blob: d1fe9641d88ebaa47489fc10a8f039e9443bbc10 [file] [log] [blame]
/*
* fio - the flexible io tester
*
* Copyright (C) 2005 Jens Axboe <axboe@suse.de>
* Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
*
* The license below covers all files distributed with fio unless otherwise
* noted in the file itself.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <limits.h>
#include <signal.h>
#include <time.h>
#include <locale.h>
#include <assert.h>
#include <time.h>
#include <inttypes.h>
#include <sys/stat.h>
#include <sys/wait.h>
#include <sys/ipc.h>
#ifndef FIO_NO_HAVE_SHM_H
#include <sys/shm.h>
#endif
#include <sys/mman.h>
#include "fio.h"
#include "hash.h"
#include "smalloc.h"
#include "verify.h"
#include "trim.h"
#include "diskutil.h"
#include "cgroup.h"
#include "profile.h"
#include "lib/rand.h"
#include "memalign.h"
#include "server.h"
#include "lib/getrusage.h"
#include "idletime.h"
static pthread_t disk_util_thread;
static struct fio_mutex *disk_thread_mutex;
static struct fio_mutex *startup_mutex;
static struct fio_mutex *writeout_mutex;
static struct flist_head *cgroup_list;
static char *cgroup_mnt;
static int exit_value;
static volatile int fio_abort;
struct io_log *agg_io_log[DDIR_RWDIR_CNT];
int groupid = 0;
unsigned int thread_number = 0;
unsigned int stat_number = 0;
unsigned int nr_process = 0;
unsigned int nr_thread = 0;
int shm_id = 0;
int temp_stall_ts;
unsigned long done_secs = 0;
volatile int disk_util_exit = 0;
#define PAGE_ALIGN(buf) \
(char *) (((uintptr_t) (buf) + page_mask) & ~page_mask)
#define JOB_START_TIMEOUT (5 * 1000)
static void sig_int(int sig)
{
if (threads) {
if (is_backend)
fio_server_got_signal(sig);
else {
log_info("\nfio: terminating on signal %d\n", sig);
fflush(stdout);
exit_value = 128;
}
fio_terminate_threads(TERMINATE_ALL);
}
}
static void sig_show_status(int sig)
{
show_running_run_stats();
}
static void set_sig_handlers(void)
{
struct sigaction act;
memset(&act, 0, sizeof(act));
act.sa_handler = sig_int;
act.sa_flags = SA_RESTART;
sigaction(SIGINT, &act, NULL);
memset(&act, 0, sizeof(act));
act.sa_handler = sig_int;
act.sa_flags = SA_RESTART;
sigaction(SIGTERM, &act, NULL);
/* Windows uses SIGBREAK as a quit signal from other applications */
#ifdef WIN32
memset(&act, 0, sizeof(act));
act.sa_handler = sig_int;
act.sa_flags = SA_RESTART;
sigaction(SIGBREAK, &act, NULL);
#endif
memset(&act, 0, sizeof(act));
act.sa_handler = sig_show_status;
act.sa_flags = SA_RESTART;
sigaction(SIGUSR1, &act, NULL);
if (is_backend) {
memset(&act, 0, sizeof(act));
act.sa_handler = sig_int;
act.sa_flags = SA_RESTART;
sigaction(SIGPIPE, &act, NULL);
}
}
/*
* Check if we are above the minimum rate given.
