| #include <unistd.h> |
| #include <fcntl.h> |
| #include <string.h> |
| #include <signal.h> |
| #include <time.h> |
| #include <assert.h> |
| |
| #include "fio.h" |
| #include "os.h" |
| |
| /* |
| * Change this define to play with the timeout handling |
| */ |
| #undef FIO_USE_TIMEOUT |
| |
| struct io_completion_data { |
| int nr; /* input */ |
| |
| int error; /* output */ |
| unsigned long bytes_done[2]; /* output */ |
| struct timeval time; /* output */ |
| }; |
| |
| /* |
| * The ->file_map[] contains a map of blocks we have or have not done io |
| * to yet. Used to make sure we cover the entire range in a fair fashion. |
| */ |
| static int random_map_free(struct thread_data *td, struct fio_file *f, |
| unsigned long long block) |
| { |
| unsigned int idx = RAND_MAP_IDX(td, f, block); |
| unsigned int bit = RAND_MAP_BIT(td, f, block); |
| |
| return (f->file_map[idx] & (1UL << bit)) == 0; |
| } |
| |
| /* |
| * Mark a given offset as used in the map. |
| */ |
| static void mark_random_map(struct thread_data *td, struct io_u *io_u) |
| { |
| unsigned int min_bs = td->o.rw_min_bs; |
| struct fio_file *f = io_u->file; |
| unsigned long long block; |
| unsigned int blocks; |
| unsigned int nr_blocks; |
| |
| block = io_u->offset / (unsigned long long) min_bs; |
| blocks = 0; |
| nr_blocks = (io_u->buflen + min_bs - 1) / min_bs; |
| |
| while (blocks < nr_blocks) { |
| unsigned int idx, bit; |
| |
| /* |
| * If we have a mixed random workload, we may |
| * encounter blocks we already did IO to. |
| */ |
| if (!td->o.ddir_nr && !random_map_free(td, f, block)) |
| break; |
| |
| idx = RAND_MAP_IDX(td, f, block); |
| bit = RAND_MAP_BIT(td, f, block); |
| |
| fio_assert(td, idx < f->num_maps); |
| |
| f->file_map[idx] |= (1UL << bit); |
| block++; |
| blocks++; |
| } |
| |
| if ((blocks * min_bs) < io_u->buflen) |
| io_u->buflen = blocks * min_bs; |
| } |
| |
| /* |
| * Return the next free block in the map. |
| */ |
| static int get_next_free_block(struct thread_data *td, struct fio_file *f, |
| unsigned long long *b) |
| { |
| int i; |
| |
| i = f->last_free_lookup; |
| *b = (i * BLOCKS_PER_MAP); |
| while ((*b) * td->o.rw_min_bs < f->real_file_size) { |
| if (f->file_map[i] != -1UL) { |
| *b += ffz(f->file_map[i]); |
| f->last_free_lookup = i; |
| return 0; |
| } |
| |
| *b += BLOCKS_PER_MAP; |
| i++; |
| } |
| |
| return 1; |
| } |
| |
| static int get_next_rand_offset(struct thread_data *td, struct fio_file *f, |
| int ddir, unsigned long long *b) |
| { |
| unsigned long long max_blocks = f->file_size / td->o.min_bs[ddir]; |
| unsigned long long r, rb; |
| int loops = 5; |
| |
| do { |
| r = os_random_long(&td->random_state); |
| if (!max_blocks) |
| *b = 0; |
| else |
| *b = ((max_blocks - 1) * r / (unsigned long long) (RAND_MAX+1.0)); |
| if (td->o.norandommap) |
| break; |
| rb = *b + (f->file_offset / td->o.min_bs[ddir]); |
| loops--; |
| } while (!random_map_free(td, f, rb) && loops); |
| |
| /* |
| * if we failed to retrieve a truly random offset within |
| * the loops assigned, see if there are free ones left at all |
| */ |
| if (!loops && get_next_free_block(td, f, b)) |
| return 1; |
| |
| return 0; |
| } |
| |
| /* |
| * For random io, generate a random new block and see if it's used. Repeat |
| * until we find a free one. For sequential io, just return the end of |
