blob: 1914037583fb24163936e18aac7b4473aed87728 [file] [log] [blame]
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <ctype.h>
#include <string.h>
#include <assert.h>
#include <libgen.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include "fio.h"
#include "verify.h"
#include "parse.h"
#include "lib/fls.h"
#include "options.h"
#include "crc/crc32c.h"
/*
* Check if mmap/mmaphuge has a :/foo/bar/file at the end. If so, return that.
*/
static char *get_opt_postfix(const char *str)
{
char *p = strstr(str, ":");
if (!p)
return NULL;
p++;
strip_blank_front(&p);
strip_blank_end(p);
return strdup(p);
}
static int converthexchartoint(char a)
{
int base;
switch(a) {
case '0'...'9':
base = '0';
break;
case 'A'...'F':
base = 'A' - 10;
break;
case 'a'...'f':
base = 'a' - 10;
break;
default:
base = 0;
}
return (a - base);
}
static int bs_cmp(const void *p1, const void *p2)
{
const struct bssplit *bsp1 = p1;
const struct bssplit *bsp2 = p2;
return bsp1->perc < bsp2->perc;
}
static int bssplit_ddir(struct thread_data *td, int ddir, char *str)
{
struct bssplit *bssplit;
unsigned int i, perc, perc_missing;
unsigned int max_bs, min_bs;
long long val;
char *fname;
td->o.bssplit_nr[ddir] = 4;
bssplit = malloc(4 * sizeof(struct bssplit));
i = 0;
max_bs = 0;
min_bs = -1;
while ((fname = strsep(&str, ":")) != NULL) {
char *perc_str;
if (!strlen(fname))
break;
/*
* grow struct buffer, if needed
*/
if (i == td->o.bssplit_nr[ddir]) {
td->o.bssplit_nr[ddir] <<= 1;
bssplit = realloc(bssplit, td->o.bssplit_nr[ddir]
* sizeof(struct bssplit));
}
perc_str = strstr(fname, "/");
if (perc_str) {
*perc_str = '\0';
perc_str++;
perc = atoi(perc_str);
if (perc > 100)
perc = 100;
else if (!perc)
perc = -1;
} else
perc = -1;
if (str_to_decimal(fname, &val, 1, td)) {
log_err("fio: bssplit conversion failed\n");
free(td->o.bssplit);
return 1;
}
if (val > max_bs)
max_bs = val;
if (val < min_bs)
min_bs = val;
bssplit[i].bs = val;
bssplit[i].perc = perc;
i++;
}
td->o.bssplit_nr[ddir] = i;
/*
* Now check if the percentages add up, and how much is missing
*/
perc = perc_missing = 0;
for (i = 0; i < td->o.bssplit_nr[ddir]; i++) {
struct bssplit *bsp = &bssplit[i];
if (bsp->perc == (unsigned char) -1)
perc_missing++;
else
perc += bsp->perc;
}
if (perc > 100) {
log_err("fio: bssplit percentages add to more than 100%%\n");
free(bssplit);
return 1;
}
/*
* If values didn't have a percentage set, divide the remains between
* them.
*/
if (perc_missing) {
for (i = 0; i < td->o.bssplit_nr[ddir]; i++) {
struct bssplit *bsp = &bssplit[i];
if (bsp->perc == (unsigned char) -1)
bsp->perc = (100 - perc) / perc_missing;
}
}
td->o.min_bs[ddir] = min_bs;
td->o.max_bs[ddir] = max_bs;
/*
* now sort based on percentages, for ease of lookup
*/
qsort(bssplit, td->o.bssplit_nr[ddir], sizeof(struct bssplit), bs_cmp);
td->o.bssplit[ddir] = bssplit;
return 0;
}
static int str_bssplit_cb(void *data, const char *input)
{
struct thread_data *td = data;
char *str, *p, *odir;
int ret = 0;
p = str = strdup(input);
strip_blank_front(&str);
strip_blank_end(str);
odir = strchr(str, ',');
if (odir) {
ret = bssplit_ddir(td, DDIR_WRITE, odir + 1);
if (!ret) {
*odir = '\0';
ret = bssplit_ddir(td, DDIR_READ, str);
}
} else {
char *op;
op = strdup(str);
ret = bssplit_ddir(td, DDIR_READ, str);
if (!ret)
ret = bssplit_ddir(td, DDIR_WRITE, op);
free(op);
}
free(p);
return ret;
}
static int str_rw_cb(void *data, const char *str)
{
struct thread_data *td = data;
char *nr = get_opt_postfix(str);
td->o.ddir_seq_nr = 1;
td->o.ddir_seq_add = 0;
if (!nr)
return 0;
if (td_random(td))
td->o.ddir_seq_nr = atoi(nr);
else {
long long val;
if (str_to_decimal(nr, &val, 1, td)) {
log_err("fio: rw postfix parsing failed\n");
free(nr);
return 1;
}
td->o.ddir_seq_add = val;
}
free(nr);
return 0;
}
#ifdef FIO_HAVE_LIBAIO
static int str_libaio_cb(void *data, const char *str)
{
struct thread_data *td = data;
if (!strcmp(str, "userspace_reap")) {
td->o.userspace_libaio_reap = 1;
return 0;
}
log_err("fio: bad libaio sub-option: %s\n", str);
return 1;
}
#endif
static int str_mem_cb(void *data, const char *mem)
{
struct thread_data *td = data;
if (td->o.mem_type == MEM_MMAPHUGE || td->o.mem_type == MEM_MMAP) {
td->mmapfile = get_opt_postfix(mem);
if (td->o.mem_type == MEM_MMAPHUGE && !td->mmapfile) {
log_err("fio: mmaphuge:/path/to/file\n");
return 1;
}
}
return 0;
}
static int str_verify_cb(void *data, const char *mem)
{
struct thread_data *td = data;
if (td->o.verify != VERIFY_CRC32C_INTEL)
return 0;
if (!crc32c_intel_works()) {
log_info("fio: System does not support hw accelerated crc32c. Falling back to sw crc32c.\n");
td->o.verify = VERIFY_CRC32C;
}
return 0;
}
static int fio_clock_source_cb(void *data, const char *str)
{
struct thread_data *td = data;
