| Table of contents |
| ----------------- |
| |
| 1. Overview |
| 2. How fio works |
| 3. Running fio |
| 4. Job file format |
| 5. Detailed list of parameters |
| 6. Normal output |
| 7. Terse output |
| |
| |
| 1.0 Overview and history |
| ------------------------ |
| fio was originally written to save me the hassle of writing special test |
| case programs when I wanted to test a specific workload, either for |
| performance reasons or to find/reproduce a bug. The process of writing |
| such a test app can be tiresome, especially if you have to do it often. |
| Hence I needed a tool that would be able to simulate a given io workload |
| without resorting to writing a tailored test case again and again. |
| |
| A test work load is difficult to define, though. There can be any number |
| of processes or threads involved, and they can each be using their own |
| way of generating io. You could have someone dirtying large amounts of |
| memory in an memory mapped file, or maybe several threads issuing |
| reads using asynchronous io. fio needed to be flexible enough to |
| simulate both of these cases, and many more. |
| |
| 2.0 How fio works |
| ----------------- |
| The first step in getting fio to simulate a desired io workload, is |
| writing a job file describing that specific setup. A job file may contain |
| any number of threads and/or files - the typical contents of the job file |
| is a global section defining shared parameters, and one or more job |
| sections describing the jobs involved. When run, fio parses this file |
| and sets everything up as described. If we break down a job from top to |
| bottom, it contains the following basic parameters: |
| |
| IO type Defines the io pattern issued to the file(s). |
| We may only be reading sequentially from this |
| file(s), or we may be writing randomly. Or even |
| mixing reads and writes, sequentially or randomly. |
| |
| Block size In how large chunks are we issuing io? This may be |
| a single value, or it may describe a range of |
| block sizes. |
| |
| IO size How much data are we going to be reading/writing. |
| |
| IO engine How do we issue io? We could be memory mapping the |
| file, we could be using regular read/write, we |
| could be using splice, async io, syslet, or even |
| SG (SCSI generic sg). |
| |
| IO depth If the io engine is async, how large a queuing |
| depth do we want to maintain? |
| |
| IO type Should we be doing buffered io, or direct/raw io? |
| |
| Num files How many files are we spreading the workload over. |
| |
| Num threads How many threads or processes should we spread |
| this workload over. |
| |
| The above are the basic parameters defined for a workload, in addition |
| there's a multitude of parameters that modify other aspects of how this |
| job behaves. |
| |
| |
| 3.0 Running fio |
| --------------- |
| See the README file for command line parameters, there are only a few |
| of them. |
| |
| Running fio is normally the easiest part - you just give it the job file |
| (or job files) as parameters: |
| |
| $ fio job_file |
| |
| and it will start doing what the job_file tells it to do. You can give |
| more than one job file on the command line, fio will serialize the running |
| of those files. Internally that is the same as using the 'stonewall' |
| parameter described the the parameter section. |
| |
| If the job file contains only one job, you may as well just give the |
| parameters on the command line. The command line parameters are identical |
| to the job parameters, with a few extra that control global parameters |
| (see README). For example, for the job file parameter iodepth=2, the |
| mirror command line option would be --iodepth 2 or --iodepth=2. You can |
| also use the command line for giving more than one job entry. For each |
| --name option that fio sees, it will start a new job with that name. |
| Command line entries following a --name entry will apply to that job, |
| until there are no more entries or a new --name entry is seen. This is |
| similar to the job file options, where each option applies to the current |
| job until a new [] job entry is seen. |
| |
| fio does not need to run as root, except if the files or devices specified |
| in the job section requires that. Some other options may also be restricted, |
| such as memory locking, io scheduler switching, and decreasing the nice value. |
| |
| |
| 4.0 Job file format |
| ------------------- |
| As previously described, fio accepts one or more job files describing |
| what it is supposed to do. The job file format is the classic ini file, |
| where the names enclosed in [] brackets define the job name. You are free |
| to use any ascii name you want, except 'global' which has special meaning. |
| A global section sets defaults for the jobs described in that file. A job |
| may override a global section parameter, and a job file may even have |
| several global sections if so desired. A job is only affected by a global |
| section residing above it. If the first character in a line is a ';' or a |
| '#', the entire line is discarded as a comment. |