| * the last io issued. |
| */ |
| static int get_next_offset(struct thread_data *td, struct io_u *io_u) |
| { |
| struct fio_file *f = io_u->file; |
| const int ddir = io_u->ddir; |
| unsigned long long b; |
| |
| if (td_random(td) && (td->o.ddir_nr && !--td->ddir_nr)) { |
| td->ddir_nr = td->o.ddir_nr; |
| |
| if (get_next_rand_offset(td, f, ddir, &b)) |
| return 1; |
| } else |
| b = f->last_pos / td->o.min_bs[ddir]; |
| |
| io_u->offset = (b * td->o.min_bs[ddir]) + f->file_offset; |
| if (io_u->offset >= f->real_file_size) |
| return 1; |
| |
| return 0; |
| } |
| |
| static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u) |
| { |
| struct fio_file *f = io_u->file; |
| const int ddir = io_u->ddir; |
| unsigned int buflen; |
| long r; |
| |
| if (td->o.min_bs[ddir] == td->o.max_bs[ddir]) |
| buflen = td->o.min_bs[ddir]; |
| else { |
| r = os_random_long(&td->bsrange_state); |
| buflen = (unsigned int) (1 + (double) (td->o.max_bs[ddir] - 1) * r / (RAND_MAX + 1.0)); |
| if (!td->o.bs_unaligned) |
| buflen = (buflen + td->o.min_bs[ddir] - 1) & ~(td->o.min_bs[ddir] - 1); |
| } |
| |
| while (buflen + io_u->offset > f->real_file_size) { |
| if (buflen == td->o.min_bs[ddir]) { |
| if (!td->o.odirect) { |
| assert(io_u->offset <= f->real_file_size); |
| buflen = f->real_file_size - io_u->offset; |
| return buflen; |
| } |
| return 0; |
| } |
| |
| buflen = td->o.min_bs[ddir]; |
| } |
| |
| return buflen; |
| } |
| |
| static void set_rwmix_bytes(struct thread_data *td) |
| { |
| unsigned long long rbytes; |
| unsigned int diff; |
| |
| /* |
| * we do time or byte based switch. this is needed because |
| * buffered writes may issue a lot quicker than they complete, |
| * whereas reads do not. |
| */ |
| rbytes = td->io_bytes[td->rwmix_ddir] - td->rwmix_bytes; |
| diff = td->o.rwmix[td->rwmix_ddir ^ 1]; |
| |
| td->rwmix_bytes = td->io_bytes[td->rwmix_ddir] + (rbytes * ((100 - diff)) / diff); |
| } |
| |
| static inline enum fio_ddir get_rand_ddir(struct thread_data *td) |
| { |
| unsigned int v; |
| long r; |
| |
| r = os_random_long(&td->rwmix_state); |
| v = 1 + (int) (100.0 * (r / (RAND_MAX + 1.0))); |
| if (v < td->o.rwmix[DDIR_READ]) |
| return DDIR_READ; |
| |
| return DDIR_WRITE; |
| } |
| |
| /* |
| * Return the data direction for the next io_u. If the job is a |
| * mixed read/write workload, check the rwmix cycle and switch if |
| * necessary. |
| */ |
| static enum fio_ddir get_rw_ddir(struct thread_data *td) |
| { |
| if (td_rw(td)) { |
| struct timeval now; |
| unsigned long elapsed; |
| unsigned int cycle; |
| |
| fio_gettime(&now, NULL); |
| elapsed = mtime_since_now(&td->rwmix_switch); |
| |
| /* |
| * if this is the first cycle, make it shorter |
| */ |
| cycle = td->o.rwmixcycle; |
| if (!td->rwmix_bytes) |
| cycle /= 10; |
| |
| /* |
| * Check if it's time to seed a new data direction. |
| */ |
| if (elapsed >= cycle || |
| td->io_bytes[td->rwmix_ddir] >= td->rwmix_bytes) { |
| unsigned long long max_bytes; |
| enum fio_ddir ddir; |
| |
| /* |
| * Put a top limit on how many bytes we do for |
| * one data direction, to avoid overflowing the |
| * ranges too much |
| */ |
| ddir = get_rand_ddir(td); |
| max_bytes = td->this_io_bytes[ddir]; |
| if (max_bytes >= (td->io_size * td->o.rwmix[ddir] / 100)) { |