*/
static int __check_min_rate(struct thread_data *td, struct timeval *now,
enum fio_ddir ddir)
{
unsigned long long bytes = 0;
unsigned long iops = 0;
unsigned long spent;
unsigned long rate;
unsigned int ratemin = 0;
unsigned int rate_iops = 0;
unsigned int rate_iops_min = 0;
assert(ddir_rw(ddir));
if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
return 0;
/*
* allow a 2 second settle period in the beginning
*/
if (mtime_since(&td->start, now) < 2000)
return 0;
iops += td->this_io_blocks[ddir];
bytes += td->this_io_bytes[ddir];
ratemin += td->o.ratemin[ddir];
rate_iops += td->o.rate_iops[ddir];
rate_iops_min += td->o.rate_iops_min[ddir];
/*
* if rate blocks is set, sample is running
*/
if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
spent = mtime_since(&td->lastrate[ddir], now);
if (spent < td->o.ratecycle)
return 0;
if (td->o.rate[ddir]) {
/*
* check bandwidth specified rate
*/
if (bytes < td->rate_bytes[ddir]) {
log_err("%s: min rate %u not met\n", td->o.name,
ratemin);
return 1;
} else {
rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
if (rate < ratemin ||
bytes < td->rate_bytes[ddir]) {
log_err("%s: min rate %u not met, got"
" %luKB/sec\n", td->o.name,
ratemin, rate);
return 1;
}
}
} else {
/*
* checks iops specified rate
*/
if (iops < rate_iops) {
log_err("%s: min iops rate %u not met\n",
td->o.name, rate_iops);
return 1;
} else {
rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
if (rate < rate_iops_min ||
iops < td->rate_blocks[ddir]) {
log_err("%s: min iops rate %u not met,"
" got %lu\n", td->o.name,
rate_iops_min, rate);
}
}
}
}
td->rate_bytes[ddir] = bytes;
td->rate_blocks[ddir] = iops;
memcpy(&td->lastrate[ddir], now, sizeof(*now));
return 0;
}
static int check_min_rate(struct thread_data *td, struct timeval *now,
uint64_t *bytes_done)
{
int ret = 0;
if (bytes_done[DDIR_READ])
ret |= __check_min_rate(td, now, DDIR_READ);
if (bytes_done[DDIR_WRITE])
ret |= __check_min_rate(td, now, DDIR_WRITE);
if (bytes_done[DDIR_TRIM])
ret |= __check_min_rate(td, now, DDIR_TRIM);
return ret;
}
/*
* When job exits, we can cancel the in-flight IO if we are using async
* io. Attempt to do so.
*/
static void cleanup_pending_aio(struct thread_data *td)
{
struct flist_head *entry, *n;
struct io_u *io_u;
int r;
/*
* get immediately available events, if any
*/
r = io_u_queued_complete(td, 0, NULL);
if (r < 0)
return;
/*
* now cancel remaining active events
*/
if (td->io_ops->cancel) {
flist_for_each_safe(entry, n, &td->io_u_busylist) {
io_u = flist_entry(entry, struct io_u, list);
/*
* if the io_u isn't in flight, then that generally
* means someone leaked an io_u. complain but fix
* it up, so we don't stall here.
*/
if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
log_err("fio: non-busy IO on busy list\n");
put_io_u(td, io_u);
} else {
r = td->io_ops->cancel(td, io_u);
if (!r)
put_io_u(td, io_u);
}
}
}
if (td->cur_depth)
r = io_u_queued_complete(td, td->cur_depth, NULL);
}
/*
* Helper to handle the final sync of a file. Works just like the normal
* io path, just does everything sync.
*/
static int fio_io_sync(struct thread_data *td, struct fio_file *f)
{
struct io_u *io_u = __get_io_u(td);
int ret;
if (!io_u)
return 1;
io_u->ddir = DDIR_SYNC;
io_u->file = f;
if (td_io_prep(td, io_u)) {
put_io_u(td, io_u);
return 1;
}
requeue:
ret = td_io_queue(td, io_u);
if (ret < 0) {
td_verror(td, io_u->error, "td_io_queue");
put_io_u(td, io_u);
return 1;
} else if (ret == FIO_Q_QUEUED) {
if (io_u_queued_complete(td, 1, NULL) < 0)
return 1;
} else if (ret == FIO_Q_COMPLETED) {
if (io_u->error) {
td_verror(td, io_u->error, "td_io_queue");
return 1;
}
if (io_u_sync_complete(td, io_u, NULL) < 0)
return 1;
} else if (ret == FIO_Q_BUSY) {
if (td_io_commit(td))
return 1;
goto requeue;
}
return 0;
}
static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
{
int ret;
if (fio_file_open(f))
return fio_io_sync(td, f);
if (td_io_open_file(td, f))
return 1;
ret = fio_io_sync(td, f);
td_io_close_file(td, f);
return ret;
}
static inline void __update_tv_cache(struct thread_data *td)
{
fio_gettime(&td->tv_cache, NULL);
}
static inline void update_tv_cache(struct thread_data *td)
{
if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
__update_tv_cache(td);
}
static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
{
if (in_ramp_time(td))
return 0;
if (!td->o.timeout)
return 0;
if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
return 1;
return 0;
}
static int break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
int *retptr)
{
int ret = *retptr;
if (ret < 0 || td->error) {
int err = td->error;
enum error_type_bit eb;
if (ret < 0)
err = -ret;
eb = td_error_type(ddir, err);
if (!(td->o.continue_on_error & (1 << eb)))
return 1;
if (td_non_fatal_error(td, eb, err)) {
/*
* Continue with the I/Os in case of
* a non fatal error.
