blob: fc207cf635bc731fbdbb788d4f791bb9bba4124b [file] [log] [blame]
/*
* IO verification helpers
*/
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <assert.h>
#include <pthread.h>
#include <libgen.h>
#include "fio.h"
#include "verify.h"
#include "smalloc.h"
#include "trim.h"
#include "lib/rand.h"
#include "crc/md5.h"
#include "crc/crc64.h"
#include "crc/crc32.h"
#include "crc/crc32c.h"
#include "crc/crc16.h"
#include "crc/crc7.h"
#include "crc/sha256.h"
#include "crc/sha512.h"
#include "crc/sha1.h"
static void populate_hdr(struct thread_data *td, struct io_u *io_u,
struct verify_header *hdr, unsigned int header_num,
unsigned int header_len);
void fill_pattern(struct thread_data *td, void *p, unsigned int len, struct io_u *io_u, unsigned long seed, int use_seed)
{
switch (td->o.verify_pattern_bytes) {
case 0:
dprint(FD_VERIFY, "fill random bytes len=%u\n", len);
if (use_seed)
__fill_random_buf(p, len, seed);
else
io_u->rand_seed = fill_random_buf(p, len);
break;
case 1:
/*
* See below write barrier comment
*/
#if 0
read_barrier();
if (io_u->buf_filled_len >= len) {
dprint(FD_VERIFY, "using already filled verify pattern b=0 len=%u\n", len);
return;
}
#endif
dprint(FD_VERIFY, "fill verify pattern b=0 len=%u\n", len);
memset(p, td->o.verify_pattern[0], len);
/*
* We need to ensure that the pattern stores are seen before
* the fill length store, or we could observe headers that
* aren't valid to the extent notified by the fill length
*/
write_barrier();
io_u->buf_filled_len = len;
break;
default: {
unsigned int i = 0, size = 0;
unsigned char *b = p;
#if 0
read_barrier();
if (io_u->buf_filled_len >= len) {
dprint(FD_VERIFY, "using already filled verify pattern b=%d len=%u\n",
td->o.verify_pattern_bytes, len);
return;
}
#endif
dprint(FD_VERIFY, "fill verify pattern b=%d len=%u\n",
td->o.verify_pattern_bytes, len);
while (i < len) {
size = td->o.verify_pattern_bytes;
if (size > (len - i))
size = len - i;
memcpy(b+i, td->o.verify_pattern, size);
i += size;
}
write_barrier();
io_u->buf_filled_len = len;
break;
}
}
}
static unsigned int get_hdr_inc(struct thread_data *td, struct io_u *io_u)
{
unsigned int hdr_inc;
hdr_inc = io_u->buflen;
if (td->o.verify_interval)
hdr_inc = td->o.verify_interval;
return hdr_inc;
}
static void fill_pattern_headers(struct thread_data *td, struct io_u *io_u,
unsigned long seed, int use_seed)
{
unsigned int hdr_inc, header_num;
struct verify_header *hdr;
void *p = io_u->buf;
fill_pattern(td, p, io_u->buflen, io_u, seed, use_seed);
hdr_inc = get_hdr_inc(td, io_u);
header_num = 0;
for (; p < io_u->buf + io_u->buflen; p += hdr_inc) {
hdr = p;
populate_hdr(td, io_u, hdr, header_num, hdr_inc);
header_num++;
}
}
static void memswp(void *buf1, void *buf2, unsigned int len)
{
char swap[200];
assert(len <= sizeof(swap));
memcpy(&swap, buf1, len);
memcpy(buf1, buf2, len);
memcpy(buf2, &swap, len);
}
static void hexdump(void *buffer, int len)
{
unsigned char *p = buffer;