| |
| So lets look at a really simple job file that define to threads, each |
| randomly reading from a 128MiB file. |
| |
| ; -- start job file -- |
| [global] |
| rw=randread |
| size=128m |
| |
| [job1] |
| |
| [job2] |
| |
| ; -- end job file -- |
| |
| As you can see, the job file sections themselves are empty as all the |
| described parameters are shared. As no filename= option is given, fio |
| makes up a filename for each of the jobs as it sees fit. On the command |
| line, this job would look as follows: |
| |
| $ fio --name=global --rw=randread --size=128m --name=job1 --name=job2 |
| |
| |
| Lets look at an example that have a number of processes writing randomly |
| to files. |
| |
| ; -- start job file -- |
| [random-writers] |
| ioengine=libaio |
| iodepth=4 |
| rw=randwrite |
| bs=32k |
| direct=0 |
| size=64m |
| numjobs=4 |
| |
| ; -- end job file -- |
| |
| Here we have no global section, as we only have one job defined anyway. |
| We want to use async io here, with a depth of 4 for each file. We also |
| increased the buffer size used to 32KiB and define numjobs to 4 to |
| fork 4 identical jobs. The result is 4 processes each randomly writing |
| to their own 64MiB file. Instead of using the above job file, you could |
| have given the parameters on the command line. For this case, you would |
| specify: |
| |
| $ fio --name=random-writers --ioengine=libaio --iodepth=4 --rw=randwrite --bs=32k --direct=0 --size=64m --numjobs=4 |
| |
| fio ships with a few example job files, you can also look there for |
| inspiration. |
| |
| |
| 5.0 Detailed list of parameters |
| ------------------------------- |
| |
| This section describes in details each parameter associated with a job. |
| Some parameters take an option of a given type, such as an integer or |
| a string. The following types are used: |
| |
| str String. This is a sequence of alpha characters. |
| int Integer. A whole number value, can be negative. If prefixed with |
| 0x, the integer is assumed to be of base 16 (hexidecimal). |
| siint SI integer. A whole number value, which may contain a postfix |
| describing the base of the number. Accepted postfixes are k/m/g, |
| meaning kilo, mega, and giga. So if you want to specify 4096, |
| you could either write out '4096' or just give 4k. The postfixes |
| signify base 2 values, so 1024 is 1k and 1024k is 1m and so on. |
| If the option accepts an upper and lower range, use a colon ':' |
| or minus '-' to seperate such values. See irange. |
| bool Boolean. Usually parsed as an integer, however only defined for |
| true and false (1 and 0). |
| irange Integer range with postfix. Allows value range to be given, such |
| as 1024-4096. A colon may also be used as the seperator, eg |
| 1k:4k. If the option allows two sets of ranges, they can be |
| specified with a ',' or '/' delimiter: 1k-4k/8k-32k. Also see |
| siint. |
| |
| With the above in mind, here follows the complete list of fio job |
| parameters. |
| |
| name=str ASCII name of the job. This may be used to override the |
| name printed by fio for this job. Otherwise the job |
| name is used. On the command line this parameter has the |
| special purpose of also signaling the start of a new |
| job. |
| |
| description=str Text description of the job. Doesn't do anything except |
| dump this text description when this job is run. It's |
| not parsed. |
| |
| directory=str Prefix filenames with this directory. Used to places files |
| in a different location than "./". |
| |
| filename=str Fio normally makes up a filename based on the job name, |
| thread number, and file number. If you want to share |
| files between threads in a job or several jobs, specify |
| a filename for each of them to override the default. If |
| the ioengine used is 'net', the filename is the host and |
| port to connect to in the format of =host/port. If the |
| ioengine is file based, you can specify a number of files |
| by seperating the names with a ':' colon. So if you wanted |
| a job to open /dev/sda and /dev/sdb as the two working files, |
| you would use filename=/dev/sda:/dev/sdb. '-' is a reserved |
| name, meaning stdin or stdout. Which of the two depends |
| on the read/write direction set. |
| |
| opendir=str Tell fio to recursively add any file it can find in this |
| directory and down the file system tree. |
| |
| lockfile=str Fio defaults to not doing any locking files before it does |
| IO to them. If a file or file descriptor is shared, fio |
| can serialize IO to that file to make the end result |
| consistent. This is usual for emulating real workloads that |
| share files. The lock modes are: |
| |
| none No locking. The default. |
| exclusive Only one thread/process may do IO, |
| excluding all others. |
| readwrite Read-write locking on the file. Many |
| readers may access the file at the |
| same time, but writes get exclusive |
| access. |
| |
| The option may be post-fixed with a lock batch number. If |
| set, then each thread/process may do that amount of IOs to |
| the file before giving up the lock. Since lock acqusition is |
