blob: e0614bd0a11946f132a6b0063e0015ff6e6ad48b [file] [log] [blame]
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <signal.h>
#include <time.h>
#include <assert.h>
#include "fio.h"
/*
* Change this define to play with the timeout handling
*/
#undef FIO_USE_TIMEOUT
struct io_completion_data {
int nr; /* input */
int error; /* output */
unsigned long bytes_done[2]; /* output */
struct timeval time; /* output */
};
/*
* The ->file_map[] contains a map of blocks we have or have not done io
* to yet. Used to make sure we cover the entire range in a fair fashion.
*/
static int random_map_free(struct thread_data *td, struct fio_file *f,
unsigned long long block)
{
unsigned int idx = RAND_MAP_IDX(td, f, block);
unsigned int bit = RAND_MAP_BIT(td, f, block);
return (f->file_map[idx] & (1UL << bit)) == 0;
}
/*
* Mark a given offset as used in the map.
*/
static void mark_random_map(struct thread_data *td, struct io_u *io_u)
{
unsigned int min_bs = td->o.rw_min_bs;
struct fio_file *f = io_u->file;
unsigned long long block;
unsigned int blocks;
unsigned int nr_blocks;
block = io_u->offset / (unsigned long long) min_bs;
blocks = 0;
nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
while (blocks < nr_blocks) {
unsigned int idx, bit;
/*
* If we have a mixed random workload, we may
* encounter blocks we already did IO to.
*/
if (!td->o.ddir_nr && !random_map_free(td, f, block))
break;
idx = RAND_MAP_IDX(td, f, block);
bit = RAND_MAP_BIT(td, f, block);
fio_assert(td, idx < f->num_maps);
f->file_map[idx] |= (1UL << bit);
block++;
blocks++;
}
if ((blocks * min_bs) < io_u->buflen)
io_u->buflen = blocks * min_bs;
}
/*
* Return the next free block in the map.
*/
static int get_next_free_block(struct thread_data *td, struct fio_file *f,
unsigned long long *b)
{
int i;
i = f->last_free_lookup;
*b = (i * BLOCKS_PER_MAP);
while ((*b) * td->o.rw_min_bs < f->real_file_size) {
if (f->file_map[i] != -1UL) {
*b += fio_ffz(f->file_map[i]);
f->last_free_lookup = i;
return 0;
}
*b += BLOCKS_PER_MAP;
i++;
}
return 1;
}
static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
int ddir, unsigned long long *b)
{
unsigned long long max_blocks = f->io_size / td->o.min_bs[ddir];
unsigned long long r, rb;
int loops = 5;
do {
r = os_random_long(&td->random_state);
if (!max_blocks)
*b = 0;
else
*b = ((max_blocks - 1) * r / (unsigned long long) (RAND_MAX+1.0));
/*
* if we are not maintaining a random map, we are done.
*/
if (td->o.norandommap)
return 0;
/*
* calculate map offset and chec if it's free
*/
rb = *b + (f->file_offset / td->o.min_bs[ddir]);
if (random_map_free(td, f, rb))
return 0;
} while (--loops);
/*
* we get here, if we didn't suceed in looking up a block. generate
* a random start offset into the filemap, and find the first free
* block from there.
*/
loops = 10;
do {
f->last_free_lookup = (f->num_maps - 1) * (r / (RAND_MAX+1.0));
if (!get_next_free_block(td, f, b))
return 0;
r = os_random_long(&td->random_state);
} while (--loops);
/*
* that didn't work either, try exhaustive search from the start
*/
f->last_free_lookup = 0;
return get_next_free_block(td, f, b);
}
/*
* For random io, generate a random new block and see if it's used. Repeat
* until we find a free one. For sequential io, just return the end of
* the last io issued.
*/
static int get_next_offset(struct thread_data *td, struct io_u *io_u)
{
struct fio_file *f = io_u->file;
const int ddir = io_u->ddir;
unsigned long long b;
if (td_random(td) && (td->o.ddir_nr && !--td->ddir_nr)) {
td->ddir_nr = td->o.ddir_nr;
if (get_next_rand_offset(td, f, ddir, &b))
return 1;
} else {
if (f->last_pos >= f->real_file_size)
return 1;
b = f->last_pos / td->o.min_bs[ddir];
}
io_u->offset = (b * td->o.min_bs[ddir]) + f->file_offset;
if (io_u->offset >= f->real_file_size)
return 1;
return 0;
}
static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u)
{
const int ddir = io_u->ddir;
unsigned int buflen;
long r;
if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
buflen = td->o.min_bs[ddir];
else {
r = os_random_long(&td->bsrange_state);
buflen = (unsigned int) (1 + (double) (td->o.max_bs[ddir] - 1) * r / (RAND_MAX + 1.0));
if (!td->o.bs_unaligned)
buflen = (buflen + td->o.min_bs[ddir] - 1) & ~(td->o.min_bs[ddir] - 1);
}
return buflen;
}
static void set_rwmix_bytes(struct thread_data *td)
{
unsigned long long rbytes;
unsigned int diff;
/*
* we do time or byte based switch. this is needed because
* buffered writes may issue a lot quicker than they complete,
* whereas reads do not.