int i;
for (i = 0; i < len; i++)
log_err("%02x", p[i]);
log_err("\n");
}
/*
* Prepare for seperation of verify_header and checksum header
*/
static inline unsigned int __hdr_size(int verify_type)
{
unsigned int len = 0;
switch (verify_type) {
case VERIFY_NONE:
case VERIFY_NULL:
len = 0;
break;
case VERIFY_MD5:
len = sizeof(struct vhdr_md5);
break;
case VERIFY_CRC64:
len = sizeof(struct vhdr_crc64);
break;
case VERIFY_CRC32C:
case VERIFY_CRC32:
case VERIFY_CRC32C_INTEL:
len = sizeof(struct vhdr_crc32);
break;
case VERIFY_CRC16:
len = sizeof(struct vhdr_crc16);
break;
case VERIFY_CRC7:
len = sizeof(struct vhdr_crc7);
break;
case VERIFY_SHA256:
len = sizeof(struct vhdr_sha256);
break;
case VERIFY_SHA512:
len = sizeof(struct vhdr_sha512);
break;
case VERIFY_META:
len = sizeof(struct vhdr_meta);
break;
case VERIFY_SHA1:
len = sizeof(struct vhdr_sha1);
break;
case VERIFY_PATTERN:
len = 0;
break;
default:
log_err("fio: unknown verify header!\n");
assert(0);
}
return len + sizeof(struct verify_header);
}
static inline unsigned int hdr_size(struct verify_header *hdr)
{
return __hdr_size(hdr->verify_type);
}
static void *hdr_priv(struct verify_header *hdr)
{
void *priv = hdr;
return priv + sizeof(struct verify_header);
}
/*
* Verify container, pass info to verify handlers and allow them to
* pass info back in case of error
*/
struct vcont {
/*
* Input
*/
struct io_u *io_u;
unsigned int hdr_num;
struct thread_data *td;
/*
* Output, only valid in case of error
*/
const char *name;
void *good_crc;
void *bad_crc;
unsigned int crc_len;
};
static void dump_buf(char *buf, unsigned int len, unsigned long long offset,
const char *type, struct fio_file *f)
{
char *ptr, fname[256];
int ret, fd;
ptr = strdup(f->file_name);
strcpy(fname, basename(ptr));
sprintf(fname + strlen(fname), ".%llu.%s", offset, type);
fd = open(fname, O_CREAT | O_TRUNC | O_WRONLY, 0644);
if (fd < 0) {
perror("open verify buf file");
return;
}
while (len) {
ret = write(fd, buf, len);
if (!ret)
break;
else if (ret < 0) {
perror("write verify buf file");
break;
}
len -= ret;
buf += ret;
}
close(fd);
log_err(" %s data dumped as %s\n", type, fname);
free(ptr);
}
/*
* Dump the contents of the read block and re-generate the correct data
* and dump that too.
*/
static void dump_verify_buffers(struct verify_header *hdr, struct vcont *vc)
{
struct thread_data *td = vc->td;
struct io_u *io_u = vc->io_u;
unsigned long hdr_offset;
struct io_u dummy;
void *buf;
/*
* Dump the contents we just read off disk
*/
hdr_offset = vc->hdr_num * hdr->len;
dump_buf(io_u->buf + hdr_offset, hdr->len, io_u->offset + hdr_offset,
"received", vc->io_u->file);
/*
* Allocate a new buf and re-generate the original data
*/
buf = malloc(io_u->buflen);
dummy = *io_u;
dummy.buf = buf;
dummy.rand_seed = hdr->rand_seed;
dummy.buf_filled_len = 0;
fill_pattern_headers(td, &dummy, hdr->rand_seed, 1);
dump_buf(buf + hdr_offset, hdr->len, io_u->offset + hdr_offset,