| if (!td->rw_end_set[ddir]) { |
| td->rw_end_set[ddir] = 1; |
| memcpy(&td->rw_end[ddir], &now, sizeof(now)); |
| } |
| ddir ^= 1; |
| } |
| |
| if (ddir != td->rwmix_ddir) |
| set_rwmix_bytes(td); |
| |
| td->rwmix_ddir = ddir; |
| memcpy(&td->rwmix_switch, &now, sizeof(now)); |
| } |
| return td->rwmix_ddir; |
| } else if (td_read(td)) |
| return DDIR_READ; |
| else |
| return DDIR_WRITE; |
| } |
| |
| void put_io_u(struct thread_data *td, struct io_u *io_u) |
| { |
| assert((io_u->flags & IO_U_F_FREE) == 0); |
| io_u->flags |= IO_U_F_FREE; |
| |
| io_u->file = NULL; |
| list_del(&io_u->list); |
| list_add(&io_u->list, &td->io_u_freelist); |
| td->cur_depth--; |
| } |
| |
| void requeue_io_u(struct thread_data *td, struct io_u **io_u) |
| { |
| struct io_u *__io_u = *io_u; |
| |
| __io_u->flags |= IO_U_F_FREE; |
| __io_u->flags &= ~IO_U_F_FLIGHT; |
| |
| list_del(&__io_u->list); |
| list_add_tail(&__io_u->list, &td->io_u_requeues); |
| td->cur_depth--; |
| *io_u = NULL; |
| } |
| |
| static int fill_io_u(struct thread_data *td, struct io_u *io_u) |
| { |
| /* |
| * If using an iolog, grab next piece if any available. |
| */ |
| if (td->o.read_iolog) |
| return read_iolog_get(td, io_u); |
| |
| /* |
| * see if it's time to sync |
| */ |
| if (td->o.fsync_blocks && |
| !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) && |
| td->io_issues[DDIR_WRITE] && should_fsync(td)) { |
| io_u->ddir = DDIR_SYNC; |
| goto out; |
| } |
| |
| io_u->ddir = get_rw_ddir(td); |
| |
| /* |
| * No log, let the seq/rand engine retrieve the next buflen and |
| * position. |
| */ |
| if (get_next_offset(td, io_u)) |
| return 1; |
| |
| io_u->buflen = get_next_buflen(td, io_u); |
| if (!io_u->buflen) |
| return 1; |
| |
| /* |
| * mark entry before potentially trimming io_u |
| */ |
| if (td_random(td) && !td->o.norandommap) |
| mark_random_map(td, io_u); |
| |
| /* |
| * If using a write iolog, store this entry. |
| */ |
| out: |
| if (td->o.write_iolog_file) |
| write_iolog_put(td, io_u); |
| |
| return 0; |
| } |
| |
| void io_u_mark_depth(struct thread_data *td, struct io_u *io_u) |
| { |
| int index = 0; |
| |
| if (io_u->ddir == DDIR_SYNC) |
| return; |
| |
| switch (td->cur_depth) { |
| default: |
| index++; |
| case 32 ... 63: |
| index++; |
| case 16 ... 31: |
| index++; |
| case 8 ... 15: |
| index++; |
| case 4 ... 7: |
| index++; |
| case 2 ... 3: |
| index++; |
| case 1: |
| break; |
| } |
| |
| td->ts.io_u_map[index]++; |
| td->ts.total_io_u[io_u->ddir]++; |
| } |
| |
| static void io_u_mark_latency(struct thread_data *td, unsigned long msec) |
| { |
| int index = 0; |
| |
| switch (msec) { |
| default: |
| index++; |
| case 1000 ... 1999: |
| index++; |
| case 750 ... 999: |
| index++; |
| case 500 ... 749: |
| index++; |
| case 250 ... 499: |
| index++; |
| case 100 ... 249: |
| index++; |
| case 50 ... 99: |
| index++; |
| case 20 ... 49: |
| index++; |
| case 10 ... 19: |
| index++; |
| case 4 ... 9: |
| index++; |
| case 2 ... 3: |
| index++; |
| case 0 ... 1: |
| break; |
| } |
| |
| td->ts.io_u_lat[index]++; |
| } |
| |
| /* |
| * Get next file to service by choosing one at random |
| */ |
| static struct fio_file *get_next_file_rand(struct thread_data *td, int goodf, |
| int badf) |
| { |
| struct fio_file *f; |
| int fno; |
| |
| do { |
| long r = os_random_long(&td->next_file_state); |
