blob: 42066e0d95c044136e96c381caa04e614b48c68d [file] [log] [blame]
/*
* Status and ETA code
*/
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include "fio.h"
static char run_str[REAL_MAX_JOBS + 1];
/*
* Sets the status of the 'td' in the printed status map.
*/
static void check_str_update(struct thread_data *td)
{
char c = run_str[td->thread_number - 1];
switch (td->runstate) {
case TD_REAPED:
if (td->error)
c = 'X';
else if (td->sig)
c = 'K';
else
c = '_';
break;
case TD_EXITED:
c = 'E';
break;
case TD_RAMP:
c = '/';
break;
case TD_RUNNING:
if (td_rw(td)) {
if (td_random(td)) {
if (td->o.rwmix[DDIR_READ] == 100)
c = 'r';
else if (td->o.rwmix[DDIR_WRITE] == 100)
c = 'w';
else
c = 'm';
} else {
if (td->o.rwmix[DDIR_READ] == 100)
c = 'R';
else if (td->o.rwmix[DDIR_WRITE] == 100)
c = 'W';
else
c = 'M';
}
} else if (td_read(td)) {
if (td_random(td))
c = 'r';
else
c = 'R';
} else if (td_write(td)) {
if (td_random(td))
c = 'w';
else
c = 'W';
} else {
if (td_random(td))
c = 'd';
else
c = 'D';
}
break;
case TD_PRE_READING:
c = 'p';
break;
case TD_VERIFYING:
c = 'V';
break;
case TD_FSYNCING:
c = 'F';
break;
case TD_FINISHING:
c = 'f';
break;
case TD_CREATED:
c = 'C';
break;
case TD_INITIALIZED:
case TD_SETTING_UP:
c = 'I';
break;
case TD_NOT_CREATED:
c = 'P';
break;
default:
log_err("state %d\n", td->runstate);
}
run_str[td->thread_number - 1] = c;
}
/*
* Convert seconds to a printable string.
*/
void eta_to_str(char *str, unsigned long eta_sec)
{
unsigned int d, h, m, s;
int disp_hour = 0;
s = eta_sec % 60;
eta_sec /= 60;
m = eta_sec % 60;
eta_sec /= 60;
h = eta_sec % 24;
eta_sec /= 24;
d = eta_sec;
if (d) {
disp_hour = 1;
str += sprintf(str, "%02ud:", d);
}
if (h || disp_hour)
str += sprintf(str, "%02uh:", h);
str += sprintf(str, "%02um:", m);
str += sprintf(str, "%02us", s);
}
/*
* Best effort calculation of the estimated pending runtime of a job.
*/
static int thread_eta(struct thread_data *td)
{
unsigned long long bytes_total, bytes_done;
unsigned long eta_sec = 0;
unsigned long elapsed;
uint64_t timeout;
elapsed = (mtime_since_now(&td->epoch) + 999) / 1000;
timeout = td->o.timeout / 1000000UL;
bytes_total = td->total_io_size;
if (td->o.fill_device && td->o.size == -1ULL) {
if (!td->fill_device_size || td->fill_device_size == -1ULL)
return 0;
bytes_total = td->fill_device_size;
}
if (td->o.zone_size && td->o.zone_skip && bytes_total) {
unsigned int nr_zones;
uint64_t zone_bytes;
zone_bytes = bytes_total + td->o.zone_size + td->o.zone_skip;
nr_zones = (zone_bytes - 1) / (td->o.zone_size + td->o.zone_skip);
bytes_total -= nr_zones * td->o.zone_skip;
}
/*
* if writing and verifying afterwards, bytes_total will be twice the
* size. In a mixed workload, verify phase will be the size of the
* first stage writes.