"expected", vc->io_u->file);
free(buf);
}
static void log_verify_failure(struct verify_header *hdr, struct vcont *vc)
{
unsigned long long offset;
offset = vc->io_u->offset;
offset += vc->hdr_num * hdr->len;
log_err("%.8s: verify failed at file %s offset %llu, length %u\n",
vc->name, vc->io_u->file->file_name, offset, hdr->len);
if (vc->good_crc && vc->bad_crc) {
log_err(" Expected CRC: ");
hexdump(vc->good_crc, vc->crc_len);
log_err(" Received CRC: ");
hexdump(vc->bad_crc, vc->crc_len);
}
dump_verify_buffers(hdr, vc);
}
/*
* Return data area 'header_num'
*/
static inline void *io_u_verify_off(struct verify_header *hdr, struct vcont *vc)
{
return vc->io_u->buf + vc->hdr_num * hdr->len + hdr_size(hdr);
}
static unsigned int hweight8(unsigned int w)
{
unsigned int res = w - ((w >> 1) & 0x55);
res = (res & 0x33) + ((res >> 2) & 0x33);
return (res + (res >> 4)) & 0x0F;
}
static int verify_io_u_pattern(struct verify_header *hdr, struct vcont *vc)
{
struct thread_data *td = vc->td;
struct io_u *io_u = vc->io_u;
char *buf, *pattern;
unsigned int header_size = __hdr_size(td->o.verify);
unsigned int len, mod, i;
pattern = td->o.verify_pattern;
buf = (void *) hdr + header_size;
len = get_hdr_inc(td, io_u) - header_size;
mod = header_size % td->o.verify_pattern_bytes;
for (i = 0; i < len; i++) {
if (buf[i] != pattern[mod]) {
unsigned int bits;
bits = hweight8(buf[i] ^ pattern[mod]);
log_err("fio: got pattern %x, wanted %x. Bad bits %d\n",
buf[i], pattern[mod], bits);
log_err("fio: bad pattern block offset %u\n", i);
dump_verify_buffers(hdr, vc);
return EILSEQ;
}
mod++;
if (mod == td->o.verify_pattern_bytes)
mod = 0;
}
return 0;
}
static int verify_io_u_meta(struct verify_header *hdr, struct vcont *vc)
{
struct thread_data *td = vc->td;
struct vhdr_meta *vh = hdr_priv(hdr);
struct io_u *io_u = vc->io_u;
int ret = EILSEQ;
dprint(FD_VERIFY, "meta verify io_u %p, len %u\n", io_u, hdr->len);
if (vh->offset == io_u->offset + vc->hdr_num * td->o.verify_interval)
ret = 0;
if (td->o.verify_pattern_bytes)
ret |= verify_io_u_pattern(hdr, vc);
if (!ret)
return 0;
vc->name = "meta";
log_verify_failure(hdr, vc);
return ret;
}
static int verify_io_u_sha512(struct verify_header *hdr, struct vcont *vc)
{
void *p = io_u_verify_off(hdr, vc);
struct vhdr_sha512 *vh = hdr_priv(hdr);
uint8_t sha512[128];
struct sha512_ctx sha512_ctx = {
.buf = sha512,
};
dprint(FD_VERIFY, "sha512 verify io_u %p, len %u\n", vc->io_u, hdr->len);
sha512_init(&sha512_ctx);
sha512_update(&sha512_ctx, p, hdr->len - hdr_size(hdr));
if (!memcmp(vh->sha512, sha512_ctx.buf, sizeof(sha512)))
return 0;
vc->name = "sha512";
vc->good_crc = vh->sha512;
vc->bad_crc = sha512_ctx.buf;
vc->crc_len = sizeof(vh->sha512);
log_verify_failure(hdr, vc);
return EILSEQ;
}
static int verify_io_u_sha256(struct verify_header *hdr, struct vcont *vc)
{
void *p = io_u_verify_off(hdr, vc);
struct vhdr_sha256 *vh = hdr_priv(hdr);
uint8_t sha256[64];
struct sha256_ctx sha256_ctx = {