| |
| fno = (unsigned int) ((double) td->o.nr_files * (r / (RAND_MAX + 1.0))); |
| f = &td->files[fno]; |
| |
| if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) |
| return f; |
| } while (1); |
| } |
| |
| /* |
| * Get next file to service by doing round robin between all available ones |
| */ |
| static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf, |
| int badf) |
| { |
| unsigned int old_next_file = td->next_file; |
| struct fio_file *f; |
| |
| do { |
| f = &td->files[td->next_file]; |
| |
| td->next_file++; |
| if (td->next_file >= td->o.nr_files) |
| td->next_file = 0; |
| |
| if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) |
| break; |
| |
| f = NULL; |
| } while (td->next_file != old_next_file); |
| |
| return f; |
| } |
| |
| static struct fio_file *get_next_file(struct thread_data *td) |
| { |
| struct fio_file *f; |
| |
| assert(td->o.nr_files <= td->files_index); |
| |
| if (!td->nr_open_files) |
| return NULL; |
| |
| f = td->file_service_file; |
| if (f && (f->flags & FIO_FILE_OPEN) && td->file_service_left--) |
| return f; |
| |
| if (td->o.file_service_type == FIO_FSERVICE_RR) |
| f = get_next_file_rr(td, FIO_FILE_OPEN, FIO_FILE_CLOSING); |
| else |
| f = get_next_file_rand(td, FIO_FILE_OPEN, FIO_FILE_CLOSING); |
| |
| td->file_service_file = f; |
| td->file_service_left = td->file_service_nr - 1; |
| return f; |
| } |
| |
| static struct fio_file *find_next_new_file(struct thread_data *td) |
| { |
| struct fio_file *f; |
| |
| if (td->o.file_service_type == FIO_FSERVICE_RR) |
| f = get_next_file_rr(td, 0, FIO_FILE_OPEN); |
| else |
| f = get_next_file_rand(td, 0, FIO_FILE_OPEN); |
| |
| return f; |
| } |
| |
| struct io_u *__get_io_u(struct thread_data *td) |
| { |
| struct io_u *io_u = NULL; |
| |
| if (!list_empty(&td->io_u_requeues)) |
| io_u = list_entry(td->io_u_requeues.next, struct io_u, list); |
| else if (!queue_full(td)) { |
| io_u = list_entry(td->io_u_freelist.next, struct io_u, list); |
| |
| io_u->buflen = 0; |
| io_u->resid = 0; |
| io_u->file = NULL; |
| io_u->end_io = NULL; |
| } |
| |
| if (io_u) { |
| assert(io_u->flags & IO_U_F_FREE); |
| io_u->flags &= ~IO_U_F_FREE; |
| |
| io_u->error = 0; |
| list_del(&io_u->list); |
| list_add(&io_u->list, &td->io_u_busylist); |
| td->cur_depth++; |
| } |
| |
| return io_u; |
| } |
| |
| /* |
| * Return an io_u to be processed. Gets a buflen and offset, sets direction, |
| * etc. The returned io_u is fully ready to be prepped and submitted. |
| */ |
| struct io_u *get_io_u(struct thread_data *td) |
| { |
| struct fio_file *f; |
| struct io_u *io_u; |
| int ret; |
| |
| io_u = __get_io_u(td); |
| if (!io_u) |
| return NULL; |
| |
| /* |
| * from a requeue, io_u already setup |
| */ |
| if (io_u->file) |
| goto out; |
| |
| do { |
| f = get_next_file(td); |
| if (!f) { |
| put_io_u(td, io_u); |
| return NULL; |
| } |
| |
| set_file: |
| io_u->file = f; |
| |
| if (!fill_io_u(td, io_u)) |
| break; |
| |
| /* |
| * No more to do for this file, close it |
| */ |
| io_u->file = NULL; |
| td_io_close_file(td, f); |
| |
| /* |
| * probably not the right place to do this, but see |
| * if we need to open a new file |
| */ |
| if (td->nr_open_files < td->o.open_files && |
| td->o.open_files != td->o.nr_files) { |
| f = find_next_new_file(td); |
| |