*/
rbytes = td->io_bytes[td->rwmix_ddir] - td->rwmix_bytes;
diff = td->o.rwmix[td->rwmix_ddir ^ 1];
td->rwmix_bytes = td->io_bytes[td->rwmix_ddir] + (rbytes * ((100 - diff)) / diff);
}
static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
{
unsigned int v;
long r;
r = os_random_long(&td->rwmix_state);
v = 1 + (int) (100.0 * (r / (RAND_MAX + 1.0)));
if (v < td->o.rwmix[DDIR_READ])
return DDIR_READ;
return DDIR_WRITE;
}
/*
* Return the data direction for the next io_u. If the job is a
* mixed read/write workload, check the rwmix cycle and switch if
* necessary.
*/
static enum fio_ddir get_rw_ddir(struct thread_data *td)
{
if (td_rw(td)) {
struct timeval now;
unsigned long elapsed;
unsigned int cycle;
fio_gettime(&now, NULL);
elapsed = mtime_since_now(&td->rwmix_switch);
/*
* if this is the first cycle, make it shorter
*/
cycle = td->o.rwmixcycle;
if (!td->rwmix_bytes)
cycle /= 10;
/*
* Check if it's time to seed a new data direction.
*/
if (elapsed >= cycle ||
td->io_bytes[td->rwmix_ddir] >= td->rwmix_bytes) {
unsigned long long max_bytes;
enum fio_ddir ddir;
/*
* Put a top limit on how many bytes we do for
* one data direction, to avoid overflowing the
* ranges too much
*/
ddir = get_rand_ddir(td);
max_bytes = td->this_io_bytes[ddir];
if (max_bytes >= (td->o.size * td->o.rwmix[ddir] / 100)) {
if (!td->rw_end_set[ddir]) {
td->rw_end_set[ddir] = 1;
memcpy(&td->rw_end[ddir], &now, sizeof(now));
}
ddir ^= 1;
}
if (ddir != td->rwmix_ddir)
set_rwmix_bytes(td);
td->rwmix_ddir = ddir;
memcpy(&td->rwmix_switch, &now, sizeof(now));
}
return td->rwmix_ddir;
} else if (td_read(td))
return DDIR_READ;
else
return DDIR_WRITE;
}
void put_io_u(struct thread_data *td, struct io_u *io_u)
{
assert((io_u->flags & IO_U_F_FREE) == 0);
io_u->flags |= IO_U_F_FREE;
if (io_u->file)
put_file(td, io_u->file);
io_u->file = NULL;
list_del(&io_u->list);
list_add(&io_u->list, &td->io_u_freelist);
td->cur_depth--;
}
void requeue_io_u(struct thread_data *td, struct io_u **io_u)
{
struct io_u *__io_u = *io_u;
__io_u->flags |= IO_U_F_FREE;
__io_u->flags &= ~IO_U_F_FLIGHT;
list_del(&__io_u->list);
list_add_tail(&__io_u->list, &td->io_u_requeues);
td->cur_depth--;
*io_u = NULL;
}
static int fill_io_u(struct thread_data *td, struct io_u *io_u)
{
/*
* If using an iolog, grab next piece if any available.
*/
if (td->o.read_iolog_file)
return read_iolog_get(td, io_u);
/*
* see if it's time to sync
*/
if (td->o.fsync_blocks &&
!(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) &&
td->io_issues[DDIR_WRITE] && should_fsync(td)) {
io_u->ddir = DDIR_SYNC;
goto out;
}
io_u->ddir = get_rw_ddir(td);
/*
* No log, let the seq/rand engine retrieve the next buflen and
* position.
*/
if (get_next_offset(td, io_u))
return 1;
io_u->buflen = get_next_buflen(td, io_u);
if (!io_u->buflen)
return 1;
/*
* mark entry before potentially trimming io_u
*/
if (td_random(td) && !td->o.norandommap)
mark_random_map(td, io_u);
/*
* If using a write iolog, store this entry.