.buf = sha256,
};
dprint(FD_VERIFY, "sha256 verify io_u %p, len %u\n", vc->io_u, hdr->len);
sha256_init(&sha256_ctx);
sha256_update(&sha256_ctx, p, hdr->len - hdr_size(hdr));
if (!memcmp(vh->sha256, sha256_ctx.buf, sizeof(sha256)))
return 0;
vc->name = "sha256";
vc->good_crc = vh->sha256;
vc->bad_crc = sha256_ctx.buf;
vc->crc_len = sizeof(vh->sha256);
log_verify_failure(hdr, vc);
return EILSEQ;
}
static int verify_io_u_sha1(struct verify_header *hdr, struct vcont *vc)
{
void *p = io_u_verify_off(hdr, vc);
struct vhdr_sha1 *vh = hdr_priv(hdr);
uint32_t sha1[5];
struct sha1_ctx sha1_ctx = {
.H = sha1,
};
dprint(FD_VERIFY, "sha1 verify io_u %p, len %u\n", vc->io_u, hdr->len);
sha1_init(&sha1_ctx);
sha1_update(&sha1_ctx, p, hdr->len - hdr_size(hdr));
if (!memcmp(vh->sha1, sha1_ctx.H, sizeof(sha1)))
return 0;
vc->name = "sha1";
vc->good_crc = vh->sha1;
vc->bad_crc = sha1_ctx.H;
vc->crc_len = sizeof(vh->sha1);
log_verify_failure(hdr, vc);
return EILSEQ;
}
static int verify_io_u_crc7(struct verify_header *hdr, struct vcont *vc)
{
void *p = io_u_verify_off(hdr, vc);
struct vhdr_crc7 *vh = hdr_priv(hdr);
unsigned char c;
dprint(FD_VERIFY, "crc7 verify io_u %p, len %u\n", vc->io_u, hdr->len);
c = crc7(p, hdr->len - hdr_size(hdr));
if (c == vh->crc7)
return 0;
vc->name = "crc7";
vc->good_crc = &vh->crc7;
vc->bad_crc = &c;
vc->crc_len = 1;
log_verify_failure(hdr, vc);
return EILSEQ;
}
static int verify_io_u_crc16(struct verify_header *hdr, struct vcont *vc)
{
void *p = io_u_verify_off(hdr, vc);
struct vhdr_crc16 *vh = hdr_priv(hdr);
unsigned short c;
dprint(FD_VERIFY, "crc16 verify io_u %p, len %u\n", vc->io_u, hdr->len);
c = crc16(p, hdr->len - hdr_size(hdr));
if (c == vh->crc16)
return 0;
vc->name = "crc16";
vc->good_crc = &vh->crc16;
vc->bad_crc = &c;
vc->crc_len = 2;
log_verify_failure(hdr, vc);
return EILSEQ;
}
static int verify_io_u_crc64(struct verify_header *hdr, struct vcont *vc)
{
void *p = io_u_verify_off(hdr, vc);
struct vhdr_crc64 *vh = hdr_priv(hdr);
unsigned long long c;
dprint(FD_VERIFY, "crc64 verify io_u %p, len %u\n", vc->io_u, hdr->len);
c = crc64(p, hdr->len - hdr_size(hdr));
if (c == vh->crc64)
return 0;
vc->name = "crc64";
vc->good_crc = &vh->crc64;
vc->bad_crc = &c;
vc->crc_len = 8;
log_verify_failure(hdr, vc);
return EILSEQ;
}
static int verify_io_u_crc32(struct verify_header *hdr, struct vcont *vc)
{
void *p = io_u_verify_off(hdr, vc);
struct vhdr_crc32 *vh = hdr_priv(hdr);
uint32_t c;
dprint(FD_VERIFY, "crc32 verify io_u %p, len %u\n", vc->io_u, hdr->len);
c = crc32(p, hdr->len - hdr_size(hdr));
if (c == vh->crc32)
return 0;
vc->name = "crc32";
vc->good_crc = &vh->crc32;
vc->bad_crc = &c;
vc->crc_len = 4;
log_verify_failure(hdr, vc);
return EILSEQ;
}
static int verify_io_u_crc32c(struct verify_header *hdr, struct vcont *vc)
{
void *p = io_u_verify_off(hdr, vc);
struct vhdr_crc32 *vh = hdr_priv(hdr);
uint32_t c;
dprint(FD_VERIFY, "crc32c verify io_u %p, len %u\n", vc->io_u, hdr->len);