fio_clock_source = td->o.clocksource;
fio_time_init();
return 0;
}
static int str_lockmem_cb(void fio_unused *data, unsigned long long *val)
{
mlock_size = *val;
return 0;
}
static int str_rwmix_read_cb(void *data, unsigned long long *val)
{
struct thread_data *td = data;
td->o.rwmix[DDIR_READ] = *val;
td->o.rwmix[DDIR_WRITE] = 100 - *val;
return 0;
}
static int str_rwmix_write_cb(void *data, unsigned long long *val)
{
struct thread_data *td = data;
td->o.rwmix[DDIR_WRITE] = *val;
td->o.rwmix[DDIR_READ] = 100 - *val;
return 0;
}
#ifdef FIO_HAVE_IOPRIO
static int str_prioclass_cb(void *data, unsigned long long *val)
{
struct thread_data *td = data;
unsigned short mask;
/*
* mask off old class bits, str_prio_cb() may have set a default class
*/
mask = (1 << IOPRIO_CLASS_SHIFT) - 1;
td->ioprio &= mask;
td->ioprio |= *val << IOPRIO_CLASS_SHIFT;
td->ioprio_set = 1;
return 0;
}
static int str_prio_cb(void *data, unsigned long long *val)
{
struct thread_data *td = data;
td->ioprio |= *val;
/*
* If no class is set, assume BE
*/
if ((td->ioprio >> IOPRIO_CLASS_SHIFT) == 0)
td->ioprio |= IOPRIO_CLASS_BE << IOPRIO_CLASS_SHIFT;
td->ioprio_set = 1;
return 0;
}
#endif
static int str_exitall_cb(void)
{
exitall_on_terminate = 1;
return 0;
}
#ifdef FIO_HAVE_CPU_AFFINITY
static int str_cpumask_cb(void *data, unsigned long long *val)
{
struct thread_data *td = data;
unsigned int i;
long max_cpu;
int ret;
ret = fio_cpuset_init(&td->o.cpumask);
if (ret < 0) {
log_err("fio: cpuset_init failed\n");
td_verror(td, ret, "fio_cpuset_init");
return 1;
}
max_cpu = cpus_online();
for (i = 0; i < sizeof(int) * 8; i++) {
if ((1 << i) & *val) {
if (i > max_cpu) {
log_err("fio: CPU %d too large (max=%ld)\n", i,
max_cpu);
return 1;
}
dprint(FD_PARSE, "set cpu allowed %d\n", i);
fio_cpu_set(&td->o.cpumask, i);
}
}
td->o.cpumask_set = 1;
return 0;
}
static int set_cpus_allowed(struct thread_data *td, os_cpu_mask_t *mask,
const char *input)
{
char *cpu, *str, *p;
long max_cpu;
int ret = 0;
ret = fio_cpuset_init(mask);
if (ret < 0) {
log_err("fio: cpuset_init failed\n");
td_verror(td, ret, "fio_cpuset_init");
return 1;
}
p = str = strdup(input);
strip_blank_front(&str);
strip_blank_end(str);
max_cpu = cpus_online();
while ((cpu = strsep(&str, ",")) != NULL) {
char *str2, *cpu2;
int icpu, icpu2;
if (!strlen(cpu))
break;
str2 = cpu;
icpu2 = -1;
while ((cpu2 = strsep(&str2, "-")) != NULL) {
if (!strlen(cpu2))
break;
icpu2 = atoi(cpu2);
}
icpu = atoi(cpu);
if (icpu2 == -1)
icpu2 = icpu;
while (icpu <= icpu2) {
if (icpu >= FIO_MAX_CPUS) {
log_err("fio: your OS only supports up to"
" %d CPUs\n", (int) FIO_MAX_CPUS);
ret = 1;
break;
}
if (icpu > max_cpu) {
log_err("fio: CPU %d too large (max=%ld)\n",
icpu, max_cpu);
ret = 1;
break;
}
dprint(FD_PARSE, "set cpu allowed %d\n", icpu);
fio_cpu_set(mask, icpu);
icpu++;
}
if (ret)
break;
}
free(p);
if (!ret)
td->o.cpumask_set = 1;
return ret;
}
static int str_cpus_allowed_cb(void *data, const char *input)
{
struct thread_data *td = data;
int ret;
ret = set_cpus_allowed(td, &td->o.cpumask, input);
if (!ret)
td->o.cpumask_set = 1;
return ret;
}
static int str_verify_cpus_allowed_cb(void *data, const char *input)
{
struct thread_data *td = data;
int ret;
ret = set_cpus_allowed(td, &td->o.verify_cpumask, input);
if (!ret)
td->o.verify_cpumask_set = 1;
return ret;
}
#endif
#ifdef FIO_HAVE_TRIM
static int str_verify_trim_cb(void *data, unsigned long long *val)
{
struct thread_data *td = data;
td->o.trim_percentage = *val;
return 0;
}
#endif
static int str_fst_cb(void *data, const char *str)
{
struct thread_data *td = data;
char *nr = get_opt_postfix(str);
td->file_service_nr = 1;
if (nr) {
td->file_service_nr = atoi(nr);
free(nr);
}
return 0;
}
#ifdef FIO_HAVE_SYNC_FILE_RANGE
static int str_sfr_cb(void *data, const char *str)
{
struct thread_data *td = data;
char *nr = get_opt_postfix(str);
td->sync_file_range_nr = 1;
if (nr) {
td->sync_file_range_nr = atoi(nr);
free(nr);
}
return 0;
}
#endif
static int check_dir(struct thread_data *td, char *fname)
{
#if 0
char file[PATH_MAX], *dir;
int elen = 0;
if (td->o.directory) {
strcpy(file, td->o.directory);
strcat(file, "/");
elen = strlen(file);
}
sprintf(file + elen, "%s", fname);
dir = dirname(file);
{
struct stat sb;
/*
* We can't do this on FIO_DISKLESSIO engines. The engine isn't loaded
* yet, so we can't do this check right here...
*/
if (lstat(dir, &sb) < 0) {
int ret = errno;
log_err("fio: %s is not a directory\n", dir);
td_verror(td, ret, "lstat");
return 1;
}
if (!S_ISDIR(sb.st_mode)) {
log_err("fio: %s is not a directory\n", dir);
return 1;
}
}
#endif
return 0;
}
/*
* Return next file in the string. Files are separated with ':'. If the ':'
* is escaped with a '\', then that ':' is part of the filename and does not
* indicate a new file.