*/
out:
if (td->o.write_iolog_file)
write_iolog_put(td, io_u);
return 0;
}
void io_u_mark_depth(struct thread_data *td, struct io_u *io_u)
{
int index = 0;
if (io_u->ddir == DDIR_SYNC)
return;
switch (td->cur_depth) {
default:
index = 6;
break;
case 32 ... 63:
index = 5;
break;
case 16 ... 31:
index = 4;
break;
case 8 ... 15:
index = 3;
break;
case 4 ... 7:
index = 2;
break;
case 2 ... 3:
index = 1;
case 1:
break;
}
td->ts.io_u_map[index]++;
td->ts.total_io_u[io_u->ddir]++;
}
static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec)
{
int index = 0;
assert(usec < 1000);
switch (usec) {
case 750 ... 999:
index = 9;
break;
case 500 ... 749:
index = 8;
break;
case 250 ... 499:
index = 7;
break;
case 100 ... 249:
index = 6;
break;
case 50 ... 99:
index = 5;
break;
case 20 ... 49:
index = 4;
break;
case 10 ... 19:
index = 3;
break;
case 4 ... 9:
index = 2;
break;
case 2 ... 3:
index = 1;
case 0 ... 1:
break;
}
assert(index < FIO_IO_U_LAT_U_NR);
td->ts.io_u_lat_u[index]++;
}
static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec)
{
int index = 0;
switch (msec) {
default:
index = 11;
break;
case 1000 ... 1999:
index = 10;
break;
case 750 ... 999:
index = 9;
break;
case 500 ... 749:
index = 8;
break;
case 250 ... 499:
index = 7;
break;
case 100 ... 249:
index = 6;
break;
case 50 ... 99:
index = 5;
break;
case 20 ... 49:
index = 4;
break;
case 10 ... 19:
index = 3;
break;
case 4 ... 9:
index = 2;
break;
case 2 ... 3:
index = 1;
case 0 ... 1:
break;
}
assert(index < FIO_IO_U_LAT_M_NR);
td->ts.io_u_lat_m[index]++;
}
static void io_u_mark_latency(struct thread_data *td, unsigned long usec)
{
if (usec < 1000)
io_u_mark_lat_usec(td, usec);
else
io_u_mark_lat_msec(td, usec / 1000);
}
/*
* Get next file to service by choosing one at random
*/
static struct fio_file *get_next_file_rand(struct thread_data *td, int goodf,
int badf)
{
struct fio_file *f;
int fno;
do {
long r = os_random_long(&td->next_file_state);
fno = (unsigned int) ((double) td->o.nr_files * (r / (RAND_MAX + 1.0)));
f = &td->files[fno];
if (f->flags & FIO_FILE_DONE)
continue;
if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
return f;
} while (1);
}
/*
* Get next file to service by doing round robin between all available ones
*/
static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
int badf)
{
unsigned int old_next_file = td->next_file;
struct fio_file *f;
do {
f = &td->files[td->next_file];
td->next_file++;
if (td->next_file >= td->o.nr_files)
td->next_file = 0;
if (f->flags & FIO_FILE_DONE) {
f = NULL;
continue;
}
if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
break;
f = NULL;
} while (td->next_file != old_next_file);
return f;
}
static struct fio_file *get_next_file(struct thread_data *td)
{
struct fio_file *f;
assert(td->o.nr_files <= td->files_index);
if (!td->nr_open_files || td->nr_done_files >= td->o.nr_files)
return NULL;
f = td->file_service_file;
if (f && (f->flags & FIO_FILE_OPEN) && td->file_service_left--)
return f;
if (td->o.file_service_type == FIO_FSERVICE_RR)
f = get_next_file_rr(td, FIO_FILE_OPEN, FIO_FILE_CLOSING);
else
f = get_next_file_rand(td, FIO_FILE_OPEN, FIO_FILE_CLOSING);
td->file_service_file = f;
td->file_service_left = td->file_service_nr - 1;
return f;
}
static struct fio_file *find_next_new_file(struct thread_data *td)
{
struct fio_file *f;
if (!td->nr_open_files || td->nr_done_files >= td->o.nr_files)
return NULL;
if (td->o.file_service_type == FIO_FSERVICE_RR)
f = get_next_file_rr(td, 0, FIO_FILE_OPEN);
else
f = get_next_file_rand(td, 0, FIO_FILE_OPEN);
return f;
}
struct io_u *__get_io_u(struct thread_data *td)
{
struct io_u *io_u = NULL;
if (!list_empty(&td->io_u_requeues))
io_u = list_entry(td->io_u_requeues.next, struct io_u, list);
else if (!queue_full(td)) {
io_u = list_entry(td->io_u_freelist.next, struct io_u, list);
io_u->buflen = 0;
io_u->resid = 0;
io_u->file = NULL;
io_u->end_io = NULL;
}
if (io_u) {
assert(io_u->flags & IO_U_F_FREE);
io_u->flags &= ~IO_U_F_FREE;
io_u->error = 0;
list_del(&io_u->list);
list_add(&io_u->list, &td->io_u_busylist);
td->cur_depth++;
}
return io_u;
}
/*
* Return an io_u to be processed. Gets a buflen and offset, sets direction,
* etc. The returned io_u is fully ready to be prepped and submitted.