if (hdr->verify_type == VERIFY_CRC32C_INTEL)
c = crc32c_intel(p, hdr->len - hdr_size(hdr));
else
c = crc32c(p, hdr->len - hdr_size(hdr));
if (c == vh->crc32)
return 0;
vc->name = "crc32c";
vc->good_crc = &vh->crc32;
vc->bad_crc = &c;
vc->crc_len = 4;
log_verify_failure(hdr, vc);
return EILSEQ;
}
static int verify_io_u_md5(struct verify_header *hdr, struct vcont *vc)
{
void *p = io_u_verify_off(hdr, vc);
struct vhdr_md5 *vh = hdr_priv(hdr);
uint32_t hash[MD5_HASH_WORDS];
struct md5_ctx md5_ctx = {
.hash = hash,
};
dprint(FD_VERIFY, "md5 verify io_u %p, len %u\n", vc->io_u, hdr->len);
md5_init(&md5_ctx);
md5_update(&md5_ctx, p, hdr->len - hdr_size(hdr));
if (!memcmp(vh->md5_digest, md5_ctx.hash, sizeof(hash)))
return 0;
vc->name = "md5";
vc->good_crc = vh->md5_digest;
vc->bad_crc = md5_ctx.hash;
vc->crc_len = sizeof(hash);
log_verify_failure(hdr, vc);
return EILSEQ;
}
/*
* Push IO verification to a separate thread
*/
int verify_io_u_async(struct thread_data *td, struct io_u *io_u)
{
if (io_u->file)
put_file_log(td, io_u->file);
io_u->file = NULL;
pthread_mutex_lock(&td->io_u_lock);
if (io_u->flags & IO_U_F_IN_CUR_DEPTH) {
td->cur_depth--;
io_u->flags &= ~IO_U_F_IN_CUR_DEPTH;
}
flist_del(&io_u->list);
flist_add_tail(&io_u->list, &td->verify_list);
io_u->flags |= IO_U_F_FREE_DEF;
pthread_mutex_unlock(&td->io_u_lock);
pthread_cond_signal(&td->verify_cond);
return 0;
}
static int verify_trimmed_io_u(struct thread_data *td, struct io_u *io_u)
{
static char zero_buf[1024];
unsigned int this_len, len;
int ret = 0;
void *p;
if (!td->o.trim_zero)
return 0;
len = io_u->buflen;
p = io_u->buf;
do {
this_len = sizeof(zero_buf);
if (this_len > len)
this_len = len;
if (memcmp(p, zero_buf, this_len)) {
ret = EILSEQ;
break;
}
len -= this_len;
p += this_len;
} while (len);
if (!ret)
return 0;
log_err("trim: verify failed at file %s offset %llu, length %lu"
", block offset %lu\n",
io_u->file->file_name, io_u->offset, io_u->buflen,
(unsigned long) (p - io_u->buf));
return ret;
}
int verify_io_u(struct thread_data *td, struct io_u *io_u)
{
struct verify_header *hdr;
unsigned int header_size, hdr_inc, hdr_num = 0;
void *p;
int ret;
if (td->o.verify == VERIFY_NULL || io_u->ddir != DDIR_READ)
return 0;
if (io_u->flags & IO_U_F_TRIMMED) {
ret = verify_trimmed_io_u(td, io_u);
goto done;
}
hdr_inc = get_hdr_inc(td, io_u);
ret = 0;
for (p = io_u->buf; p < io_u->buf + io_u->buflen;
p += hdr_inc, hdr_num++) {
struct vcont vc = {
.io_u = io_u,
.hdr_num = hdr_num,
.td = td,
};
if (ret && td->o.verify_fatal)
break;
header_size = __hdr_size(td->o.verify);
if (td->o.verify_offset)
memswp(p, p + td->o.verify_offset, header_size);
hdr = p;
if (hdr->fio_magic != FIO_HDR_MAGIC) {
log_err("verify: bad magic header %x, wanted %x at file %s offset %llu, length %u\n",
hdr->fio_magic, FIO_HDR_MAGIC,
io_u->file->file_name,
io_u->offset + hdr_num * hdr->len, hdr->len);
return EILSEQ;
}
switch (hdr->verify_type) {