*/
static char *get_next_file_name(char **ptr)
{
char *str = *ptr;
char *p, *start;
if (!str || !strlen(str))
return NULL;
start = str;
do {
/*
* No colon, we are done
*/
p = strchr(str, ':');
if (!p) {
*ptr = NULL;
break;
}
/*
* We got a colon, but it's the first character. Skip and
* continue
*/
if (p == start) {
str = ++start;
continue;
}
if (*(p - 1) != '\\') {
*p = '\0';
*ptr = p + 1;
break;
}
memmove(p - 1, p, strlen(p) + 1);
str = p;
} while (1);
return start;
}
static int str_filename_cb(void *data, const char *input)
{
struct thread_data *td = data;
char *fname, *str, *p;
p = str = strdup(input);
strip_blank_front(&str);
strip_blank_end(str);
if (!td->files_index)
td->o.nr_files = 0;
while ((fname = get_next_file_name(&str)) != NULL) {
if (!strlen(fname))
break;
if (check_dir(td, fname)) {
free(p);
return 1;
}
add_file(td, fname);
td->o.nr_files++;
}
free(p);
return 0;
}
static int str_directory_cb(void *data, const char fio_unused *str)
{
struct thread_data *td = data;
struct stat sb;
if (lstat(td->o.directory, &sb) < 0) {
int ret = errno;
log_err("fio: %s is not a directory\n", td->o.directory);
td_verror(td, ret, "lstat");
return 1;
}
if (!S_ISDIR(sb.st_mode)) {
log_err("fio: %s is not a directory\n", td->o.directory);
return 1;
}
return 0;
}
static int str_opendir_cb(void *data, const char fio_unused *str)
{
struct thread_data *td = data;
if (!td->files_index)
td->o.nr_files = 0;
return add_dir_files(td, td->o.opendir);
}
static int str_verify_offset_cb(void *data, unsigned long long *off)
{
struct thread_data *td = data;
if (*off && *off < sizeof(struct verify_header)) {
log_err("fio: verify_offset too small\n");
return 1;
}
td->o.verify_offset = *off;
return 0;
}
static int str_verify_pattern_cb(void *data, const char *input)
{
struct thread_data *td = data;
long off;
int i = 0, j = 0, len, k, base = 10;
char* loc1, * loc2;
loc1 = strstr(input, "0x");
loc2 = strstr(input, "0X");
if (loc1 || loc2)
base = 16;
off = strtol(input, NULL, base);
if (off != LONG_MAX || errno != ERANGE) {
while (off) {
td->o.verify_pattern[i] = off & 0xff;
off >>= 8;
i++;
}
} else {
len = strlen(input);
k = len - 1;
if (base == 16) {
if (loc1)
j = loc1 - input + 2;
else
j = loc2 - input + 2;
} else
return 1;
if (len - j < MAX_PATTERN_SIZE * 2) {
while (k >= j) {
off = converthexchartoint(input[k--]);
if (k >= j)
off += (converthexchartoint(input[k--])
* 16);
td->o.verify_pattern[i++] = (char) off;
}
}
}
td->o.verify_pattern_bytes = i;
/*
* VERIFY_META could already be set
*/
if (td->o.verify == VERIFY_NONE)
td->o.verify = VERIFY_PATTERN;
return 0;
}
static int str_lockfile_cb(void *data, const char *str)
{
struct thread_data *td = data;
char *nr = get_opt_postfix(str);
td->o.lockfile_batch = 1;
if (nr) {
td->o.lockfile_batch = atoi(nr);
free(nr);
}
return 0;
}
static int str_write_bw_log_cb(void *data, const char *str)
{
struct thread_data *td = data;
if (str)
td->o.bw_log_file = strdup(str);
td->o.write_bw_log = 1;
return 0;
}
static int str_write_lat_log_cb(void *data, const char *str)
{
struct thread_data *td = data;
if (str)
td->o.lat_log_file = strdup(str);
td->o.write_lat_log = 1;
return 0;
}
static int str_gtod_reduce_cb(void *data, int *il)
{
struct thread_data *td = data;
int val = *il;
td->o.disable_lat = !!val;
td->o.disable_clat = !!val;
td->o.disable_slat = !!val;
td->o.disable_bw = !!val;
if (val)
td->tv_cache_mask = 63;
return 0;
}
static int str_gtod_cpu_cb(void *data, long long *il)
{
struct thread_data *td = data;
int val = *il;
td->o.gtod_cpu = val;
td->o.gtod_offload = 1;
return 0;
}
static int str_size_cb(void *data, unsigned long long *__val)
{
struct thread_data *td = data;
unsigned long long v = *__val;
if (parse_is_percent(v)) {
td->o.size = 0;
td->o.size_percent = -1ULL - v;
} else
td->o.size = v;
return 0;
}
static int rw_verify(struct fio_option *o, void *data)
{
struct thread_data *td = data;
if (read_only && td_write(td)) {
log_err("fio: job <%s> has write bit set, but fio is in"
" read-only mode\n", td->o.name);
return 1;
}
return 0;
}
static int gtod_cpu_verify(struct fio_option *o, void *data)
{
#ifndef FIO_HAVE_CPU_AFFINITY
struct thread_data *td = data;
if (td->o.gtod_cpu) {
log_err("fio: platform must support CPU affinity for"
"gettimeofday() offloading\n");
return 1;
}
#endif
return 0;
}
static int kb_base_verify(struct fio_option *o, void *data)
{
struct thread_data *td = data;
if (td->o.kb_base != 1024 && td->o.kb_base != 1000) {
log_err("fio: kb_base set to nonsensical value: %u\n",
td->o.kb_base);
return 1;
}
return 0;
}
/*
* Map of job/command line options
*/
static struct fio_option options[FIO_MAX_OPTS] = {
{
.name = "description",
.type = FIO_OPT_STR_STORE,
.off1 = td_var_offset(description),
.help = "Text job description",
},
{
.name = "name",
.type = FIO_OPT_STR_STORE,
.off1 = td_var_offset(name),
.help = "Name of this job",
},
{
.name = "directory",
.type = FIO_OPT_STR_STORE,
.off1 = td_var_offset(directory),
.cb = str_directory_cb,
.help = "Directory to store files in",
},
{
.name = "filename",
.type = FIO_OPT_STR_STORE,
.off1 = td_var_offset(filename),
.cb = str_filename_cb,
.prio = -1, /* must come after "directory" */
.help = "File(s) to use for the workload",
},
{
.name = "kb_base",
.type = FIO_OPT_INT,
.off1 = td_var_offset(kb_base),
.verify = kb_base_verify,
.prio = 1,
.def = "1024",
.help = "How many bytes per KB for reporting (1000 or 1024)",
},
{
.name = "lockfile",
.type = FIO_OPT_STR,
.cb = str_lockfile_cb,
.off1 = td_var_offset(file_lock_mode),
.help = "Lock file when doing IO to it",
.parent = "filename",
.def = "none",
.posval = {
{ .ival = "none",
.oval = FILE_LOCK_NONE,
.help = "No file locking",
},
{ .ival = "exclusive",
.oval = FILE_LOCK_EXCLUSIVE,
.help = "Exclusive file lock",
},
{
.ival = "readwrite",
.oval = FILE_LOCK_READWRITE,
.help = "Read vs write lock",
},
},
},
{
.name = "opendir",
.type = FIO_OPT_STR_STORE,
.off1 = td_var_offset(opendir),
.cb = str_opendir_cb,
.help = "Recursively add files from this directory and down",
},
{
.name = "rw",
.alias = "readwrite",
.type = FIO_OPT_STR,
.cb = str_rw_cb,