*/
if (td->o.do_verify && td->o.verify && td_write(td)) {
if (td_rw(td)) {
unsigned int perc = 50;
if (td->o.rwmix[DDIR_WRITE])
perc = td->o.rwmix[DDIR_WRITE];
bytes_total += (bytes_total * perc) / 100;
} else
bytes_total <<= 1;
}
if (td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING) {
double perc, perc_t;
bytes_done = ddir_rw_sum(td->io_bytes);
perc = (double) bytes_done / (double) bytes_total;
if (perc > 1.0)
perc = 1.0;
if (td->o.time_based) {
perc_t = (double) elapsed / (double) timeout;
if (perc_t < perc)
perc = perc_t;
}
eta_sec = (unsigned long) (elapsed * (1.0 / perc)) - elapsed;
if (td->o.timeout &&
eta_sec > (timeout + done_secs - elapsed))
eta_sec = timeout + done_secs - elapsed;
} else if (td->runstate == TD_NOT_CREATED || td->runstate == TD_CREATED
|| td->runstate == TD_INITIALIZED
|| td->runstate == TD_SETTING_UP
|| td->runstate == TD_RAMP
|| td->runstate == TD_PRE_READING) {
int t_eta = 0, r_eta = 0;
unsigned long long rate_bytes;
/*
* We can only guess - assume it'll run the full timeout
* if given, otherwise assume it'll run at the specified rate.
*/
if (td->o.timeout) {
uint64_t timeout = td->o.timeout;
uint64_t start_delay = td->o.start_delay;
uint64_t ramp_time = td->o.ramp_time;
t_eta = timeout + start_delay + ramp_time;
t_eta /= 1000000ULL;
if (in_ramp_time(td)) {
unsigned long ramp_left;
ramp_left = mtime_since_now(&td->epoch);
ramp_left = (ramp_left + 999) / 1000;
if (ramp_left <= t_eta)
t_eta -= ramp_left;
}
}
rate_bytes = ddir_rw_sum(td->o.rate);
if (rate_bytes) {
r_eta = (bytes_total / 1024) / rate_bytes;
r_eta += (td->o.start_delay / 1000000ULL);
}
if (r_eta && t_eta)
eta_sec = min(r_eta, t_eta);
else if (r_eta)
eta_sec = r_eta;
else if (t_eta)
eta_sec = t_eta;
else
eta_sec = 0;
} else {
/*
* thread is already done or waiting for fsync
*/
eta_sec = 0;
}
return eta_sec;
}
static void calc_rate(int unified_rw_rep, unsigned long mtime,
unsigned long long *io_bytes,
unsigned long long *prev_io_bytes, unsigned int *rate)
{
int i;
for (i = 0; i < DDIR_RWDIR_CNT; i++) {
unsigned long long diff;
diff = io_bytes[i] - prev_io_bytes[i];
if (unified_rw_rep) {
rate[i] = 0;
rate[0] += ((1000 * diff) / mtime) / 1024;
} else
rate[i] = ((1000 * diff) / mtime) / 1024;
prev_io_bytes[i] = io_bytes[i];
}
}
static void calc_iops(int unified_rw_rep, unsigned long mtime,
unsigned long long *io_iops,
unsigned long long *prev_io_iops, unsigned int *iops)
{
int i;
for (i = 0; i < DDIR_RWDIR_CNT; i++) {
unsigned long long diff;
diff = io_iops[i] - prev_io_iops[i];
if (unified_rw_rep) {
iops[i] = 0;
iops[0] += (diff * 1000) / mtime;
} else
iops[i] = (diff * 1000) / mtime;
prev_io_iops[i] = io_iops[i];
}
}
/*
* Print status of the jobs we know about. This includes rate estimates,
* ETA, thread state, etc.