*/
update_error_count(td, err);
td_clear_error(td);
*retptr = 0;
return 0;
} else if (td->o.fill_device && err == ENOSPC) {
/*
* We expect to hit this error if
* fill_device option is set.
*/
td_clear_error(td);
td->terminate = 1;
return 1;
} else {
/*
* Stop the I/O in case of a fatal
* error.
*/
update_error_count(td, err);
return 1;
}
}
return 0;
}
/*
* The main verify engine. Runs over the writes we previously submitted,
* reads the blocks back in, and checks the crc/md5 of the data.
*/
static void do_verify(struct thread_data *td, uint64_t verify_bytes)
{
uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
struct fio_file *f;
struct io_u *io_u;
int ret, min_events;
unsigned int i;
dprint(FD_VERIFY, "starting loop\n");
/*
* sync io first and invalidate cache, to make sure we really
* read from disk.
*/
for_each_file(td, f, i) {
if (!fio_file_open(f))
continue;
if (fio_io_sync(td, f))
break;
if (file_invalidate_cache(td, f))
break;
}
if (td->error)
return;
td_set_runstate(td, TD_VERIFYING);
io_u = NULL;
while (!td->terminate) {
enum fio_ddir ddir;
int ret2, full;
update_tv_cache(td);
if (runtime_exceeded(td, &td->tv_cache)) {
__update_tv_cache(td);
if (runtime_exceeded(td, &td->tv_cache)) {
td->terminate = 1;
break;
}
}
if (flow_threshold_exceeded(td))
continue;
if (!td->o.experimental_verify) {
io_u = __get_io_u(td);
if (!io_u)
break;
if (get_next_verify(td, io_u)) {
put_io_u(td, io_u);
break;
}
if (td_io_prep(td, io_u)) {
put_io_u(td, io_u);
break;
}
} else {
if (ddir_rw_sum(bytes_done) + td->o.rw_min_bs > verify_bytes)
break;
while ((io_u = get_io_u(td)) != NULL) {
/*
* We are only interested in the places where
* we wrote or trimmed IOs. Turn those into
* reads for verification purposes.
*/
if (io_u->ddir == DDIR_READ) {
/*
* Pretend we issued it for rwmix
* accounting
*/
td->io_issues[DDIR_READ]++;
put_io_u(td, io_u);
continue;
} else if (io_u->ddir == DDIR_TRIM) {
io_u->ddir = DDIR_READ;
io_u->flags |= IO_U_F_TRIMMED;
break;
} else if (io_u->ddir == DDIR_WRITE) {
io_u->ddir = DDIR_READ;
break;
} else {
put_io_u(td, io_u);
continue;
}
}
if (!io_u)
break;
}
if (td->o.verify_async)
io_u->end_io = verify_io_u_async;
else
io_u->end_io = verify_io_u;
ddir = io_u->ddir;
ret = td_io_queue(td, io_u);
switch (ret) {
case FIO_Q_COMPLETED:
if (io_u->error) {
ret = -io_u->error;
clear_io_u(td, io_u);
} else if (io_u->resid) {
int bytes = io_u->xfer_buflen - io_u->resid;
/*
* zero read, fail
*/
if (!bytes) {
td_verror(td, EIO, "full resid");
put_io_u(td, io_u);
break;
}
io_u->xfer_buflen = io_u->resid;
io_u->xfer_buf += bytes;
io_u->offset += bytes;
if (ddir_rw(io_u->ddir))
td->ts.short_io_u[io_u->ddir]++;
f = io_u->file;
if (io_u->offset == f->real_file_size)
goto sync_done;
requeue_io_u(td, &io_u);
} else {
sync_done:
ret = io_u_sync_complete(td, io_u, bytes_done);
if (ret < 0)
break;
}
continue;
case FIO_Q_QUEUED:
break;
case FIO_Q_BUSY:
requeue_io_u(td, &io_u);
ret2 = td_io_commit(td);
if (ret2 < 0)
ret = ret2;
break;
default:
assert(ret < 0);
td_verror(td, -ret, "td_io_queue");
break;
}
if (break_on_this_error(td, ddir, &ret))
break;
/*
* if we can queue more, do so. but check if there are
* completed io_u's first. Note that we can get BUSY even
* without IO queued, if the system is resource starved.