.off1 = td_var_offset(td_ddir),
.help = "IO direction",
.def = "read",
.verify = rw_verify,
.posval = {
{ .ival = "read",
.oval = TD_DDIR_READ,
.help = "Sequential read",
},
{ .ival = "write",
.oval = TD_DDIR_WRITE,
.help = "Sequential write",
},
{ .ival = "randread",
.oval = TD_DDIR_RANDREAD,
.help = "Random read",
},
{ .ival = "randwrite",
.oval = TD_DDIR_RANDWRITE,
.help = "Random write",
},
{ .ival = "rw",
.oval = TD_DDIR_RW,
.help = "Sequential read and write mix",
},
{ .ival = "randrw",
.oval = TD_DDIR_RANDRW,
.help = "Random read and write mix"
},
},
},
{
.name = "rw_sequencer",
.type = FIO_OPT_STR,
.off1 = td_var_offset(rw_seq),
.help = "IO offset generator modifier",
.def = "sequential",
.posval = {
{ .ival = "sequential",
.oval = RW_SEQ_SEQ,
.help = "Generate sequential offsets",
},
{ .ival = "identical",
.oval = RW_SEQ_IDENT,
.help = "Generate identical offsets",
},
},
},
{
.name = "ioengine",
.type = FIO_OPT_STR_STORE,
.off1 = td_var_offset(ioengine),
.help = "IO engine to use",
.def = FIO_PREFERRED_ENGINE,
.posval = {
{ .ival = "sync",
.help = "Use read/write",
},
{ .ival = "psync",
.help = "Use pread/pwrite",
},
{ .ival = "vsync",
.help = "Use readv/writev",
},
#ifdef FIO_HAVE_LIBAIO
{ .ival = "libaio",
.help = "Linux native asynchronous IO",
.cb = str_libaio_cb,
},
#endif
#ifdef FIO_HAVE_POSIXAIO
{ .ival = "posixaio",
.help = "POSIX asynchronous IO",
},
#endif
#ifdef FIO_HAVE_SOLARISAIO
{ .ival = "solarisaio",
.help = "Solaris native asynchronous IO",
},
#endif
#ifdef FIO_HAVE_WINDOWSAIO
{ .ival = "windowsaio",
.help = "Windows native asynchronous IO"
},
#endif
{ .ival = "mmap",
.help = "Memory mapped IO"
},
#ifdef FIO_HAVE_SPLICE
{ .ival = "splice",
.help = "splice/vmsplice based IO",
},
{ .ival = "netsplice",
.help = "splice/vmsplice to/from the network",
},
#endif
#ifdef FIO_HAVE_SGIO
{ .ival = "sg",
.help = "SCSI generic v3 IO",
},
#endif
{ .ival = "null",
.help = "Testing engine (no data transfer)",
},
{ .ival = "net",
.help = "Network IO",
},
#ifdef FIO_HAVE_SYSLET
{ .ival = "syslet-rw",
.help = "syslet enabled async pread/pwrite IO",
},
#endif
{ .ival = "cpuio",
.help = "CPU cycle burner engine",
},
#ifdef FIO_HAVE_GUASI
{ .ival = "guasi",
.help = "GUASI IO engine",
},
#endif
#ifdef FIO_HAVE_BINJECT
{ .ival = "binject",
.help = "binject direct inject block engine",
},
#endif
#ifdef FIO_HAVE_RDMA
{ .ival = "rdma",
.help = "RDMA IO engine",
},
#endif
{ .ival = "external",
.help = "Load external engine (append name)",
},
},
},
{
.name = "iodepth",
.type = FIO_OPT_INT,
.off1 = td_var_offset(iodepth),
.help = "Number of IO buffers to keep in flight",
.minval = 1,
.def = "1",
},
{
.name = "iodepth_batch",
.alias = "iodepth_batch_submit",
.type = FIO_OPT_INT,
.off1 = td_var_offset(iodepth_batch),
.help = "Number of IO buffers to submit in one go",
.parent = "iodepth",
.minval = 1,
.def = "1",
},
{
.name = "iodepth_batch_complete",
.type = FIO_OPT_INT,
.off1 = td_var_offset(iodepth_batch_complete),
.help = "Number of IO buffers to retrieve in one go",
.parent = "iodepth",
.minval = 0,
.def = "1",
},
{
.name = "iodepth_low",
.type = FIO_OPT_INT,
.off1 = td_var_offset(iodepth_low),
.help = "Low water mark for queuing depth",
.parent = "iodepth",
},
{
.name = "size",
.type = FIO_OPT_STR_VAL,
.cb = str_size_cb,
.help = "Total size of device or files",
},
{
.name = "fill_device",
.alias = "fill_fs",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(fill_device),
.help = "Write until an ENOSPC error occurs",
.def = "0",
},
{
.name = "filesize",
.type = FIO_OPT_STR_VAL,
.off1 = td_var_offset(file_size_low),
.off2 = td_var_offset(file_size_high),
.minval = 1,
.help = "Size of individual files",
},
{
.name = "offset",
.alias = "fileoffset",
.type = FIO_OPT_STR_VAL,
.off1 = td_var_offset(start_offset),
.help = "Start IO from this offset",
.def = "0",
},
{
.name = "bs",
.alias = "blocksize",
.type = FIO_OPT_INT,
.off1 = td_var_offset(bs[DDIR_READ]),
.off2 = td_var_offset(bs[DDIR_WRITE]),
.minval = 1,
.help = "Block size unit",
.def = "4k",
.parent = "rw",
},
{
.name = "ba",
.alias = "blockalign",
.type = FIO_OPT_INT,
.off1 = td_var_offset(ba[DDIR_READ]),
.off2 = td_var_offset(ba[DDIR_WRITE]),
.minval = 1,
.help = "IO block offset alignment",
.parent = "rw",
},
{
.name = "bsrange",
.alias = "blocksize_range",
.type = FIO_OPT_RANGE,
.off1 = td_var_offset(min_bs[DDIR_READ]),
.off2 = td_var_offset(max_bs[DDIR_READ]),
.off3 = td_var_offset(min_bs[DDIR_WRITE]),
.off4 = td_var_offset(max_bs[DDIR_WRITE]),
.minval = 1,
.help = "Set block size range (in more detail than bs)",
.parent = "rw",
},
{
.name = "bssplit",
.type = FIO_OPT_STR,
.cb = str_bssplit_cb,
.help = "Set a specific mix of block sizes",
.parent = "rw",
},
{
.name = "bs_unaligned",
.alias = "blocksize_unaligned",
.type = FIO_OPT_STR_SET,
.off1 = td_var_offset(bs_unaligned),
.help = "Don't sector align IO buffer sizes",
.parent = "rw",
},
{
.name = "randrepeat",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(rand_repeatable),
.help = "Use repeatable random IO pattern",
.def = "1",
.parent = "rw",
},
{
.name = "use_os_rand",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(use_os_rand),
.help = "Set to use OS random generator",
.def = "0",
.parent = "rw",
},
{
.name = "norandommap",
.type = FIO_OPT_STR_SET,
.off1 = td_var_offset(norandommap),
.help = "Accept potential duplicate random blocks",
.parent = "rw",
},
{
.name = "softrandommap",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(softrandommap),
.help = "Set norandommap if randommap allocation fails",
.parent = "norandommap",
.def = "0",
},
{
.name = "nrfiles",
.alias = "nr_files",
.type = FIO_OPT_INT,
.off1 = td_var_offset(nr_files),
.help = "Split job workload between this number of files",
.def = "1",
},
{
.name = "openfiles",
.type = FIO_OPT_INT,
.off1 = td_var_offset(open_files),
.help = "Number of files to keep open at the same time",
},
{
.name = "file_service_type",
.type = FIO_OPT_STR,
.cb = str_fst_cb,
.off1 = td_var_offset(file_service_type),
.help = "How to select which file to service next",
.def = "roundrobin",
.posval = {