case VERIFY_MD5:
ret = verify_io_u_md5(hdr, &vc);
break;
case VERIFY_CRC64:
ret = verify_io_u_crc64(hdr, &vc);
break;
case VERIFY_CRC32C:
case VERIFY_CRC32C_INTEL:
ret = verify_io_u_crc32c(hdr, &vc);
break;
case VERIFY_CRC32:
ret = verify_io_u_crc32(hdr, &vc);
break;
case VERIFY_CRC16:
ret = verify_io_u_crc16(hdr, &vc);
break;
case VERIFY_CRC7:
ret = verify_io_u_crc7(hdr, &vc);
break;
case VERIFY_SHA256:
ret = verify_io_u_sha256(hdr, &vc);
break;
case VERIFY_SHA512:
ret = verify_io_u_sha512(hdr, &vc);
break;
case VERIFY_META:
ret = verify_io_u_meta(hdr, &vc);
break;
case VERIFY_SHA1:
ret = verify_io_u_sha1(hdr, &vc);
break;
case VERIFY_PATTERN:
ret = verify_io_u_pattern(hdr, &vc);
break;
default:
log_err("Bad verify type %u\n", hdr->verify_type);
ret = EINVAL;
}
}
done:
if (ret && td->o.verify_fatal)
td->terminate = 1;
return ret;
}
static void fill_meta(struct verify_header *hdr, struct thread_data *td,
struct io_u *io_u, unsigned int header_num)
{
struct vhdr_meta *vh = hdr_priv(hdr);
vh->thread = td->thread_number;
vh->time_sec = io_u->start_time.tv_sec;
vh->time_usec = io_u->start_time.tv_usec;
vh->numberio = td->io_issues[DDIR_WRITE];
vh->offset = io_u->offset + header_num * td->o.verify_interval;
}
static void fill_sha512(struct verify_header *hdr, void *p, unsigned int len)
{
struct vhdr_sha512 *vh = hdr_priv(hdr);
struct sha512_ctx sha512_ctx = {
.buf = vh->sha512,
};
sha512_init(&sha512_ctx);
sha512_update(&sha512_ctx, p, len);
}
static void fill_sha256(struct verify_header *hdr, void *p, unsigned int len)
{
struct vhdr_sha256 *vh = hdr_priv(hdr);
struct sha256_ctx sha256_ctx = {
.buf = vh->sha256,
};
sha256_init(&sha256_ctx);
sha256_update(&sha256_ctx, p, len);
}
static void fill_sha1(struct verify_header *hdr, void *p, unsigned int len)
{
struct vhdr_sha1 *vh = hdr_priv(hdr);
struct sha1_ctx sha1_ctx = {
.H = vh->sha1,
};
sha1_init(&sha1_ctx);
sha1_update(&sha1_ctx, p, len);
}
static void fill_crc7(struct verify_header *hdr, void *p, unsigned int len)
{
struct vhdr_crc7 *vh = hdr_priv(hdr);
vh->crc7 = crc7(p, len);
}
static void fill_crc16(struct verify_header *hdr, void *p, unsigned int len)
{
struct vhdr_crc16 *vh = hdr_priv(hdr);
vh->crc16 = crc16(p, len);
}
static void fill_crc32(struct verify_header *hdr, void *p, unsigned int len)
{
struct vhdr_crc32 *vh = hdr_priv(hdr);
vh->crc32 = crc32(p, len);
}
static void fill_crc32c(struct verify_header *hdr, void *p, unsigned int len)
{
struct vhdr_crc32 *vh = hdr_priv(hdr);
if (hdr->verify_type == VERIFY_CRC32C_INTEL)
vh->crc32 = crc32c_intel(p, len);
else
vh->crc32 = crc32c(p, len);
}
static void fill_crc64(struct verify_header *hdr, void *p, unsigned int len)
{
struct vhdr_crc64 *vh = hdr_priv(hdr);
vh->crc64 = crc64(p, len);
}
static void fill_md5(struct verify_header *hdr, void *p, unsigned int len)
{
struct vhdr_md5 *vh = hdr_priv(hdr);
struct md5_ctx md5_ctx = {
.hash = (uint32_t *) vh->md5_digest,
};
md5_init(&md5_ctx);