*/
full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
if (full || !td->o.iodepth_batch_complete) {
min_events = min(td->o.iodepth_batch_complete,
td->cur_depth);
/*
* if the queue is full, we MUST reap at least 1 event
*/
if (full && !min_events)
min_events = 1;
do {
/*
* Reap required number of io units, if any,
* and do the verification on them through
* the callback handler
*/
if (io_u_queued_complete(td, min_events, bytes_done) < 0) {
ret = -1;
break;
}
} while (full && (td->cur_depth > td->o.iodepth_low));
}
if (ret < 0)
break;
}
if (!td->error) {
min_events = td->cur_depth;
if (min_events)
ret = io_u_queued_complete(td, min_events, NULL);
} else
cleanup_pending_aio(td);
td_set_runstate(td, TD_RUNNING);
dprint(FD_VERIFY, "exiting loop\n");
}
static int io_bytes_exceeded(struct thread_data *td)
{
unsigned long long bytes;
if (td_rw(td))
bytes = td->this_io_bytes[DDIR_READ] + td->this_io_bytes[DDIR_WRITE];
else if (td_write(td))
bytes = td->this_io_bytes[DDIR_WRITE];
else if (td_read(td))
bytes = td->this_io_bytes[DDIR_READ];
else
bytes = td->this_io_bytes[DDIR_TRIM];
return bytes >= td->o.size;
}
/*
* Main IO worker function. It retrieves io_u's to process and queues
* and reaps them, checking for rate and errors along the way.
*
* Returns number of bytes written and trimmed.
*/
static uint64_t do_io(struct thread_data *td)
{
uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 };
unsigned int i;
int ret = 0;
if (in_ramp_time(td))
td_set_runstate(td, TD_RAMP);
else
td_set_runstate(td, TD_RUNNING);
while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
(!flist_empty(&td->trim_list)) || !io_bytes_exceeded(td) ||
td->o.time_based) {
struct timeval comp_time;
int min_evts = 0;
struct io_u *io_u;
int ret2, full;
enum fio_ddir ddir;
if (td->terminate || td->done)
break;
update_tv_cache(td);
if (runtime_exceeded(td, &td->tv_cache)) {
__update_tv_cache(td);
if (runtime_exceeded(td, &td->tv_cache)) {
td->terminate = 1;
break;
}
}
if (flow_threshold_exceeded(td))
continue;
io_u = get_io_u(td);
if (!io_u)
break;
ddir = io_u->ddir;
/*
* Add verification end_io handler if:
* - Asked to verify (!td_rw(td))
* - Or the io_u is from our verify list (mixed write/ver)
*/
if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
if (td->o.verify_async)
io_u->end_io = verify_io_u_async;
else
io_u->end_io = verify_io_u;
td_set_runstate(td, TD_VERIFYING);
} else if (in_ramp_time(td))
td_set_runstate(td, TD_RAMP);
else
td_set_runstate(td, TD_RUNNING);
ret = td_io_queue(td, io_u);
switch (ret) {
case FIO_Q_COMPLETED:
if (io_u->error) {
ret = -io_u->error;
clear_io_u(td, io_u);
} else if (io_u->resid) {
int bytes = io_u->xfer_buflen - io_u->resid;
struct fio_file *f = io_u->file;
/*
* zero read, fail
*/
if (!bytes) {
td_verror(td, EIO, "full resid");
put_io_u(td, io_u);
break;
}
io_u->xfer_buflen = io_u->resid;
io_u->xfer_buf += bytes;
io_u->offset += bytes;
if (ddir_rw(io_u->ddir))
td->ts.short_io_u[io_u->ddir]++;
if (io_u->offset == f->real_file_size)
goto sync_done;
requeue_io_u(td, &io_u);
} else {
sync_done:
if (__should_check_rate(td, DDIR_READ) ||
__should_check_rate(td, DDIR_WRITE) ||
__should_check_rate(td, DDIR_TRIM))
fio_gettime(&comp_time, NULL);
ret = io_u_sync_complete(td, io_u, bytes_done);
if (ret < 0)
break;
}
break;
case FIO_Q_QUEUED:
/*
* if the engine doesn't have a commit hook,
* the io_u is really queued. if it does have such
* a hook, it has to call io_u_queued() itself.
*/
if (td->io_ops->commit == NULL)
io_u_queued(td, io_u);
break;
case FIO_Q_BUSY:
requeue_io_u(td, &io_u);
ret2 = td_io_commit(td);
if (ret2 < 0)
ret = ret2;
break;
default:
assert(ret < 0);
put_io_u(td, io_u);
break;
}
if (break_on_this_error(td, ddir, &ret))
break;
/*
* See if we need to complete some commands. Note that we
* can get BUSY even without IO queued, if the system is
* resource starved.