{ .ival = "random",
.oval = FIO_FSERVICE_RANDOM,
.help = "Choose a file at random",
},
{ .ival = "roundrobin",
.oval = FIO_FSERVICE_RR,
.help = "Round robin select files",
},
{ .ival = "sequential",
.oval = FIO_FSERVICE_SEQ,
.help = "Finish one file before moving to the next",
},
},
.parent = "nrfiles",
},
#ifdef FIO_HAVE_FALLOCATE
{
.name = "fallocate",
.type = FIO_OPT_STR,
.off1 = td_var_offset(fallocate_mode),
.help = "Whether pre-allocation is performed when laying out files",
.def = "posix",
.posval = {
{ .ival = "none",
.oval = FIO_FALLOCATE_NONE,
.help = "Do not pre-allocate space",
},
{ .ival = "posix",
.oval = FIO_FALLOCATE_POSIX,
.help = "Use posix_fallocate()",
},
#ifdef FIO_HAVE_LINUX_FALLOCATE
{ .ival = "keep",
.oval = FIO_FALLOCATE_KEEP_SIZE,
.help = "Use fallocate(..., FALLOC_FL_KEEP_SIZE, ...)",
},
#endif
/* Compatibility with former boolean values */
{ .ival = "0",
.oval = FIO_FALLOCATE_NONE,
.help = "Alias for 'none'",
},
{ .ival = "1",
.oval = FIO_FALLOCATE_POSIX,
.help = "Alias for 'posix'",
},
},
},
#endif /* FIO_HAVE_FALLOCATE */
{
.name = "fadvise_hint",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(fadvise_hint),
.help = "Use fadvise() to advise the kernel on IO pattern",
.def = "1",
},
{
.name = "fsync",
.type = FIO_OPT_INT,
.off1 = td_var_offset(fsync_blocks),
.help = "Issue fsync for writes every given number of blocks",
.def = "0",
},
{
.name = "fdatasync",
.type = FIO_OPT_INT,
.off1 = td_var_offset(fdatasync_blocks),
.help = "Issue fdatasync for writes every given number of blocks",
.def = "0",
},
{
.name = "write_barrier",
.type = FIO_OPT_INT,
.off1 = td_var_offset(barrier_blocks),
.help = "Make every Nth write a barrier write",
.def = "0",
},
#ifdef FIO_HAVE_SYNC_FILE_RANGE
{
.name = "sync_file_range",
.posval = {
{ .ival = "wait_before",
.oval = SYNC_FILE_RANGE_WAIT_BEFORE,
.help = "SYNC_FILE_RANGE_WAIT_BEFORE",
.or = 1,
},
{ .ival = "write",
.oval = SYNC_FILE_RANGE_WRITE,
.help = "SYNC_FILE_RANGE_WRITE",
.or = 1,
},
{
.ival = "wait_after",
.oval = SYNC_FILE_RANGE_WAIT_AFTER,
.help = "SYNC_FILE_RANGE_WAIT_AFTER",
.or = 1,
},
},
.type = FIO_OPT_STR_MULTI,
.cb = str_sfr_cb,
.off1 = td_var_offset(sync_file_range),
.help = "Use sync_file_range()",
},
#endif
{
.name = "direct",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(odirect),
.help = "Use O_DIRECT IO (negates buffered)",
.def = "0",
},
{
.name = "buffered",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(odirect),
.neg = 1,
.help = "Use buffered IO (negates direct)",
.def = "1",
},
{
.name = "overwrite",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(overwrite),
.help = "When writing, set whether to overwrite current data",
.def = "0",
},
{
.name = "loops",
.type = FIO_OPT_INT,
.off1 = td_var_offset(loops),
.help = "Number of times to run the job",
.def = "1",
},
{
.name = "numjobs",
.type = FIO_OPT_INT,
.off1 = td_var_offset(numjobs),
.help = "Duplicate this job this many times",
.def = "1",
},
{
.name = "startdelay",
.type = FIO_OPT_STR_VAL_TIME,
.off1 = td_var_offset(start_delay),
.help = "Only start job when this period has passed",
.def = "0",
},
{
.name = "runtime",
.alias = "timeout",
.type = FIO_OPT_STR_VAL_TIME,
.off1 = td_var_offset(timeout),
.help = "Stop workload when this amount of time has passed",
.def = "0",
},
{
.name = "time_based",
.type = FIO_OPT_STR_SET,
.off1 = td_var_offset(time_based),
.help = "Keep running until runtime/timeout is met",
},
{
.name = "ramp_time",
.type = FIO_OPT_STR_VAL_TIME,
.off1 = td_var_offset(ramp_time),
.help = "Ramp up time before measuring performance",
},
{
.name = "clocksource",
.type = FIO_OPT_STR,
.cb = fio_clock_source_cb,
.off1 = td_var_offset(clocksource),
.help = "What type of timing source to use",
.posval = {
{ .ival = "gettimeofday",
.oval = CS_GTOD,
.help = "Use gettimeofday(2) for timing",
},
{ .ival = "clock_gettime",
.oval = CS_CGETTIME,
.help = "Use clock_gettime(2) for timing",
},
#ifdef ARCH_HAVE_CPU_CLOCK
{ .ival = "cpu",
.oval = CS_CPUCLOCK,
.help = "Use CPU private clock",
},
#endif
},
},
{
.name = "mem",
.alias = "iomem",
.type = FIO_OPT_STR,
.cb = str_mem_cb,
.off1 = td_var_offset(mem_type),
.help = "Backing type for IO buffers",
.def = "malloc",
.posval = {
{ .ival = "malloc",
.oval = MEM_MALLOC,
.help = "Use malloc(3) for IO buffers",
},
{ .ival = "shm",
.oval = MEM_SHM,
.help = "Use shared memory segments for IO buffers",
},
#ifdef FIO_HAVE_HUGETLB
{ .ival = "shmhuge",
.oval = MEM_SHMHUGE,
.help = "Like shm, but use huge pages",
},
#endif
{ .ival = "mmap",
.oval = MEM_MMAP,
.help = "Use mmap(2) (file or anon) for IO buffers",
},
#ifdef FIO_HAVE_HUGETLB
{ .ival = "mmaphuge",
.oval = MEM_MMAPHUGE,
.help = "Like mmap, but use huge pages",
},
#endif
},
},
{
.name = "iomem_align",
.alias = "mem_align",
.type = FIO_OPT_INT,
.off1 = td_var_offset(mem_align),
.minval = 0,
.help = "IO memory buffer offset alignment",
.def = "0",
.parent = "iomem",
},
{
.name = "verify",
.type = FIO_OPT_STR,
.off1 = td_var_offset(verify),
.help = "Verify data written",
.cb = str_verify_cb,
.def = "0",
.posval = {
{ .ival = "0",
.oval = VERIFY_NONE,
.help = "Don't do IO verification",
},
{ .ival = "md5",
.oval = VERIFY_MD5,
.help = "Use md5 checksums for verification",
},
{ .ival = "crc64",
.oval = VERIFY_CRC64,
.help = "Use crc64 checksums for verification",
},
{ .ival = "crc32",
.oval = VERIFY_CRC32,
.help = "Use crc32 checksums for verification",
},
{ .ival = "crc32c-intel",
.oval = VERIFY_CRC32C_INTEL,
.help = "Use hw crc32c checksums for verification",
},
{ .ival = "crc32c",
.oval = VERIFY_CRC32C,
.help = "Use crc32c checksums for verification",
},
{ .ival = "crc16",
.oval = VERIFY_CRC16,
.help = "Use crc16 checksums for verification",
},
{ .ival = "crc7",
.oval = VERIFY_CRC7,
.help = "Use crc7 checksums for verification",
},
{ .ival = "sha1",
.oval = VERIFY_SHA1,
.help = "Use sha1 checksums for verification",
},
{ .ival = "sha256",
.oval = VERIFY_SHA256,
.help = "Use sha256 checksums for verification",
},
{ .ival = "sha512",
.oval = VERIFY_SHA512,
.help = "Use sha512 checksums for verification",
},