| expensive, batching the lock/unlocks will speed up IO. |
| |
| readwrite=str |
| rw=str Type of io pattern. Accepted values are: |
| |
| read Sequential reads |
| write Sequential writes |
| randwrite Random writes |
| randread Random reads |
| rw Sequential mixed reads and writes |
| randrw Random mixed reads and writes |
| |
| For the mixed io types, the default is to split them 50/50. |
| For certain types of io the result may still be skewed a bit, |
| since the speed may be different. It is possible to specify |
| a number of IO's to do before getting a new offset - this |
| is only useful for random IO, where fio would normally |
| generate a new random offset for every IO. If you append |
| eg 8 to randread, you would get a new random offset for |
| every 8 IO's. The result would be a seek for only every 8 |
| IO's, instead of for every IO. Use rw=randread:8 to specify |
| that. |
| |
| randrepeat=bool For random IO workloads, seed the generator in a predictable |
| way so that results are repeatable across repetitions. |
| |
| fadvise_hint=bool By default, fio will use fadvise() to advise the kernel |
| on what IO patterns it is likely to issue. Sometimes you |
| want to test specific IO patterns without telling the |
| kernel about it, in which case you can disable this option. |
| If set, fio will use POSIX_FADV_SEQUENTIAL for sequential |
| IO and POSIX_FADV_RANDOM for random IO. |
| |
| size=siint The total size of file io for this job. Fio will run until |
| this many bytes has been transferred, unless runtime is |
| limited by other options (such as 'runtime', for instance). |
| Unless specific nr_files and filesize options are given, |
| fio will divide this size between the available files |
| specified by the job. |
| |
| filesize=siint Individual file sizes. May be a range, in which case fio |
| will select sizes for files at random within the given range |
| and limited to 'size' in total (if that is given). If not |
| given, each created file is the same size. |
| |
| fill_device=bool Sets size to something really large and waits for ENOSPC (no |
| space left on device) as the terminating condition. Only makes |
| sense with sequential write. |
| |
| blocksize=siint |
| bs=siint The block size used for the io units. Defaults to 4k. Values |
| can be given for both read and writes. If a single siint is |
| given, it will apply to both. If a second siint is specified |
| after a comma, it will apply to writes only. In other words, |
| the format is either bs=read_and_write or bs=read,write. |
| bs=4k,8k will thus use 4k blocks for reads, and 8k blocks |
| for writes. If you only wish to set the write size, you |
| can do so by passing an empty read size - bs=,8k will set |
| 8k for writes and leave the read default value. |
| |
| blocksize_range=irange |
| bsrange=irange Instead of giving a single block size, specify a range |
| and fio will mix the issued io block sizes. The issued |
| io unit will always be a multiple of the minimum value |
| given (also see bs_unaligned). Applies to both reads and |
| writes, however a second range can be given after a comma. |
| See bs=. |
| |
| bssplit=str Sometimes you want even finer grained control of the |
| block sizes issued, not just an even split between them. |
| This option allows you to weight various block sizes, |
| so that you are able to define a specific amount of |
| block sizes issued. The format for this option is: |
| |
| bssplit=blocksize/percentage:blocksize/percentage |
| |
| for as many block sizes as needed. So if you want to define |
| a workload that has 50% 64k blocks, 10% 4k blocks, and |
| 40% 32k blocks, you would write: |
| |
| bssplit=4k/10:64k/50:32k/40 |
| |
| Ordering does not matter. If the percentage is left blank, |
| fio will fill in the remaining values evenly. So a bssplit |
| option like this one: |
| |
| bssplit=4k/50:1k/:32k/ |
| |
| would have 50% 4k ios, and 25% 1k and 32k ios. The percentages |
| always add up to 100, if bssplit is given a range that adds |
| up to more, it will error out. |
| |
| blocksize_unaligned |
| bs_unaligned If this option is given, any byte size value within bsrange |
| may be used as a block range. This typically wont work with |
| direct IO, as that normally requires sector alignment. |
| |
| zero_buffers If this option is given, fio will init the IO buffers to |
| all zeroes. The default is to fill them with random data. |
| |
| refill_buffers If this option is given, fio will refill the IO buffers |
| on every submit. The default is to only fill it at init |
| time and reuse that data. Only makes sense if zero_buffers |
| isn't specified, naturally. If data verification is enabled, |
| refill_buffers is also automatically enabled. |
| |
| nrfiles=int Number of files to use for this job. Defaults to 1. |
| |
| openfiles=int Number of files to keep open at the same time. Defaults to |
| the same as nrfiles, can be set smaller to limit the number |
| simultaneous opens. |
| |
| file_service_type=str Defines how fio decides which file from a job to |
| service next. The following types are defined: |