md5_update(&md5_ctx, p, len);
}
static void populate_hdr(struct thread_data *td, struct io_u *io_u,
struct verify_header *hdr, unsigned int header_num,
unsigned int header_len)
{
unsigned int data_len;
void *data, *p;
p = (void *) hdr;
hdr->fio_magic = FIO_HDR_MAGIC;
hdr->len = header_len;
hdr->verify_type = td->o.verify;
hdr->rand_seed = io_u->rand_seed;
data_len = header_len - hdr_size(hdr);
data = p + hdr_size(hdr);
switch (td->o.verify) {
case VERIFY_MD5:
dprint(FD_VERIFY, "fill md5 io_u %p, len %u\n",
io_u, hdr->len);
fill_md5(hdr, data, data_len);
break;
case VERIFY_CRC64:
dprint(FD_VERIFY, "fill crc64 io_u %p, len %u\n",
io_u, hdr->len);
fill_crc64(hdr, data, data_len);
break;
case VERIFY_CRC32C:
case VERIFY_CRC32C_INTEL:
dprint(FD_VERIFY, "fill crc32c io_u %p, len %u\n",
io_u, hdr->len);
fill_crc32c(hdr, data, data_len);
break;
case VERIFY_CRC32:
dprint(FD_VERIFY, "fill crc32 io_u %p, len %u\n",
io_u, hdr->len);
fill_crc32(hdr, data, data_len);
break;
case VERIFY_CRC16:
dprint(FD_VERIFY, "fill crc16 io_u %p, len %u\n",
io_u, hdr->len);
fill_crc16(hdr, data, data_len);
break;
case VERIFY_CRC7:
dprint(FD_VERIFY, "fill crc7 io_u %p, len %u\n",
io_u, hdr->len);
fill_crc7(hdr, data, data_len);
break;
case VERIFY_SHA256:
dprint(FD_VERIFY, "fill sha256 io_u %p, len %u\n",
io_u, hdr->len);
fill_sha256(hdr, data, data_len);
break;
case VERIFY_SHA512:
dprint(FD_VERIFY, "fill sha512 io_u %p, len %u\n",
io_u, hdr->len);
fill_sha512(hdr, data, data_len);
break;
case VERIFY_META:
dprint(FD_VERIFY, "fill meta io_u %p, len %u\n",
io_u, hdr->len);
fill_meta(hdr, td, io_u, header_num);
break;
case VERIFY_SHA1:
dprint(FD_VERIFY, "fill sha1 io_u %p, len %u\n",
io_u, hdr->len);
fill_sha1(hdr, data, data_len);
break;
case VERIFY_PATTERN:
/* nothing to do here */
break;
default:
log_err("fio: bad verify type: %d\n", td->o.verify);
assert(0);
}
if (td->o.verify_offset)
memswp(p, p + td->o.verify_offset, hdr_size(hdr));
}
/*
* fill body of io_u->buf with random data and add a header with the
* checksum of choice
*/
void populate_verify_io_u(struct thread_data *td, struct io_u *io_u)
{
if (td->o.verify == VERIFY_NULL)
return;
fill_pattern_headers(td, io_u, 0, 0);
}
int get_next_verify(struct thread_data *td, struct io_u *io_u)
{
struct io_piece *ipo = NULL;
/*
* this io_u is from a requeue, we already filled the offsets
*/
if (io_u->file)
return 0;
if (!RB_EMPTY_ROOT(&td->io_hist_tree)) {
struct rb_node *n = rb_first(&td->io_hist_tree);
ipo = rb_entry(n, struct io_piece, rb_node);
rb_erase(n, &td->io_hist_tree);
assert(ipo->flags & IP_F_ONRB);
ipo->flags &= ~IP_F_ONRB;
} else if (!flist_empty(&td->io_hist_list)) {
ipo = flist_entry(td->io_hist_list.next, struct io_piece, list);
flist_del(&ipo->list);
assert(ipo->flags & IP_F_ONLIST);
ipo->flags &= ~IP_F_ONLIST;
}
if (ipo) {
td->io_hist_len--;
io_u->offset = ipo->offset;
io_u->buflen = ipo->len;
io_u->file = ipo->file;
if (ipo->flags & IP_F_TRIMMED)