{ .ival = "meta",
.oval = VERIFY_META,
.help = "Use io information",
},
{
.ival = "null",
.oval = VERIFY_NULL,
.help = "Pretend to verify",
},
},
},
{
.name = "do_verify",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(do_verify),
.help = "Run verification stage after write",
.def = "1",
.parent = "verify",
},
{
.name = "verifysort",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(verifysort),
.help = "Sort written verify blocks for read back",
.def = "1",
.parent = "verify",
},
{
.name = "verify_interval",
.type = FIO_OPT_INT,
.off1 = td_var_offset(verify_interval),
.minval = 2 * sizeof(struct verify_header),
.help = "Store verify buffer header every N bytes",
.parent = "verify",
},
{
.name = "verify_offset",
.type = FIO_OPT_INT,
.help = "Offset verify header location by N bytes",
.def = "0",
.cb = str_verify_offset_cb,
.parent = "verify",
},
{
.name = "verify_pattern",
.type = FIO_OPT_STR,
.cb = str_verify_pattern_cb,
.help = "Fill pattern for IO buffers",
.parent = "verify",
},
{
.name = "verify_fatal",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(verify_fatal),
.def = "0",
.help = "Exit on a single verify failure, don't continue",
.parent = "verify",
},
{
.name = "verify_dump",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(verify_dump),
.def = "1",
.help = "Dump contents of good and bad blocks on failure",
.parent = "verify",
},
{
.name = "verify_async",
.type = FIO_OPT_INT,
.off1 = td_var_offset(verify_async),
.def = "0",
.help = "Number of async verifier threads to use",
.parent = "verify",
},
{
.name = "verify_backlog",
.type = FIO_OPT_STR_VAL,
.off1 = td_var_offset(verify_backlog),
.help = "Verify after this number of blocks are written",
.parent = "verify",
},
{
.name = "verify_backlog_batch",
.type = FIO_OPT_INT,
.off1 = td_var_offset(verify_batch),
.help = "Verify this number of IO blocks",
.parent = "verify",
},
#ifdef FIO_HAVE_CPU_AFFINITY
{
.name = "verify_async_cpus",
.type = FIO_OPT_STR,
.cb = str_verify_cpus_allowed_cb,
.help = "Set CPUs allowed for async verify threads",
.parent = "verify_async",
},
#endif
#ifdef FIO_HAVE_TRIM
{
.name = "trim_percentage",
.type = FIO_OPT_INT,
.cb = str_verify_trim_cb,
.maxval = 100,
.help = "Number of verify blocks to discard/trim",
.parent = "verify",
.def = "0",
},
{
.name = "trim_verify_zero",
.type = FIO_OPT_INT,
.help = "Verify that trim/discarded blocks are returned as zeroes",
.off1 = td_var_offset(trim_zero),
.parent = "trim_percentage",
.def = "1",
},
{
.name = "trim_backlog",
.type = FIO_OPT_STR_VAL,
.off1 = td_var_offset(trim_backlog),
.help = "Trim after this number of blocks are written",
.parent = "trim_percentage",
},
{
.name = "trim_backlog_batch",
.type = FIO_OPT_INT,
.off1 = td_var_offset(trim_batch),
.help = "Trim this number of IO blocks",
.parent = "trim_percentage",
},
#endif
{
.name = "write_iolog",
.type = FIO_OPT_STR_STORE,
.off1 = td_var_offset(write_iolog_file),
.help = "Store IO pattern to file",
},
{
.name = "read_iolog",
.type = FIO_OPT_STR_STORE,
.off1 = td_var_offset(read_iolog_file),
.help = "Playback IO pattern from file",
},
{
.name = "replay_no_stall",
.type = FIO_OPT_INT,
.off1 = td_var_offset(no_stall),
.def = "0",
.parent = "read_iolog",
.help = "Playback IO pattern file as fast as possible without stalls",
},
{
.name = "replay_redirect",
.type = FIO_OPT_STR_STORE,
.off1 = td_var_offset(replay_redirect),
.parent = "read_iolog",
.help = "Replay all I/O onto this device, regardless of trace device",
},
{
.name = "exec_prerun",
.type = FIO_OPT_STR_STORE,
.off1 = td_var_offset(exec_prerun),
.help = "Execute this file prior to running job",
},
{
.name = "exec_postrun",
.type = FIO_OPT_STR_STORE,
.off1 = td_var_offset(exec_postrun),
.help = "Execute this file after running job",
},
#ifdef FIO_HAVE_IOSCHED_SWITCH
{
.name = "ioscheduler",
.type = FIO_OPT_STR_STORE,
.off1 = td_var_offset(ioscheduler),
.help = "Use this IO scheduler on the backing device",
},
#endif
{
.name = "zonesize",
.type = FIO_OPT_STR_VAL,
.off1 = td_var_offset(zone_size),
.help = "Give size of an IO zone",
.def = "0",
},
{
.name = "zoneskip",
.type = FIO_OPT_STR_VAL,
.off1 = td_var_offset(zone_skip),
.help = "Space between IO zones",
.def = "0",
},
{
.name = "lockmem",
.type = FIO_OPT_STR_VAL,
.cb = str_lockmem_cb,
.help = "Lock down this amount of memory",
.def = "0",
},
{
.name = "rwmixread",
.type = FIO_OPT_INT,
.cb = str_rwmix_read_cb,
.maxval = 100,
.help = "Percentage of mixed workload that is reads",
.def = "50",
},
{
.name = "rwmixwrite",
.type = FIO_OPT_INT,
.cb = str_rwmix_write_cb,
.maxval = 100,
.help = "Percentage of mixed workload that is writes",
.def = "50",
},
{
.name = "rwmixcycle",
.type = FIO_OPT_DEPRECATED,
},
{
.name = "nice",
.type = FIO_OPT_INT,
.off1 = td_var_offset(nice),
.help = "Set job CPU nice value",
.minval = -19,
.maxval = 20,
.def = "0",
},
#ifdef FIO_HAVE_IOPRIO
{
.name = "prio",
.type = FIO_OPT_INT,
.cb = str_prio_cb,
.help = "Set job IO priority value",
.minval = 0,
.maxval = 7,
},
{
.name = "prioclass",
.type = FIO_OPT_INT,
.cb = str_prioclass_cb,
.help = "Set job IO priority class",
.minval = 0,
.maxval = 3,
},
#endif
{
.name = "thinktime",
.type = FIO_OPT_INT,
.off1 = td_var_offset(thinktime),
.help = "Idle time between IO buffers (usec)",
.def = "0",
},
{
.name = "thinktime_spin",
.type = FIO_OPT_INT,
.off1 = td_var_offset(thinktime_spin),
.help = "Start think time by spinning this amount (usec)",
.def = "0",
.parent = "thinktime",
},
{
.name = "thinktime_blocks",
.type = FIO_OPT_INT,
.off1 = td_var_offset(thinktime_blocks),
.help = "IO buffer period between 'thinktime'",
.def = "1",
.parent = "thinktime",
},
{
.name = "rate",
.type = FIO_OPT_INT,
.off1 = td_var_offset(rate[0]),
.off2 = td_var_offset(rate[1]),
.help = "Set bandwidth rate",
},
{
.name = "ratemin",
.type = FIO_OPT_INT,
.off1 = td_var_offset(ratemin[0]),
.off2 = td_var_offset(ratemin[1]),
.help = "Job must meet this rate or it will be shutdown",
.parent = "rate",
},
{
.name = "rate_iops",
.type = FIO_OPT_INT,
.off1 = td_var_offset(rate_iops[0]),
.off2 = td_var_offset(rate_iops[1]),