| |
| random Just choose a file at random. |
| |
| roundrobin Round robin over open files. This |
| is the default. |
| |
| The string can have a number appended, indicating how |
| often to switch to a new file. So if option random:4 is |
| given, fio will switch to a new random file after 4 ios |
| have been issued. |
| |
| ioengine=str Defines how the job issues io to the file. The following |
| types are defined: |
| |
| sync Basic read(2) or write(2) io. lseek(2) is |
| used to position the io location. |
| |
| psync Basic pread(2) or pwrite(2) io. |
| |
| vsync Basic readv(2) or writev(2) IO. |
| |
| libaio Linux native asynchronous io. |
| |
| posixaio glibc posix asynchronous io. |
| |
| solarisaio Solaris native asynchronous io. |
| |
| mmap File is memory mapped and data copied |
| to/from using memcpy(3). |
| |
| splice splice(2) is used to transfer the data and |
| vmsplice(2) to transfer data from user |
| space to the kernel. |
| |
| syslet-rw Use the syslet system calls to make |
| regular read/write async. |
| |
| sg SCSI generic sg v3 io. May either be |
| synchronous using the SG_IO ioctl, or if |
| the target is an sg character device |
| we use read(2) and write(2) for asynchronous |
| io. |
| |
| null Doesn't transfer any data, just pretends |
| to. This is mainly used to exercise fio |
| itself and for debugging/testing purposes. |
| |
| net Transfer over the network to given host:port. |
| 'filename' must be set appropriately to |
| filename=host/port regardless of send |
| or receive, if the latter only the port |
| argument is used. |
| |
| netsplice Like net, but uses splice/vmsplice to |
| map data and send/receive. |
| |
| cpuio Doesn't transfer any data, but burns CPU |
| cycles according to the cpuload= and |
| cpucycle= options. Setting cpuload=85 |
| will cause that job to do nothing but burn |
| 85% of the CPU. In case of SMP machines, |
| use numjobs=<no_of_cpu> to get desired CPU |
| usage, as the cpuload only loads a single |
| CPU at the desired rate. |
| |
| guasi The GUASI IO engine is the Generic Userspace |
| Asyncronous Syscall Interface approach |
| to async IO. See |
| |
| http://www.xmailserver.org/guasi-lib.html |
| |
| for more info on GUASI. |
| |
| external Prefix to specify loading an external |
| IO engine object file. Append the engine |
| filename, eg ioengine=external:/tmp/foo.o |
| to load ioengine foo.o in /tmp. |
| |
| iodepth=int This defines how many io units to keep in flight against |
| the file. The default is 1 for each file defined in this |
| job, can be overridden with a larger value for higher |
| concurrency. |
| |
| iodepth_batch_submit=int |
| iodepth_batch=int This defines how many pieces of IO to submit at once. |
| It defaults to 1 which means that we submit each IO |
| as soon as it is available, but can be raised to submit |
| bigger batches of IO at the time. |
| |
| iodepth_batch_complete=int This defines how many pieces of IO to retrieve |
| at once. It defaults to 1 which means that we'll ask |
| for a minimum of 1 IO in the retrieval process from |
| the kernel. The IO retrieval will go on until we |
| hit the limit set by iodepth_low. If this variable is |
| set to 0, then fio will always check for completed |
| events before queuing more IO. This helps reduce |
| IO latency, at the cost of more retrieval system calls. |
| |
| iodepth_low=int The low water mark indicating when to start filling |
| the queue again. Defaults to the same as iodepth, meaning |
| that fio will attempt to keep the queue full at all times. |
| If iodepth is set to eg 16 and iodepth_low is set to 4, then |
| after fio has filled the queue of 16 requests, it will let |
| the depth drain down to 4 before starting to fill it again. |
| |
| direct=bool If value is true, use non-buffered io. This is usually |
| O_DIRECT. |
| |
| buffered=bool If value is true, use buffered io. This is the opposite |
| of the 'direct' option. Defaults to true. |
| |
| offset=siint Start io at the given offset in the file. The data before |
| the given offset will not be touched. This effectively |
| caps the file size at real_size - offset. |
| |
| fsync=int If writing to a file, issue a sync of the dirty data |
| for every number of blocks given. For example, if you give |
| 32 as a parameter, fio will sync the file for every 32 |
| writes issued. If fio is using non-buffered io, we may |
| not sync the file. The exception is the sg io engine, which |
| synchronizes the disk cache anyway. |
| |
| overwrite=bool If true, writes to a file will always overwrite existing |
| data. If the file doesn't already exist, it will be |
| created before the write phase begins. If the file exists |
| and is large enough for the specified write phase, nothing |
| will be done. |
| |
| end_fsync=bool If true, fsync file contents when the job exits. |
| |
| fsync_on_close=bool If true, fio will fsync() a dirty file on close. |
| This differs from end_fsync in that it will happen on every |
| file close, not just at the end of the job. |
| |
| rwmixread=int How large a percentage of the mix should be reads. |