*/
struct io_u *get_io_u(struct thread_data *td)
{
struct fio_file *f;
struct io_u *io_u;
int ret;
io_u = __get_io_u(td);
if (!io_u)
return NULL;
/*
* from a requeue, io_u already setup
*/
if (io_u->file)
goto out;
do {
f = get_next_file(td);
if (!f) {
put_io_u(td, io_u);
return NULL;
}
set_file:
io_u->file = f;
get_file(f);
if (!fill_io_u(td, io_u))
break;
/*
* td_io_close() does a put_file() as well, so no need to
* do that here.
*/
io_u->file = NULL;
td_io_close_file(td, f);
f->flags |= FIO_FILE_DONE;
td->nr_done_files++;
/*
* probably not the right place to do this, but see
* if we need to open a new file
*/
if (td->nr_open_files < td->o.open_files &&
td->o.open_files != td->o.nr_files) {
f = find_next_new_file(td);
if (!f || (ret = td_io_open_file(td, f))) {
put_io_u(td, io_u);
return NULL;
}
goto set_file;
}
} while (1);
assert(io_u->file->flags & FIO_FILE_OPEN);
if (td->zone_bytes >= td->o.zone_size) {
td->zone_bytes = 0;
f->last_pos += td->o.zone_skip;
}
if (io_u->ddir != DDIR_SYNC) {
if (!io_u->buflen) {
put_io_u(td, io_u);
return NULL;
}
f->last_pos = io_u->offset + io_u->buflen;
if (td->o.verify != VERIFY_NONE)
populate_verify_io_u(td, io_u);
}
/*
* Set io data pointers.
*/
io_u->endpos = io_u->offset + io_u->buflen;
out:
io_u->xfer_buf = io_u->buf;
io_u->xfer_buflen = io_u->buflen;
if (td_io_prep(td, io_u)) {
put_io_u(td, io_u);
return NULL;
}
fio_gettime(&io_u->start_time, NULL);
return io_u;
}
void io_u_log_error(struct thread_data *td, struct io_u *io_u)
{
const char *msg[] = { "read", "write", "sync" };
log_err("fio: io_u error");
if (io_u->file)
log_err(" on file %s", io_u->file->file_name);
log_err(": %s\n", strerror(io_u->error));
log_err(" %s offset=%llu, buflen=%lu\n", msg[io_u->ddir], io_u->offset, io_u->xfer_buflen);
if (!td->error)
td_verror(td, io_u->error, "io_u error");
}
static void io_completed(struct thread_data *td, struct io_u *io_u,
struct io_completion_data *icd)
{
unsigned long usec;
assert(io_u->flags & IO_U_F_FLIGHT);
io_u->flags &= ~IO_U_F_FLIGHT;
if (io_u->ddir == DDIR_SYNC) {
td->last_was_sync = 1;
return;
}
td->last_was_sync = 0;
if (!io_u->error) {
unsigned int bytes = io_u->buflen - io_u->resid;
const enum fio_ddir idx = io_u->ddir;
int ret;
td->io_blocks[idx]++;
td->io_bytes[idx] += bytes;
td->zone_bytes += bytes;
td->this_io_bytes[idx] += bytes;
io_u->file->last_completed_pos = io_u->endpos;
usec = utime_since(&io_u->issue_time, &icd->time);
add_clat_sample(td, idx, usec);
add_bw_sample(td, idx, &icd->time);
io_u_mark_latency(td, usec);
if (td_write(td) && idx == DDIR_WRITE &&
td->o.verify != VERIFY_NONE)
log_io_piece(td, io_u);
icd->bytes_done[idx] += bytes;
if (io_u->end_io) {
ret = io_u->end_io(td, io_u);
if (ret && !icd->error)
icd->error = ret;
}
} else {
icd->error = io_u->error;
io_u_log_error(td, io_u);
}
}
static void init_icd(struct io_completion_data *icd, int nr)
{
fio_gettime(&icd->time, NULL);
icd->nr = nr;
icd->error = 0;
icd->bytes_done[0] = icd->bytes_done[1] = 0;
}
static void ios_completed(struct thread_data *td,
struct io_completion_data *icd)
{
struct io_u *io_u;
int i;
for (i = 0; i < icd->nr; i++) {
io_u = td->io_ops->event(td, i);
io_completed(td, io_u, icd);
put_io_u(td, io_u);
}
}
/*
* Complete a single io_u for the sync engines.