.help = "Limit IO used to this number of IO operations/sec",
},
{
.name = "rate_iops_min",
.type = FIO_OPT_INT,
.off1 = td_var_offset(rate_iops_min[0]),
.off2 = td_var_offset(rate_iops_min[1]),
.help = "Job must meet this rate or it will be shut down",
.parent = "rate_iops",
},
{
.name = "ratecycle",
.type = FIO_OPT_INT,
.off1 = td_var_offset(ratecycle),
.help = "Window average for rate limits (msec)",
.def = "1000",
.parent = "rate",
},
{
.name = "invalidate",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(invalidate_cache),
.help = "Invalidate buffer/page cache prior to running job",
.def = "1",
},
{
.name = "sync",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(sync_io),
.help = "Use O_SYNC for buffered writes",
.def = "0",
.parent = "buffered",
},
{
.name = "bwavgtime",
.type = FIO_OPT_INT,
.off1 = td_var_offset(bw_avg_time),
.help = "Time window over which to calculate bandwidth"
" (msec)",
.def = "500",
},
{
.name = "create_serialize",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(create_serialize),
.help = "Serialize creating of job files",
.def = "1",
},
{
.name = "create_fsync",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(create_fsync),
.help = "fsync file after creation",
.def = "1",
},
{
.name = "create_on_open",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(create_on_open),
.help = "Create files when they are opened for IO",
.def = "0",
},
{
.name = "pre_read",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(pre_read),
.help = "Pre-read files before starting official testing",
.def = "0",
},
{
.name = "cpuload",
.type = FIO_OPT_INT,
.off1 = td_var_offset(cpuload),
.help = "Use this percentage of CPU",
},
{
.name = "cpuchunks",
.type = FIO_OPT_INT,
.off1 = td_var_offset(cpucycle),
.help = "Length of the CPU burn cycles (usecs)",
.def = "50000",
.parent = "cpuload",
},
#ifdef FIO_HAVE_CPU_AFFINITY
{
.name = "cpumask",
.type = FIO_OPT_INT,
.cb = str_cpumask_cb,
.help = "CPU affinity mask",
},
{
.name = "cpus_allowed",
.type = FIO_OPT_STR,
.cb = str_cpus_allowed_cb,
.help = "Set CPUs allowed",
},
#endif
{
.name = "end_fsync",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(end_fsync),
.help = "Include fsync at the end of job",
.def = "0",
},
{
.name = "fsync_on_close",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(fsync_on_close),
.help = "fsync files on close",
.def = "0",
},
{
.name = "unlink",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(unlink),
.help = "Unlink created files after job has completed",
.def = "0",
},
{
.name = "exitall",
.type = FIO_OPT_STR_SET,
.cb = str_exitall_cb,
.help = "Terminate all jobs when one exits",
},
{
.name = "stonewall",
.alias = "wait_for_previous",
.type = FIO_OPT_STR_SET,
.off1 = td_var_offset(stonewall),
.help = "Insert a hard barrier between this job and previous",
},
{
.name = "new_group",
.type = FIO_OPT_STR_SET,
.off1 = td_var_offset(new_group),
.help = "Mark the start of a new group (for reporting)",
},
{
.name = "thread",
.type = FIO_OPT_STR_SET,
.off1 = td_var_offset(use_thread),
.help = "Use threads instead of forks",
},
{
.name = "write_bw_log",
.type = FIO_OPT_STR,
.off1 = td_var_offset(write_bw_log),
.cb = str_write_bw_log_cb,
.help = "Write log of bandwidth during run",
},
{
.name = "write_lat_log",
.type = FIO_OPT_STR,
.off1 = td_var_offset(write_lat_log),
.cb = str_write_lat_log_cb,
.help = "Write log of latency during run",
},
{
.name = "hugepage-size",
.type = FIO_OPT_INT,
.off1 = td_var_offset(hugepage_size),
.help = "When using hugepages, specify size of each page",
.def = __fio_stringify(FIO_HUGE_PAGE),
},
{
.name = "group_reporting",
.type = FIO_OPT_STR_SET,
.off1 = td_var_offset(group_reporting),
.help = "Do reporting on a per-group basis",
},
{
.name = "zero_buffers",
.type = FIO_OPT_STR_SET,
.off1 = td_var_offset(zero_buffers),
.help = "Init IO buffers to all zeroes",
},
{
.name = "refill_buffers",
.type = FIO_OPT_STR_SET,
.off1 = td_var_offset(refill_buffers),
.help = "Refill IO buffers on every IO submit",
},
{
.name = "scramble_buffers",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(scramble_buffers),
.help = "Slightly scramble buffers on every IO submit",
.def = "1",
},
{
.name = "clat_percentiles",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(clat_percentiles),
.help = "Enable the reporting of completion latency percentiles",
.def = "0",
},
{
.name = "percentile_list",
.type = FIO_OPT_FLOAT_LIST,
.off1 = td_var_offset(percentile_list),
.off2 = td_var_offset(overwrite_plist),
.help = "Specify a custom list of percentiles to report",
.maxlen = FIO_IO_U_LIST_MAX_LEN,
.minfp = 0.0,
.maxfp = 100.0,
},
#ifdef FIO_HAVE_DISK_UTIL
{
.name = "disk_util",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(do_disk_util),
.help = "Log disk utilization statistics",
.def = "1",
},
#endif
{
.name = "gtod_reduce",
.type = FIO_OPT_BOOL,
.help = "Greatly reduce number of gettimeofday() calls",
.cb = str_gtod_reduce_cb,
.def = "0",
},
{
.name = "disable_lat",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(disable_lat),
.help = "Disable latency numbers",
.parent = "gtod_reduce",
.def = "0",
},
{
.name = "disable_clat",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(disable_clat),
.help = "Disable completion latency numbers",
.parent = "gtod_reduce",
.def = "0",
},
{
.name = "disable_slat",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(disable_slat),
.help = "Disable submission latency numbers",
.parent = "gtod_reduce",
.def = "0",
},
{
.name = "disable_bw_measurement",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(disable_bw),
.help = "Disable bandwidth logging",
.parent = "gtod_reduce",
.def = "0",
},
{
.name = "gtod_cpu",
.type = FIO_OPT_INT,
.cb = str_gtod_cpu_cb,
.help = "Set up dedicated gettimeofday() thread on this CPU",
.verify = gtod_cpu_verify,
},
{
.name = "continue_on_error",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(continue_on_error),
.help = "Continue on non-fatal errors during IO",
.def = "0",
},
{
.name = "profile",
.type = FIO_OPT_STR_STORE,
.off1 = td_var_offset(profile),