| |
| rwmixwrite=int How large a percentage of the mix should be writes. If both |
| rwmixread and rwmixwrite is given and the values do not add |
| up to 100%, the latter of the two will be used to override |
| the first. |
| |
| norandommap Normally fio will cover every block of the file when doing |
| random IO. If this option is given, fio will just get a |
| new random offset without looking at past io history. This |
| means that some blocks may not be read or written, and that |
| some blocks may be read/written more than once. This option |
| is mutually exclusive with verify= for that reason, since |
| fio doesn't track potential block rewrites which may alter |
| the calculated checksum for that block. |
| |
| softrandommap See norandommap. If fio runs with the random block map enabled |
| and it fails to allocate the map, if this option is set it |
| will continue without a random block map. As coverage will |
| not be as complete as with random maps, this option is |
| disabled by default. |
| |
| nice=int Run the job with the given nice value. See man nice(2). |
| |
| prio=int Set the io priority value of this job. Linux limits us to |
| a positive value between 0 and 7, with 0 being the highest. |
| See man ionice(1). |
| |
| prioclass=int Set the io priority class. See man ionice(1). |
| |
| thinktime=int Stall the job x microseconds after an io has completed before |
| issuing the next. May be used to simulate processing being |
| done by an application. See thinktime_blocks and |
| thinktime_spin. |
| |
| thinktime_spin=int |
| Only valid if thinktime is set - pretend to spend CPU time |
| doing something with the data received, before falling back |
| to sleeping for the rest of the period specified by |
| thinktime. |
| |
| thinktime_blocks |
| Only valid if thinktime is set - control how many blocks |
| to issue, before waiting 'thinktime' usecs. If not set, |
| defaults to 1 which will make fio wait 'thinktime' usecs |
| after every block. |
| |
| rate=int Cap the bandwidth used by this job to this number of KiB/sec. |
| |
| ratemin=int Tell fio to do whatever it can to maintain at least this |
| bandwidth. Failing to meet this requirement, will cause |
| the job to exit. |
| |
| rate_iops=int Cap the bandwidth to this number of IOPS. Basically the same |
| as rate, just specified independently of bandwidth. If the |
| job is given a block size range instead of a fixed value, |
| the smallest block size is used as the metric. |
| |
| rate_iops_min=int If fio doesn't meet this rate of IO, it will cause |
| the job to exit. |
| |
| ratecycle=int Average bandwidth for 'rate' and 'ratemin' over this number |
| of milliseconds. |
| |
| cpumask=int Set the CPU affinity of this job. The parameter given is a |
| bitmask of allowed CPU's the job may run on. So if you want |
| the allowed CPUs to be 1 and 5, you would pass the decimal |
| value of (1 << 1 | 1 << 5), or 34. See man |
| sched_setaffinity(2). This may not work on all supported |
| operating systems or kernel versions. |
| |
| cpus_allowed=str Controls the same options as cpumask, but it allows a text |
| setting of the permitted CPUs instead. So to use CPUs 1 and |
| 5, you would specify cpus_allowed=1,5. |
| |
| startdelay=int Start this job the specified number of seconds after fio |
| has started. Only useful if the job file contains several |
| jobs, and you want to delay starting some jobs to a certain |
| time. |
| |
| runtime=int Tell fio to terminate processing after the specified number |
| of seconds. It can be quite hard to determine for how long |
| a specified job will run, so this parameter is handy to |
| cap the total runtime to a given time. |
| |
| time_based If set, fio will run for the duration of the runtime |
| specified even if the file(s) are completey read or |
| written. It will simply loop over the same workload |
| as many times as the runtime allows. |
| |
| invalidate=bool Invalidate the buffer/page cache parts for this file prior |
| to starting io. Defaults to true. |
| |
| sync=bool Use sync io for buffered writes. For the majority of the |
| io engines, this means using O_SYNC. |
| |
| iomem=str |
| mem=str Fio can use various types of memory as the io unit buffer. |
| The allowed values are: |
| |
| malloc Use memory from malloc(3) as the buffers. |
| |
| shm Use shared memory as the buffers. Allocated |
| through shmget(2). |
| |
| shmhuge Same as shm, but use huge pages as backing. |
| |
| mmap Use mmap to allocate buffers. May either be |
| anonymous memory, or can be file backed if |
| a filename is given after the option. The |
| format is mem=mmap:/path/to/file. |
| |
| mmaphuge Use a memory mapped huge file as the buffer |
| backing. Append filename after mmaphuge, ala |
| mem=mmaphuge:/hugetlbfs/file |
| |
| The area allocated is a function of the maximum allowed |
| bs size for the job, multiplied by the io depth given. Note |
| that for shmhuge and mmaphuge to work, the system must have |
| free huge pages allocated. This can normally be checked |
| and set by reading/writing /proc/sys/vm/nr_hugepages on a |