| if (!f || (ret = td_io_open_file(td, f))) { |
| put_io_u(td, io_u); |
| return NULL; |
| } |
| goto set_file; |
| } |
| } while (1); |
| |
| if (td->zone_bytes >= td->o.zone_size) { |
| td->zone_bytes = 0; |
| f->last_pos += td->o.zone_skip; |
| } |
| |
| if (io_u->buflen + io_u->offset > f->real_file_size) { |
| if (td->io_ops->flags & FIO_RAWIO) { |
| put_io_u(td, io_u); |
| return NULL; |
| } |
| |
| io_u->buflen = f->real_file_size - io_u->offset; |
| } |
| |
| if (io_u->ddir != DDIR_SYNC) { |
| if (!io_u->buflen) { |
| put_io_u(td, io_u); |
| return NULL; |
| } |
| |
| f->last_pos = io_u->offset + io_u->buflen; |
| |
| if (td->o.verify != VERIFY_NONE) |
| populate_verify_io_u(td, io_u); |
| } |
| |
| /* |
| * Set io data pointers. |
| */ |
| out: |
| io_u->xfer_buf = io_u->buf; |
| io_u->xfer_buflen = io_u->buflen; |
| |
| if (td_io_prep(td, io_u)) { |
| put_io_u(td, io_u); |
| return NULL; |
| } |
| |
| fio_gettime(&io_u->start_time, NULL); |
| return io_u; |
| } |
| |
| void io_u_log_error(struct thread_data *td, struct io_u *io_u) |
| { |
| const char *msg[] = { "read", "write", "sync" }; |
| |
| log_err("fio: io_u error"); |
| |
| if (io_u->file) |
| log_err(" on file %s", io_u->file->file_name); |
| |
| log_err(": %s\n", strerror(io_u->error)); |
| |
| log_err(" %s offset=%llu, buflen=%lu\n", msg[io_u->ddir], io_u->offset, io_u->xfer_buflen); |
| |
| if (!td->error) |
| td_verror(td, io_u->error, "io_u error"); |
| } |
| |
| static void io_completed(struct thread_data *td, struct io_u *io_u, |
| struct io_completion_data *icd) |
| { |
| unsigned long msec; |
| |
| assert(io_u->flags & IO_U_F_FLIGHT); |
| io_u->flags &= ~IO_U_F_FLIGHT; |
| |
| put_file(td, io_u->file); |
| |
| if (io_u->ddir == DDIR_SYNC) { |
| td->last_was_sync = 1; |
| return; |
| } |
| |
| td->last_was_sync = 0; |
| |
| if (!io_u->error) { |
| unsigned int bytes = io_u->buflen - io_u->resid; |
| const enum fio_ddir idx = io_u->ddir; |
| int ret; |
| |
| td->io_blocks[idx]++; |
| td->io_bytes[idx] += bytes; |
| td->zone_bytes += bytes; |
| td->this_io_bytes[idx] += bytes; |
| |
| io_u->file->last_completed_pos = io_u->offset + io_u->buflen; |
| |
| msec = mtime_since(&io_u->issue_time, &icd->time); |
| |
| add_clat_sample(td, idx, msec); |
| add_bw_sample(td, idx, &icd->time); |
| io_u_mark_latency(td, msec); |
| |
| if ((td_rw(td) || td_write(td)) && idx == DDIR_WRITE && |
| td->o.verify != VERIFY_NONE) |
| log_io_piece(td, io_u); |
| |
| icd->bytes_done[idx] += bytes; |
| |
| if (io_u->end_io) { |
| ret = io_u->end_io(td, io_u); |
| if (ret && !icd->error) |
| icd->error = ret; |
| } |
| } else { |
| icd->error = io_u->error; |
| io_u_log_error(td, io_u); |
| } |
| } |
| |
| static void init_icd(struct io_completion_data *icd, int nr) |
| { |
| fio_gettime(&icd->time, NULL); |
| |
| icd->nr = nr; |
| |
| icd->error = 0; |
| icd->bytes_done[0] = icd->bytes_done[1] = 0; |
| } |
| |
| static void ios_completed(struct thread_data *td, |
| struct io_completion_data *icd) |
| { |
| struct io_u *io_u; |
| int i; |
| |
| for (i = 0; i < icd->nr; i++) { |
| io_u = td->io_ops->event(td, i); |
| |
| io_completed(td, io_u, icd); |
| put_io_u(td, io_u); |
| } |
| } |
| |
| /* |
| * Complete a single io_u for the sync engines. |
| */ |
| long io_u_sync_complete(struct thread_data *td, struct io_u *io_u) |