.help = "Select a specific builtin performance test",
},
{
.name = "cgroup",
.type = FIO_OPT_STR_STORE,
.off1 = td_var_offset(cgroup),
.help = "Add job to cgroup of this name",
},
{
.name = "cgroup_weight",
.type = FIO_OPT_INT,
.off1 = td_var_offset(cgroup_weight),
.help = "Use given weight for cgroup",
.minval = 100,
.maxval = 1000,
},
{
.name = "cgroup_nodelete",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(cgroup_nodelete),
.help = "Do not delete cgroups after job completion",
.def = "0",
},
{
.name = "uid",
.type = FIO_OPT_INT,
.off1 = td_var_offset(uid),
.help = "Run job with this user ID",
},
{
.name = "gid",
.type = FIO_OPT_INT,
.off1 = td_var_offset(gid),
.help = "Run job with this group ID",
},
{
.name = NULL,
},
};
static void add_to_lopt(struct option *lopt, struct fio_option *o,
const char *name)
{
lopt->name = (char *) name;
lopt->val = FIO_GETOPT_JOB;
if (o->type == FIO_OPT_STR_SET)
lopt->has_arg = no_argument;
else
lopt->has_arg = required_argument;
}
void fio_options_dup_and_init(struct option *long_options)
{
struct fio_option *o;
unsigned int i;
options_init(options);
i = 0;
while (long_options[i].name)
i++;
o = &options[0];
while (o->name) {
add_to_lopt(&long_options[i], o, o->name);
if (o->alias) {
i++;
add_to_lopt(&long_options[i], o, o->alias);
}
i++;
o++;
assert(i < FIO_NR_OPTIONS);
}
}
struct fio_keyword {
const char *word;
const char *desc;
char *replace;
};
static struct fio_keyword fio_keywords[] = {
{
.word = "$pagesize",
.desc = "Page size in the system",
},
{
.word = "$mb_memory",
.desc = "Megabytes of memory online",
},
{
.word = "$ncpus",
.desc = "Number of CPUs online in the system",
},
{
.word = NULL,
},
};
void fio_keywords_init(void)
{
unsigned long long mb_memory;
char buf[128];
long l;
sprintf(buf, "%lu", page_size);
fio_keywords[0].replace = strdup(buf);
mb_memory = os_phys_mem() / (1024 * 1024);
sprintf(buf, "%llu", mb_memory);
fio_keywords[1].replace = strdup(buf);
l = cpus_online();
sprintf(buf, "%lu", l);
fio_keywords[2].replace = strdup(buf);
}
#define BC_APP "bc"
static char *bc_calc(char *str)
{
char *buf, *tmp, opt[80];
FILE *f;
int ret;
/*
* No math, just return string
*/
if (!strchr(str, '+') && !strchr(str, '-') && !strchr(str, '*') &&
!strchr(str, '/'))
return str;
/*
* Split option from value, we only need to calculate the value
*/
tmp = strchr(str, '=');
if (!tmp)
return str;
tmp++;
memset(opt, 0, sizeof(opt));
strncpy(opt, str, tmp - str);
buf = malloc(128);
sprintf(buf, "which %s > /dev/null", BC_APP);
if (system(buf)) {
log_err("fio: bc is needed for performing math\n");
free(buf);
return NULL;
}
sprintf(buf, "echo %s | %s", tmp, BC_APP);
f = popen(buf, "r");
if (!f) {
free(buf);
return NULL;
}
ret = fread(buf, 1, 128, f);
if (ret <= 0) {
free(buf);
return NULL;
}
buf[ret - 1] = '\0';
strcat(opt, buf);
strcpy(buf, opt);
pclose(f);
free(str);
return buf;
}
/*
* Look for reserved variable names and replace them with real values
*/
static char *fio_keyword_replace(char *opt)
{
char *s;
int i;
for (i = 0; fio_keywords[i].word != NULL; i++) {
struct fio_keyword *kw = &fio_keywords[i];
while ((s = strstr(opt, kw->word)) != NULL) {
char *new = malloc(strlen(opt) + 1);
char *o_org = opt;
int olen = s - opt;
int len;
/*
* Copy part of the string before the keyword and
* sprintf() the replacement after it.
*/
memcpy(new, opt, olen);
len = sprintf(new + olen, "%s", kw->replace);
/*
* If there's more in the original string, copy that
* in too
*/
opt += strlen(kw->word) + olen;
if (strlen(opt))
memcpy(new + olen + len, opt, opt - o_org - 1);
/*
* replace opt and free the old opt
*/
opt = new;
//free(o_org);
/*
* Check for potential math and invoke bc, if possible
*/
opt = bc_calc(opt);
}
}
return opt;
}
int fio_options_parse(struct thread_data *td, char **opts, int num_opts)
{
int i, ret;
sort_options(opts, options, num_opts);
for (ret = 0, i = 0; i < num_opts; i++) {
opts[i] = fio_keyword_replace(opts[i]);
ret |= parse_option(opts[i], options, td);
}
return ret;
}
int fio_cmd_option_parse(struct thread_data *td, const char *opt, char *val)
{
return parse_cmd_option(opt, val, options, td);
}
void fio_fill_default_options(struct thread_data *td)
{
fill_default_options(td, options);
}
int fio_show_option_help(const char *opt)
{
return show_cmd_help(options, opt);
}
static void __options_mem(struct thread_data *td, int alloc)
{
struct thread_options *o = &td->o;
struct fio_option *opt;
char **ptr;
int i;
for (i = 0, opt = &options[0]; opt->name; i++, opt = &options[i]) {
if (opt->type != FIO_OPT_STR_STORE)
continue;
ptr = (void *) o + opt->off1;
if (*ptr) {
if (alloc)
*ptr = strdup(*ptr);
else {
free(*ptr);
*ptr = NULL;
}
}
}
}
/*
* dupe FIO_OPT_STR_STORE options
*/
void options_mem_dupe(struct thread_data *td)
{
__options_mem(td, 1);
}
void options_mem_free(struct thread_data fio_unused *td)
{
#if 0
__options_mem(td, 0);
#endif
}
unsigned int fio_get_kb_base(void *data)
{
struct thread_data *td = data;
unsigned int kb_base = 0;
if (td)
kb_base = td->o.kb_base;
if (!kb_base)
kb_base = 1024;
return kb_base;
}
int add_option(struct fio_option *o)
{
struct fio_option *__o;
int opt_index = 0;
__o = options;
while (__o->name) {
opt_index++;
__o++;
}
memcpy(&options[opt_index], o, sizeof(*o));
return 0;
}
void invalidate_profile_options(const char *prof_name)
{
struct fio_option *o;
o = options;
while (o->name) {
if (o->prof_name && !strcmp(o->prof_name, prof_name)) {
o->type = FIO_OPT_INVALID;
o->prof_name = NULL;
}
o++;
}
}
void add_opt_posval(const char *optname, const char *ival, const char *help)
{
struct fio_option *o;
unsigned int i;
o = find_option(options, optname);
if (!o)
return;
for (i = 0; i < PARSE_MAX_VP; i++) {
if (o->posval[i].ival)
continue;
o->posval[i].ival = ival;
o->posval[i].help = help;
break;
}
}
void del_opt_posval(const char *optname, const char *ival)
{
struct fio_option *o;
unsigned int i;
o = find_option(options, optname);
if (!o)
return;
for (i = 0; i < PARSE_MAX_VP; i++) {
if (!o->posval[i].ival)
continue;
if (strcmp(o->posval[i].ival, ival))
continue;
o->posval[i].ival = NULL;
o->posval[i].help = NULL;
}
}