io_u->flags |= IO_U_F_TRIMMED;
if (!fio_file_open(io_u->file)) {
int r = td_io_open_file(td, io_u->file);
if (r) {
dprint(FD_VERIFY, "failed file %s open\n",
io_u->file->file_name);
return 1;
}
}
get_file(ipo->file);
assert(fio_file_open(io_u->file));
io_u->ddir = DDIR_READ;
io_u->xfer_buf = io_u->buf;
io_u->xfer_buflen = io_u->buflen;
remove_trim_entry(td, ipo);
free(ipo);
dprint(FD_VERIFY, "get_next_verify: ret io_u %p\n", io_u);
return 0;
}
dprint(FD_VERIFY, "get_next_verify: empty\n");
return 1;
}
static void *verify_async_thread(void *data)
{
struct thread_data *td = data;
struct io_u *io_u;
int ret = 0;
if (td->o.verify_cpumask_set &&
fio_setaffinity(td->pid, td->o.verify_cpumask)) {
log_err("fio: failed setting verify thread affinity\n");
goto done;
}
do {
FLIST_HEAD(list);
read_barrier();
if (td->verify_thread_exit)
break;
pthread_mutex_lock(&td->io_u_lock);
while (flist_empty(&td->verify_list) &&
!td->verify_thread_exit) {
ret = pthread_cond_wait(&td->verify_cond,
&td->io_u_lock);
if (ret) {
pthread_mutex_unlock(&td->io_u_lock);
break;
}
}
flist_splice_init(&td->verify_list, &list);
pthread_mutex_unlock(&td->io_u_lock);
if (flist_empty(&list))
continue;
while (!flist_empty(&list)) {
io_u = flist_entry(list.next, struct io_u, list);
flist_del_init(&io_u->list);
ret = verify_io_u(td, io_u);
put_io_u(td, io_u);
if (!ret)
continue;
if (td->o.continue_on_error &&
td_non_fatal_error(ret)) {
update_error_count(td, ret);
td_clear_error(td);
ret = 0;
}
}
} while (!ret);
if (ret) {
td_verror(td, ret, "async_verify");
if (td->o.verify_fatal)
td->terminate = 1;
}
done:
pthread_mutex_lock(&td->io_u_lock);
td->nr_verify_threads--;
pthread_mutex_unlock(&td->io_u_lock);
pthread_cond_signal(&td->free_cond);
return NULL;
}
int verify_async_init(struct thread_data *td)
{
int i, ret;
pthread_attr_t attr;
pthread_attr_init(&attr);
pthread_attr_setstacksize(&attr, PTHREAD_STACK_MIN);
td->verify_thread_exit = 0;
td->verify_threads = malloc(sizeof(pthread_t) * td->o.verify_async);
for (i = 0; i < td->o.verify_async; i++) {
ret = pthread_create(&td->verify_threads[i], &attr,
verify_async_thread, td);
if (ret) {
log_err("fio: async verify creation failed: %s\n",
strerror(ret));
break;
}
ret = pthread_detach(td->verify_threads[i]);
if (ret) {
log_err("fio: async verify thread detach failed: %s\n",
strerror(ret));
break;
}
td->nr_verify_threads++;
}
pthread_attr_destroy(&attr);
if (i != td->o.verify_async) {
log_err("fio: only %d verify threads started, exiting\n", i);
td->verify_thread_exit = 1;
write_barrier();
pthread_cond_broadcast(&td->verify_cond);
return 1;
}
return 0;
}
void verify_async_exit(struct thread_data *td)
{
td->verify_thread_exit = 1;
write_barrier();
pthread_cond_broadcast(&td->verify_cond);
pthread_mutex_lock(&td->io_u_lock);
while (td->nr_verify_threads)
pthread_cond_wait(&td->free_cond, &td->io_u_lock);
pthread_mutex_unlock(&td->io_u_lock);
free(td->verify_threads);
td->verify_threads = NULL;
}