log_type = IO_LOG_TYPE_BW, |
| }; |
| |
| setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log"); |
| setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log"); |
| setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log"); |
| } |
| |
| startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED); |
| if (startup_mutex == NULL) |
| return 1; |
| |
| set_genesis_time(); |
| stat_init(); |
| create_disk_util_thread(); |
| create_status_interval_thread(); |
| |
| cgroup_list = smalloc(sizeof(*cgroup_list)); |
| INIT_FLIST_HEAD(cgroup_list); |
| |
| run_threads(); |
| |
| wait_for_disk_thread_exit(); |
| wait_for_status_interval_thread_exit(); |
| |
| if (!fio_abort) { |
| __show_run_stats(); |
| if (write_bw_log) { |
| int i; |
| |
| for (i = 0; i < DDIR_RWDIR_CNT; i++) { |
| struct io_log *log = agg_io_log[i]; |
| |
| flush_log(log); |
| free_log(log); |
| } |
| } |
| } |
| |
| for_each_td(td, i) { |
| fio_options_free(td); |
| fio_mutex_remove(td->rusage_sem); |
| td->rusage_sem = NULL; |
| } |
| |
| free_disk_util(); |
| cgroup_kill(cgroup_list); |
| sfree(cgroup_list); |
| sfree(cgroup_mnt); |
| |
| fio_mutex_remove(startup_mutex); |
| stat_exit(); |
| return exit_value; |
| } |