*/
long io_u_sync_complete(struct thread_data *td, struct io_u *io_u)
{
struct io_completion_data icd;
init_icd(&icd, 1);
io_completed(td, io_u, &icd);
put_io_u(td, io_u);
if (!icd.error)
return icd.bytes_done[0] + icd.bytes_done[1];
td_verror(td, icd.error, "io_u_sync_complete");
return -1;
}
/*
* Called to complete min_events number of io for the async engines.
*/
long io_u_queued_complete(struct thread_data *td, int min_events)
{
struct io_completion_data icd;
struct timespec *tvp = NULL;
int ret;
struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
if (!min_events)
tvp = &ts;
ret = td_io_getevents(td, min_events, td->cur_depth, tvp);
if (ret < 0) {
td_verror(td, -ret, "td_io_getevents");
return ret;
} else if (!ret)
return ret;
init_icd(&icd, ret);
ios_completed(td, &icd);
if (!icd.error)
return icd.bytes_done[0] + icd.bytes_done[1];
td_verror(td, icd.error, "io_u_queued_complete");
return -1;
}
/*
* Call when io_u is really queued, to update the submission latency.
*/
void io_u_queued(struct thread_data *td, struct io_u *io_u)
{
unsigned long slat_time;
slat_time = utime_since(&io_u->start_time, &io_u->issue_time);
add_slat_sample(td, io_u->ddir, slat_time);
}
#ifdef FIO_USE_TIMEOUT
void io_u_set_timeout(struct thread_data *td)
{
assert(td->cur_depth);
td->timer.it_interval.tv_sec = 0;
td->timer.it_interval.tv_usec = 0;
td->timer.it_value.tv_sec = IO_U_TIMEOUT + IO_U_TIMEOUT_INC;
td->timer.it_value.tv_usec = 0;
setitimer(ITIMER_REAL, &td->timer, NULL);
fio_gettime(&td->timeout_end, NULL);
}
static void io_u_dump(struct io_u *io_u)
{
unsigned long t_start = mtime_since_now(&io_u->start_time);
unsigned long t_issue = mtime_since_now(&io_u->issue_time);
log_err("io_u=%p, t_start=%lu, t_issue=%lu\n", io_u, t_start, t_issue);
log_err(" buf=%p/%p, len=%lu/%lu, offset=%llu\n", io_u->buf, io_u->xfer_buf, io_u->buflen, io_u->xfer_buflen, io_u->offset);
log_err(" ddir=%d, fname=%s\n", io_u->ddir, io_u->file->file_name);
}
#else
void io_u_set_timeout(struct thread_data fio_unused *td)
{
}
#endif
#ifdef FIO_USE_TIMEOUT
static void io_u_timeout_handler(int fio_unused sig)
{
struct thread_data *td, *__td;
pid_t pid = getpid();
struct list_head *entry;
struct io_u *io_u;
int i;
log_err("fio: io_u timeout\n");
/*
* TLS would be nice...
*/
td = NULL;
for_each_td(__td, i) {
if (__td->pid == pid) {
td = __td;
break;
}
}
if (!td) {
log_err("fio: io_u timeout, can't find job\n");
exit(1);
}
if (!td->cur_depth) {
log_err("fio: timeout without pending work?\n");
return;
}
log_err("fio: io_u timeout: job=%s, pid=%d\n", td->o.name, td->pid);
list_for_each(entry, &td->io_u_busylist) {
io_u = list_entry(entry, struct io_u, list);
io_u_dump(io_u);
}
td_verror(td, ETIMEDOUT, "io_u timeout");
exit(1);
}
#endif
void io_u_init_timeout(void)
{
#ifdef FIO_USE_TIMEOUT
signal(SIGALRM, io_u_timeout_handler);
#endif
}