blob: 558b0b072cef200dd140020c47008d29a1a01fcc [file] [log] [blame]
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <signal.h>
#include <time.h>
#include <assert.h>
#include "fio.h"
#include "os.h"
/*
* The ->file_map[] contains a map of blocks we have or have not done io
* to yet. Used to make sure we cover the entire range in a fair fashion.
*/
static int random_map_free(struct thread_data *td, struct fio_file *f,
unsigned long long block)
{
unsigned int idx = RAND_MAP_IDX(td, f, block);
unsigned int bit = RAND_MAP_BIT(td, f, block);
return (f->file_map[idx] & (1UL << bit)) == 0;
}
/*
* Mark a given offset as used in the map.
*/
static void mark_random_map(struct thread_data *td, struct fio_file *f,
struct io_u *io_u)
{
unsigned int min_bs = td->min_bs[io_u->ddir];
unsigned long long block;
unsigned int blocks;
block = io_u->offset / (unsigned long long) min_bs;
blocks = 0;
while (blocks < (io_u->buflen / min_bs)) {
unsigned int idx, bit;
if (!random_map_free(td, f, block))
break;
idx = RAND_MAP_IDX(td, f, block);
bit = RAND_MAP_BIT(td, f, block);
assert(idx < f->num_maps);
f->file_map[idx] |= (1UL << bit);
block++;
blocks++;
}
if ((blocks * min_bs) < io_u->buflen)
io_u->buflen = blocks * min_bs;
}
/*
* Return the next free block in the map.
*/
static int get_next_free_block(struct thread_data *td, struct fio_file *f,
unsigned long long *b)
{
int i;
*b = 0;
i = 0;
while ((*b) * td->rw_min_bs < f->file_size) {
if (f->file_map[i] != -1UL) {
*b += ffz(f->file_map[i]);
return 0;
}
*b += BLOCKS_PER_MAP;
i++;
}
return 1;
}
/*
* For random io, generate a random new block and see if it's used. Repeat
* until we find a free one. For sequential io, just return the end of
* the last io issued.
*/
static int get_next_offset(struct thread_data *td, struct fio_file *f,
unsigned long long *offset, int ddir)
{
unsigned long long b, rb;
long r;
if (!td->sequential) {
unsigned long long max_blocks = f->file_size / td->min_bs[ddir];
int loops = 50;
do {
r = os_random_long(&td->random_state);
b = ((max_blocks - 1) * r / (unsigned long long) (RAND_MAX+1.0));
if (td->norandommap)
break;
rb = b + (f->file_offset / td->min_bs[ddir]);
loops--;
} while (!random_map_free(td, f, rb) && loops);
if (!loops) {
if (get_next_free_block(td, f, &b))
return 1;
}
} else
b = f->last_pos / td->min_bs[ddir];
*offset = (b * td->min_bs[ddir]) + f->file_offset;
if (*offset > f->file_size)
return 1;
return 0;
}
static unsigned int get_next_buflen(struct thread_data *td, int ddir)
{
unsigned int buflen;
long r;
if (td->min_bs[ddir] == td->max_bs[ddir])
buflen = td->min_bs[ddir];
else {
r = os_random_long(&td->bsrange_state);
buflen = (unsigned int) (1 + (double) (td->max_bs[ddir] - 1) * r / (RAND_MAX + 1.0));
if (!td->bs_unaligned)
buflen = (buflen + td->min_bs[ddir] - 1) & ~(td->min_bs[ddir] - 1);
}
if (buflen > td->io_size - td->this_io_bytes[ddir]) {
/*
* if using direct/raw io, we may not be able to
* shrink the size. so just fail it.
*/
if (td->io_ops->flags & FIO_RAWIO)
return 0;
buflen = td->io_size - td->this_io_bytes[ddir];
}
return buflen;
}
/*
* Return the data direction for the next io_u. If the job is a
* mixed read/write workload, check the rwmix cycle and switch if
* necessary.
*/
static enum fio_ddir get_rw_ddir(struct thread_data *td)
{
if (td_rw(td)) {
struct timeval now;
unsigned long elapsed;
fio_gettime(&now, NULL);
elapsed = mtime_since_now(&td->rwmix_switch);
/*
* Check if it's time to seed a new data direction.