| { |
| struct io_completion_data icd; |
| |
| init_icd(&icd, 1); |
| io_completed(td, io_u, &icd); |
| put_io_u(td, io_u); |
| |
| if (!icd.error) |
| return icd.bytes_done[0] + icd.bytes_done[1]; |
| |
| td_verror(td, icd.error, "io_u_sync_complete"); |
| return -1; |
| } |
| |
| /* |
| * Called to complete min_events number of io for the async engines. |
| */ |
| long io_u_queued_complete(struct thread_data *td, int min_events) |
| { |
| struct io_completion_data icd; |
| struct timespec *tvp = NULL; |
| int ret; |
| struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, }; |
| |
| if (!min_events) |
| tvp = &ts; |
| |
| ret = td_io_getevents(td, min_events, td->cur_depth, tvp); |
| if (ret < 0) { |
| td_verror(td, -ret, "td_io_getevents"); |
| return ret; |
| } else if (!ret) |
| return ret; |
| |
| init_icd(&icd, ret); |
| ios_completed(td, &icd); |
| if (!icd.error) |
| return icd.bytes_done[0] + icd.bytes_done[1]; |
| |
| td_verror(td, icd.error, "io_u_queued_complete"); |
| return -1; |
| } |
| |
| /* |
| * Call when io_u is really queued, to update the submission latency. |
| */ |
| void io_u_queued(struct thread_data *td, struct io_u *io_u) |
| { |
| unsigned long slat_time; |
| |
| slat_time = mtime_since(&io_u->start_time, &io_u->issue_time); |
| add_slat_sample(td, io_u->ddir, slat_time); |
| } |
| |
| #ifdef FIO_USE_TIMEOUT |
| void io_u_set_timeout(struct thread_data *td) |
| { |
| assert(td->cur_depth); |
| |
| td->timer.it_interval.tv_sec = 0; |
| td->timer.it_interval.tv_usec = 0; |
| td->timer.it_value.tv_sec = IO_U_TIMEOUT + IO_U_TIMEOUT_INC; |
| td->timer.it_value.tv_usec = 0; |
| setitimer(ITIMER_REAL, &td->timer, NULL); |
| fio_gettime(&td->timeout_end, NULL); |
| } |
| |
| static void io_u_dump(struct io_u *io_u) |
| { |
| unsigned long t_start = mtime_since_now(&io_u->start_time); |
| unsigned long t_issue = mtime_since_now(&io_u->issue_time); |
| |
| log_err("io_u=%p, t_start=%lu, t_issue=%lu\n", io_u, t_start, t_issue); |
| log_err(" buf=%p/%p, len=%lu/%lu, offset=%llu\n", io_u->buf, io_u->xfer_buf, io_u->buflen, io_u->xfer_buflen, io_u->offset); |
| log_err(" ddir=%d, fname=%s\n", io_u->ddir, io_u->file->file_name); |
| } |
| #else |
| void io_u_set_timeout(struct thread_data fio_unused *td) |
| { |
| } |
| #endif |
| |
| #ifdef FIO_USE_TIMEOUT |
| static void io_u_timeout_handler(int fio_unused sig) |
| { |
| struct thread_data *td, *__td; |
| pid_t pid = getpid(); |
| struct list_head *entry; |
| struct io_u *io_u; |
| int i; |
| |
| log_err("fio: io_u timeout\n"); |
| |
| /* |
| * TLS would be nice... |
| */ |
| td = NULL; |
| for_each_td(__td, i) { |
| if (__td->pid == pid) { |
| td = __td; |
| break; |
| } |
| } |
| |
| if (!td) { |
| log_err("fio: io_u timeout, can't find job\n"); |
| exit(1); |
| } |
| |
| if (!td->cur_depth) { |
| log_err("fio: timeout without pending work?\n"); |
| return; |
| } |
| |
| log_err("fio: io_u timeout: job=%s, pid=%d\n", td->o.name, td->pid); |
| |
| list_for_each(entry, &td->io_u_busylist) { |
| io_u = list_entry(entry, struct io_u, list); |
| |
| io_u_dump(io_u); |
| } |
| |
| td_verror(td, ETIMEDOUT, "io_u timeout"); |
| exit(1); |
| } |
| #endif |
| |
| void io_u_init_timeout(void) |
| { |
| #ifdef FIO_USE_TIMEOUT |
| signal(SIGALRM, io_u_timeout_handler); |
| #endif |
| } |