| Linux system. Fio assumes a huge page is 4MiB in size. So |
| to calculate the number of huge pages you need for a given |
| job file, add up the io depth of all jobs (normally one unless |
| iodepth= is used) and multiply by the maximum bs set. Then |
| divide that number by the huge page size. You can see the |
| size of the huge pages in /proc/meminfo. If no huge pages |
| are allocated by having a non-zero number in nr_hugepages, |
| using mmaphuge or shmhuge will fail. Also see hugepage-size. |
| |
| mmaphuge also needs to have hugetlbfs mounted and the file |
| location should point there. So if it's mounted in /huge, |
| you would use mem=mmaphuge:/huge/somefile. |
| |
| hugepage-size=siint |
| Defines the size of a huge page. Must at least be equal |
| to the system setting, see /proc/meminfo. Defaults to 4MiB. |
| Should probably always be a multiple of megabytes, so using |
| hugepage-size=Xm is the preferred way to set this to avoid |
| setting a non-pow-2 bad value. |
| |
| exitall When one job finishes, terminate the rest. The default is |
| to wait for each job to finish, sometimes that is not the |
| desired action. |
| |
| bwavgtime=int Average the calculated bandwidth over the given time. Value |
| is specified in milliseconds. |
| |
| create_serialize=bool If true, serialize the file creating for the jobs. |
| This may be handy to avoid interleaving of data |
| files, which may greatly depend on the filesystem |
| used and even the number of processors in the system. |
| |
| create_fsync=bool fsync the data file after creation. This is the |
| default. |
| |
| unlink=bool Unlink the job files when done. Not the default, as repeated |
| runs of that job would then waste time recreating the fileset |
| again and again. |
| |
| loops=int Run the specified number of iterations of this job. Used |
| to repeat the same workload a given number of times. Defaults |
| to 1. |
| |
| do_verify=bool Run the verify phase after a write phase. Only makes sense if |
| verify is set. Defaults to 1. |
| |
| verify=str If writing to a file, fio can verify the file contents |
| after each iteration of the job. The allowed values are: |
| |
| md5 Use an md5 sum of the data area and store |
| it in the header of each block. |
| |
| crc64 Use an experimental crc64 sum of the data |
| area and store it in the header of each |
| block. |
| |
| crc32 Use a crc32 sum of the data area and store |
| it in the header of each block. |
| |
| crc16 Use a crc16 sum of the data area and store |
| it in the header of each block. |
| |
| crc7 Use a crc7 sum of the data area and store |
| it in the header of each block. |
| |
| sha512 Use sha512 as the checksum function. |
| |
| sha256 Use sha256 as the checksum function. |
| |
| meta Write extra information about each io |
| (timestamp, block number etc.). The block |
| number is verified. |
| |
| null Only pretend to verify. Useful for testing |
| internals with ioengine=null, not for much |
| else. |
| |
| This option can be used for repeated burn-in tests of a |
| system to make sure that the written data is also |
| correctly read back. |
| |
| verifysort=bool If set, fio will sort written verify blocks when it deems |
| it faster to read them back in a sorted manner. This is |
| often the case when overwriting an existing file, since |
| the blocks are already laid out in the file system. You |
| can ignore this option unless doing huge amounts of really |
| fast IO where the red-black tree sorting CPU time becomes |
| significant. |
| |
| verify_offset=siint Swap the verification header with data somewhere else |
| in the block before writing. Its swapped back before |
| verifying. |
| |
| verify_interval=siint Write the verification header at a finer granularity |
| than the blocksize. It will be written for chunks the |
| size of header_interval. blocksize should divide this |
| evenly. |
| |
| verify_pattern=int If set, fio will fill the io buffers with this |
| pattern. Fio defaults to filling with totally random |
| bytes, but sometimes it's interesting to fill with a known |
| pattern for io verification purposes. Depending on the |
| width of the pattern, fio will fill 1/2/3/4 bytes of the |
| buffer at the time. The verify_pattern cannot be larger than |
| a 32-bit quantity. |
| |
| verify_fatal=bool Normally fio will keep checking the entire contents |
| before quitting on a block verification failure. If this |
| option is set, fio will exit the job on the first observed |
| failure. |
| |
| stonewall Wait for preceeding jobs in the job file to exit, before |
| starting this one. Can be used to insert serialization |
| points in the job file. A stone wall also implies starting |
| a new reporting group. |
| |
| new_group Start a new reporting group. If this option isn't given, |
| jobs in a file will be part of the same reporting group |
| unless seperated by a stone wall (or if it's a group |
| by itself, with the numjobs option). |
| |
| numjobs=int Create the specified number of clones of this job. May be |
| used to setup a larger number of threads/processes doing |