*/
if (elapsed >= td->rwmixcycle) {
unsigned int v;
long r;
r = os_random_long(&td->rwmix_state);
v = 1 + (int) (100.0 * (r / (RAND_MAX + 1.0)));
if (v < td->rwmixread)
td->rwmix_ddir = DDIR_READ;
else
td->rwmix_ddir = DDIR_WRITE;
memcpy(&td->rwmix_switch, &now, sizeof(now));
}
return td->rwmix_ddir;
} else if (td_read(td))
return DDIR_READ;
else
return DDIR_WRITE;
}
void put_io_u(struct thread_data *td, struct io_u *io_u)
{
io_u->file = NULL;
list_del(&io_u->list);
list_add(&io_u->list, &td->io_u_freelist);
td->cur_depth--;
}
static int fill_io_u(struct thread_data *td, struct fio_file *f,
struct io_u *io_u)
{
/*
* If using an iolog, grab next piece if any available.
*/
if (td->read_iolog)
return read_iolog_get(td, io_u);
/*
* see if it's time to sync
*/
if (td->fsync_blocks && !(td->io_blocks[DDIR_WRITE] % td->fsync_blocks)
&& should_fsync(td)) {
io_u->ddir = DDIR_SYNC;
io_u->file = f;
return 0;
}
io_u->ddir = get_rw_ddir(td);
/*
* No log, let the seq/rand engine retrieve the next position.
*/
if (!get_next_offset(td, f, &io_u->offset, io_u->ddir)) {
io_u->buflen = get_next_buflen(td, io_u->ddir);
if (io_u->buflen) {
/*
* If using a write iolog, store this entry.
*/
if (td->write_iolog_file)
write_iolog_put(td, io_u);
io_u->file = f;
return 0;
}
}
return 1;
}
struct io_u *__get_io_u(struct thread_data *td)
{
struct io_u *io_u = NULL;
if (!queue_full(td)) {
io_u = list_entry(td->io_u_freelist.next, struct io_u, list);
io_u->buflen = 0;
io_u->error = 0;
io_u->resid = 0;
list_del(&io_u->list);
list_add(&io_u->list, &td->io_u_busylist);
td->cur_depth++;
}
return io_u;
}
/*
* Return an io_u to be processed. Gets a buflen and offset, sets direction,
* etc. The returned io_u is fully ready to be prepped and submitted.
*/
struct io_u *get_io_u(struct thread_data *td, struct fio_file *f)
{
struct io_u *io_u;
io_u = __get_io_u(td);
if (!io_u)
return NULL;
if (td->zone_bytes >= td->zone_size) {
td->zone_bytes = 0;
f->last_pos += td->zone_skip;
}
if (fill_io_u(td, f, io_u)) {
put_io_u(td, io_u);
return NULL;
}
if (io_u->buflen + io_u->offset > f->file_size) {
if (td->io_ops->flags & FIO_RAWIO) {
put_io_u(td, io_u);
return NULL;
}
io_u->buflen = f->file_size - io_u->offset;
}
if (io_u->ddir != DDIR_SYNC) {
if (!io_u->buflen) {
put_io_u(td, io_u);
return NULL;
}
if (!td->read_iolog && !td->sequential && !td->norandommap)
mark_random_map(td, f, io_u);
f->last_pos += io_u->buflen;
if (td->verify != VERIFY_NONE)
populate_verify_io_u(td, io_u);
}
if (td_io_prep(td, io_u)) {
put_io_u(td, io_u);
return NULL;
}
fio_gettime(&io_u->start_time, NULL);
return io_u;
}
void io_completed(struct thread_data *td, struct io_u *io_u,
struct io_completion_data *icd)
{
unsigned long msec;
if (io_u->ddir == DDIR_SYNC) {
td->last_was_sync = 1;
return;
}
td->last_was_sync = 0;
if (!io_u->error) {
unsigned int bytes = io_u->buflen - io_u->resid;
const enum fio_ddir idx = io_u->ddir;
td->io_blocks[idx]++;
td->io_bytes[idx] += bytes;
td->zone_bytes += bytes;
td->this_io_bytes[idx] += bytes;
io_u->file->last_completed_pos = io_u->offset + io_u->buflen;
msec = mtime_since(&io_u->issue_time, &icd->time);
add_clat_sample(td, idx, msec);
add_bw_sample(td, idx, &icd->time);
if ((td_rw(td) || td_write(td)) && idx == DDIR_WRITE)
log_io_piece(td, io_u);
icd->bytes_done[idx] += bytes;
} else
icd->error = io_u->error;
}
void ios_completed(struct thread_data *td, struct io_completion_data *icd)
{
struct io_u *io_u;
int i;
fio_gettime(&icd->time, NULL);
icd->error = 0;
icd->bytes_done[0] = icd->bytes_done[1] = 0;
for (i = 0; i < icd->nr; i++) {
io_u = td->io_ops->event(td, i);
io_completed(td, io_u, icd);
put_io_u(td, io_u);
}
}