*/
int calc_thread_status(struct jobs_eta *je, int force)
{
struct thread_data *td;
int i, unified_rw_rep;
unsigned long rate_time, disp_time, bw_avg_time, *eta_secs;
unsigned long long io_bytes[DDIR_RWDIR_CNT];
unsigned long long io_iops[DDIR_RWDIR_CNT];
struct timeval now;
static unsigned long long rate_io_bytes[DDIR_RWDIR_CNT];
static unsigned long long disp_io_bytes[DDIR_RWDIR_CNT];
static unsigned long long disp_io_iops[DDIR_RWDIR_CNT];
static struct timeval rate_prev_time, disp_prev_time;
if (!force) {
if (output_format != FIO_OUTPUT_NORMAL &&
f_out == stdout)
return 0;
if (temp_stall_ts || eta_print == FIO_ETA_NEVER)
return 0;
if (!isatty(STDOUT_FILENO) && (eta_print != FIO_ETA_ALWAYS))
return 0;
}
if (!ddir_rw_sum(rate_io_bytes))
fill_start_time(&rate_prev_time);
if (!ddir_rw_sum(disp_io_bytes))
fill_start_time(&disp_prev_time);
eta_secs = malloc(thread_number * sizeof(unsigned long));
memset(eta_secs, 0, thread_number * sizeof(unsigned long));
je->elapsed_sec = (mtime_since_genesis() + 999) / 1000;
io_bytes[DDIR_READ] = io_bytes[DDIR_WRITE] = io_bytes[DDIR_TRIM] = 0;
io_iops[DDIR_READ] = io_iops[DDIR_WRITE] = io_iops[DDIR_TRIM] = 0;
bw_avg_time = ULONG_MAX;
unified_rw_rep = 0;
for_each_td(td, i) {
unified_rw_rep += td->o.unified_rw_rep;
if (is_power_of_2(td->o.kb_base))
je->is_pow2 = 1;
je->unit_base = td->o.unit_base;
if (td->o.bw_avg_time < bw_avg_time)
bw_avg_time = td->o.bw_avg_time;
if (td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING
|| td->runstate == TD_FSYNCING
|| td->runstate == TD_PRE_READING
|| td->runstate == TD_FINISHING) {
je->nr_running++;
if (td_read(td)) {
je->t_rate[0] += td->o.rate[DDIR_READ];
je->t_iops[0] += td->o.rate_iops[DDIR_READ];
je->m_rate[0] += td->o.ratemin[DDIR_READ];
je->m_iops[0] += td->o.rate_iops_min[DDIR_READ];
}
if (td_write(td)) {
je->t_rate[1] += td->o.rate[DDIR_WRITE];
je->t_iops[1] += td->o.rate_iops[DDIR_WRITE];
je->m_rate[1] += td->o.ratemin[DDIR_WRITE];
je->m_iops[1] += td->o.rate_iops_min[DDIR_WRITE];
}
if (td_trim(td)) {
je->t_rate[2] += td->o.rate[DDIR_TRIM];
je->t_iops[2] += td->o.rate_iops[DDIR_TRIM];
je->m_rate[2] += td->o.ratemin[DDIR_TRIM];
je->m_iops[2] += td->o.rate_iops_min[DDIR_TRIM];
}
je->files_open += td->nr_open_files;
} else if (td->runstate == TD_RAMP) {
je->nr_running++;
je->nr_ramp++;
} else if (td->runstate == TD_SETTING_UP) {
je->nr_running++;
je->nr_setting_up++;
} else if (td->runstate < TD_RUNNING)
je->nr_pending++;
if (je->elapsed_sec >= 3)
eta_secs[i] = thread_eta(td);
else
eta_secs[i] = INT_MAX;
check_str_update(td);
if (td->runstate > TD_SETTING_UP) {
int ddir;
for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++) {
if (unified_rw_rep) {
io_bytes[0] += td->io_bytes[ddir];
io_iops[0] += td->io_blocks[ddir];
} else {
io_bytes[ddir] += td->io_bytes[ddir];
io_iops[ddir] += td->io_blocks[ddir];
}
}
}
}
if (exitall_on_terminate)
je->eta_sec = INT_MAX;
else
je->eta_sec = 0;
for_each_td(td, i) {
if (exitall_on_terminate) {
if (eta_secs[i] < je->eta_sec)
je->eta_sec = eta_secs[i];
} else {
if (eta_secs[i] > je->eta_sec)
je->eta_sec = eta_secs[i];
}
}
free(eta_secs);
fio_gettime(&now, NULL);
rate_time = mtime_since(&rate_prev_time, &now);
if (write_bw_log && rate_time > bw_avg_time && !in_ramp_time(td)) {
calc_rate(unified_rw_rep, rate_time, io_bytes, rate_io_bytes,
je->rate);
memcpy(&rate_prev_time, &now, sizeof(now));
add_agg_sample(je->rate[DDIR_READ], DDIR_READ, 0);