| the same thing. We regard that grouping of jobs as a |
| specific group. |
| |
| group_reporting If 'numjobs' is set, it may be interesting to display |
| statistics for the group as a whole instead of for each |
| individual job. This is especially true of 'numjobs' is |
| large, looking at individual thread/process output quickly |
| becomes unwieldy. If 'group_reporting' is specified, fio |
| will show the final report per-group instead of per-job. |
| |
| thread fio defaults to forking jobs, however if this option is |
| given, fio will use pthread_create(3) to create threads |
| instead. |
| |
| zonesize=siint Divide a file into zones of the specified size. See zoneskip. |
| |
| zoneskip=siint Skip the specified number of bytes when zonesize data has |
| been read. The two zone options can be used to only do |
| io on zones of a file. |
| |
| write_iolog=str Write the issued io patterns to the specified file. See |
| read_iolog. |
| |
| read_iolog=str Open an iolog with the specified file name and replay the |
| io patterns it contains. This can be used to store a |
| workload and replay it sometime later. The iolog given |
| may also be a blktrace binary file, which allows fio |
| to replay a workload captured by blktrace. See blktrace |
| for how to capture such logging data. For blktrace replay, |
| the file needs to be turned into a blkparse binary data |
| file first (blktrace <device> -d file_for_fio.bin). |
| |
| write_bw_log If given, write a bandwidth log of the jobs in this job |
| file. Can be used to store data of the bandwidth of the |
| jobs in their lifetime. The included fio_generate_plots |
| script uses gnuplot to turn these text files into nice |
| graphs. |
| |
| write_lat_log Same as write_bw_log, except that this option stores io |
| completion latencies instead. |
| |
| lockmem=siint Pin down the specified amount of memory with mlock(2). Can |
| potentially be used instead of removing memory or booting |
| with less memory to simulate a smaller amount of memory. |
| |
| exec_prerun=str Before running this job, issue the command specified |
| through system(3). |
| |
| exec_postrun=str After the job completes, issue the command specified |
| though system(3). |
| |
| ioscheduler=str Attempt to switch the device hosting the file to the specified |
| io scheduler before running. |
| |
| cpuload=int If the job is a CPU cycle eater, attempt to use the specified |
| percentage of CPU cycles. |
| |
| cpuchunks=int If the job is a CPU cycle eater, split the load into |
| cycles of the given time. In milliseconds. |
| |
| disk_util=bool Generate disk utilization statistics, if the platform |
| supports it. Defaults to on. |
| |
| |
| 6.0 Interpreting the output |
| --------------------------- |
| |
| fio spits out a lot of output. While running, fio will display the |
| status of the jobs created. An example of that would be: |
| |
| Threads: 1: [_r] [24.8% done] [ 13509/ 8334 kb/s] [eta 00h:01m:31s] |
| |
| The characters inside the square brackets denote the current status of |
| each thread. The possible values (in typical life cycle order) are: |
| |
| Idle Run |
| ---- --- |
| P Thread setup, but not started. |
| C Thread created. |
| I Thread initialized, waiting. |
| R Running, doing sequential reads. |
| r Running, doing random reads. |
| W Running, doing sequential writes. |
| w Running, doing random writes. |
| M Running, doing mixed sequential reads/writes. |
| m Running, doing mixed random reads/writes. |
| F Running, currently waiting for fsync() |
| V Running, doing verification of written data. |
| E Thread exited, not reaped by main thread yet. |
| _ Thread reaped. |
| |
| The other values are fairly self explanatory - number of threads |
| currently running and doing io, rate of io since last check (read speed |
| listed first, then write speed), and the estimated completion percentage |
| and time for the running group. It's impossible to estimate runtime of |
| the following groups (if any). |
| |
| When fio is done (or interrupted by ctrl-c), it will show the data for |
| each thread, group of threads, and disks in that order. For each data |
| direction, the output looks like: |
| |
| Client1 (g=0): err= 0: |
| write: io= 32MiB, bw= 666KiB/s, runt= 50320msec |
| slat (msec): min= 0, max= 136, avg= 0.03, stdev= 1.92 |
| clat (msec): min= 0, max= 631, avg=48.50, stdev=86.82 |
| bw (KiB/s) : min= 0, max= 1196, per=51.00%, avg=664.02, stdev=681.68 |
| cpu : usr=1.49%, sys=0.25%, ctx=7969, majf=0, minf=17 |
| IO depths : 1=0.1%, 2=0.3%, 4=0.5%, 8=99.0%, 16=0.0%, 32=0.0%, >32=0.0% |
| submit : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.0%, >=64=0.0% |
| complete : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.0%, >=64=0.0% |
| issued r/w: total=0/32768, short=0/0 |
| lat (msec): 2=1.6%, 4=0.0%, 10=3.2%, 20=12.8%, 50=38.4%, 100=24.8%, |
| lat (msec): 250=15.2%, 500=0.0%, 750=0.0%, 1000=0.0%, >=2048=0.0% |
| |
| The client number is printed, along with the group id and error of that |
| thread. Below is the io statistics, here for writes. In the order listed, |
| they denote: |