add_agg_sample(je->rate[DDIR_WRITE], DDIR_WRITE, 0);
add_agg_sample(je->rate[DDIR_TRIM], DDIR_TRIM, 0);
}
disp_time = mtime_since(&disp_prev_time, &now);
/*
* Allow a little slack, the target is to print it every 1000 msecs
*/
if (!force && disp_time < 900)
return 0;
calc_rate(unified_rw_rep, disp_time, io_bytes, disp_io_bytes, je->rate);
calc_iops(unified_rw_rep, disp_time, io_iops, disp_io_iops, je->iops);
memcpy(&disp_prev_time, &now, sizeof(now));
if (!force && !je->nr_running && !je->nr_pending)
return 0;
je->nr_threads = thread_number;
memcpy(je->run_str, run_str, thread_number * sizeof(char));
return 1;
}
void display_thread_status(struct jobs_eta *je)
{
static struct timeval disp_eta_new_line;
static int eta_new_line_init, eta_new_line_pending;
static int linelen_last;
static int eta_good;
char output[REAL_MAX_JOBS + 512], *p = output;
char eta_str[128];
double perc = 0.0;
if (je->eta_sec != INT_MAX && je->elapsed_sec) {
perc = (double) je->elapsed_sec / (double) (je->elapsed_sec + je->eta_sec);
eta_to_str(eta_str, je->eta_sec);
}
if (eta_new_line_pending) {
eta_new_line_pending = 0;
p += sprintf(p, "\n");
}
p += sprintf(p, "Jobs: %d (f=%d)", je->nr_running, je->files_open);
if (je->m_rate[0] || je->m_rate[1] || je->t_rate[0] || je->t_rate[1]) {
char *tr, *mr;
mr = num2str(je->m_rate[0] + je->m_rate[1], 4, 0, je->is_pow2, 8);
tr = num2str(je->t_rate[0] + je->t_rate[1], 4, 0, je->is_pow2, 8);
p += sprintf(p, ", CR=%s/%s KB/s", tr, mr);
free(tr);
free(mr);
} else if (je->m_iops[0] || je->m_iops[1] || je->t_iops[0] || je->t_iops[1]) {
p += sprintf(p, ", CR=%d/%d IOPS",
je->t_iops[0] + je->t_iops[1],
je->m_iops[0] + je->m_iops[1]);
}
if (je->eta_sec != INT_MAX && je->nr_running) {
char perc_str[32];
char *iops_str[DDIR_RWDIR_CNT];
char *rate_str[DDIR_RWDIR_CNT];
size_t left;
int l;
int ddir;
if ((!je->eta_sec && !eta_good) || je->nr_ramp == je->nr_running)
strcpy(perc_str, "-.-% done");
else {
double mult = 100.0;
if (je->nr_setting_up && je->nr_running)
mult *= (1.0 - (double) je->nr_setting_up / (double) je->nr_running);
eta_good = 1;
perc *= mult;
sprintf(perc_str, "%3.1f%% done", perc);
}
for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++) {
rate_str[ddir] = num2str(je->rate[ddir], 5,
1024, je->is_pow2, je->unit_base);
iops_str[ddir] = num2str(je->iops[ddir], 4, 1, 0, 0);
}
left = sizeof(output) - (p - output) - 1;
l = snprintf(p, left, ": [%s] [%s] [%s/%s/%s /s] [%s/%s/%s iops] [eta %s]",
je->run_str, perc_str, rate_str[DDIR_READ],
rate_str[DDIR_WRITE], rate_str[DDIR_TRIM],
iops_str[DDIR_READ], iops_str[DDIR_WRITE],
iops_str[DDIR_TRIM], eta_str);
p += l;
if (l >= 0 && l < linelen_last)
p += sprintf(p, "%*s", linelen_last - l, "");
linelen_last = l;
for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++) {
free(rate_str[ddir]);
free(iops_str[ddir]);
}
}
p += sprintf(p, "\r");
printf("%s", output);
if (!eta_new_line_init) {
fio_gettime(&disp_eta_new_line, NULL);
eta_new_line_init = 1;
} else if (eta_new_line &&
mtime_since_now(&disp_eta_new_line) > eta_new_line * 1000) {
fio_gettime(&disp_eta_new_line, NULL);
eta_new_line_pending = 1;
}
fflush(stdout);
}
void print_thread_status(void)
{
struct jobs_eta *je;
size_t size;
if (!thread_number)
return;
size = sizeof(*je) + thread_number * sizeof(char) + 1;
je = malloc(size);
memset(je, 0, size);
if (calc_thread_status(je, 0))
display_thread_status(je);
free(je);
}
void print_status_init(int thr_number)
{
run_str[thr_number] = 'P';
}