| |
| io= Number of megabytes io performed |
| bw= Average bandwidth rate |
| runt= The runtime of that thread |
| slat= Submission latency (avg being the average, stdev being the |
| standard deviation). This is the time it took to submit |
| the io. For sync io, the slat is really the completion |
| latency, since queue/complete is one operation there. This |
| value can be in miliseconds or microseconds, fio will choose |
| the most appropriate base and print that. In the example |
| above, miliseconds is the best scale. |
| clat= Completion latency. Same names as slat, this denotes the |
| time from submission to completion of the io pieces. For |
| sync io, clat will usually be equal (or very close) to 0, |
| as the time from submit to complete is basically just |
| CPU time (io has already been done, see slat explanation). |
| bw= Bandwidth. Same names as the xlat stats, but also includes |
| an approximate percentage of total aggregate bandwidth |
| this thread received in this group. This last value is |
| only really useful if the threads in this group are on the |
| same disk, since they are then competing for disk access. |
| cpu= CPU usage. User and system time, along with the number |
| of context switches this thread went through, usage of |
| system and user time, and finally the number of major |
| and minor page faults. |
| IO depths= The distribution of io depths over the job life time. The |
| numbers are divided into powers of 2, so for example the |
| 16= entries includes depths up to that value but higher |
| than the previous entry. In other words, it covers the |
| range from 16 to 31. |
| IO submit= How many pieces of IO were submitting in a single submit |
| call. Each entry denotes that amount and below, until |
| the previous entry - eg, 8=100% mean that we submitted |
| anywhere in between 5-8 ios per submit call. |
| IO complete= Like the above submit number, but for completions instead. |
| IO issued= The number of read/write requests issued, and how many |
| of them were short. |
| IO latencies= The distribution of IO completion latencies. This is the |
| time from when IO leaves fio and when it gets completed. |
| The numbers follow the same pattern as the IO depths, |
| meaning that 2=1.6% means that 1.6% of the IO completed |
| within 2 msecs, 20=12.8% means that 12.8% of the IO |
| took more than 10 msecs, but less than (or equal to) 20 msecs. |
| |
| After each client has been listed, the group statistics are printed. They |
| will look like this: |
| |
| Run status group 0 (all jobs): |
| READ: io=64MiB, aggrb=22178, minb=11355, maxb=11814, mint=2840msec, maxt=2955msec |
| WRITE: io=64MiB, aggrb=1302, minb=666, maxb=669, mint=50093msec, maxt=50320msec |
| |
| For each data direction, it prints: |
| |
| io= Number of megabytes io performed. |
| aggrb= Aggregate bandwidth of threads in this group. |
| minb= The minimum average bandwidth a thread saw. |
| maxb= The maximum average bandwidth a thread saw. |
| mint= The smallest runtime of the threads in that group. |
| maxt= The longest runtime of the threads in that group. |
| |
| And finally, the disk statistics are printed. They will look like this: |
| |
| Disk stats (read/write): |
| sda: ios=16398/16511, merge=30/162, ticks=6853/819634, in_queue=826487, util=100.00% |
| |
| Each value is printed for both reads and writes, with reads first. The |
| numbers denote: |
| |
| ios= Number of ios performed by all groups. |
| merge= Number of merges io the io scheduler. |
| ticks= Number of ticks we kept the disk busy. |
| io_queue= Total time spent in the disk queue. |
| util= The disk utilization. A value of 100% means we kept the disk |
| busy constantly, 50% would be a disk idling half of the time. |
| |
| |
| 7.0 Terse output |
| ---------------- |
| |
| For scripted usage where you typically want to generate tables or graphs |
| of the results, fio can output the results in a semicolon separated format. |
| The format is one long line of values, such as: |
| |
| client1;0;0;1906777;1090804;1790;0;0;0.000000;0.000000;0;0;0.000000;0.000000;929380;1152890;25.510151%;1078276.333333;128948.113404;0;0;0;0;0;0.000000;0.000000;0;0;0.000000;0.000000;0;0;0.000000%;0.000000;0.000000;100.000000%;0.000000%;324;100.0%;0.0%;0.0%;0.0%;0.0%;0.0%;0.0%;100.0%;0.0%;0.0%;0.0%;0.0%;0.0% |
| ;0.0%;0.0%;0.0%;0.0%;0.0% |
| |
| Split up, the format is as follows: |
| |
| jobname, groupid, error |
| READ status: |
| KiB IO, bandwidth (KiB/sec), runtime (msec) |
| Submission latency: min, max, mean, deviation |
| Completion latency: min, max, mean, deviation |
| Bw: min, max, aggregate percentage of total, mean, deviation |
| WRITE status: |
| KiB IO, bandwidth (KiB/sec), runtime (msec) |
| Submission latency: min, max, mean, deviation |
| Completion latency: min, max, mean, deviation |
| Bw: min, max, aggregate percentage of total, mean, deviation |
| CPU usage: user, system, context switches, major faults, minor faults |
| IO depths: <=1, 2, 4, 8, 16, 32, >=64 |
| IO latencies: <=2, 4, 10, 20, 50, 100, 250, 500, 750, 1000, >=2000 |
| Text description |
| |