*/
full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
if (full || !td->o.iodepth_batch_complete) {
min_evts = min(td->o.iodepth_batch_complete,
td->cur_depth);
/*
* if the queue is full, we MUST reap at least 1 event
*/
if (full && !min_evts)
min_evts = 1;
if (__should_check_rate(td, DDIR_READ) ||
__should_check_rate(td, DDIR_WRITE) ||
__should_check_rate(td, DDIR_TRIM))
fio_gettime(&comp_time, NULL);
do {
ret = io_u_queued_complete(td, min_evts, bytes_done);
if (ret < 0)
break;
} while (full && (td->cur_depth > td->o.iodepth_low));
}
if (ret < 0)
break;
if (!ddir_rw_sum(bytes_done) && !(td->io_ops->flags & FIO_NOIO))
continue;
if (!in_ramp_time(td) && should_check_rate(td, bytes_done)) {
if (check_min_rate(td, &comp_time, bytes_done)) {
if (exitall_on_terminate)
fio_terminate_threads(td->groupid);
td_verror(td, EIO, "check_min_rate");
break;
}
}
if (td->o.thinktime) {
unsigned long long b;
b = ddir_rw_sum(td->io_blocks);
if (!(b % td->o.thinktime_blocks)) {
int left;
if (td->o.thinktime_spin)
usec_spin(td->o.thinktime_spin);
left = td->o.thinktime - td->o.thinktime_spin;
if (left)
usec_sleep(td, left);
}
}
}
if (td->trim_entries)
log_err("fio: %d trim entries leaked?\n", td->trim_entries);
if (td->o.fill_device && td->error == ENOSPC) {
td->error = 0;
td->terminate = 1;
}
if (!td->error) {
struct fio_file *f;
i = td->cur_depth;
if (i) {
ret = io_u_queued_complete(td, i, bytes_done);
if (td->o.fill_device && td->error == ENOSPC)
td->error = 0;
}
if (should_fsync(td) && td->o.end_fsync) {
td_set_runstate(td, TD_FSYNCING);
for_each_file(td, f, i) {
if (!fio_file_fsync(td, f))
continue;
log_err("fio: end_fsync failed for file %s\n",
f->file_name);
}
}
} else
cleanup_pending_aio(td);
/*
* stop job if we failed doing any IO
*/
if (!ddir_rw_sum(td->this_io_bytes))
td->done = 1;
return bytes_done[DDIR_WRITE] + bytes_done[DDIR_TRIM];
}
static void cleanup_io_u(struct thread_data *td)
{
struct flist_head *entry, *n;
struct io_u *io_u;
flist_for_each_safe(entry, n, &td->io_u_freelist) {
io_u = flist_entry(entry, struct io_u, list);
flist_del(&io_u->list);
if (td->io_ops->io_u_free)
td->io_ops->io_u_free(td, io_u);
fio_memfree(io_u, sizeof(*io_u));
}
free_io_mem(td);
}
static int init_io_u(struct thread_data *td)
{
struct io_u *io_u;
unsigned int max_bs, min_write;
int cl_align, i, max_units;
int data_xfer = 1;
char *p;
max_units = td->o.iodepth;
max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
max_bs = max(td->o.max_bs[DDIR_TRIM], max_bs);
min_write = td->o.min_bs[DDIR_WRITE];
td->orig_buffer_size = (unsigned long long) max_bs
* (unsigned long long) max_units;
if ((td->io_ops->flags & FIO_NOIO) || !(td_read(td) || td_write(td)))
data_xfer = 0;
if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
unsigned long bs;
bs = td->orig_buffer_size + td->o.hugepage_size - 1;
td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
}
if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
return 1;
}
if (data_xfer && allocate_io_mem(td))
return 1;
if (td->o.odirect || td->o.mem_align ||
(td->io_ops->flags & FIO_RAWIO))
p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
else
p = td->orig_buffer;
cl_align = os_cache_line_size();
for (i = 0; i < max_units; i++) {
void *ptr;
if (td->terminate)
return 1;
ptr = fio_memalign(cl_align, sizeof(*io_u));
if (!ptr) {
log_err("fio: unable to allocate aligned memory\n");
break;
}
io_u = ptr;
memset(io_u, 0, sizeof(*io_u));
INIT_FLIST_HEAD(&io_u->list);
dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
if (data_xfer) {
io_u->buf = p;
dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
if (td_write(td))
io_u_fill_buffer(td, io_u, min_write, max_bs);
if (td_write(td) && td->o.verify_pattern_bytes) {
/*
* Fill the buffer with the pattern if we are
* going to be doing writes.
*/
fill_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
}
}
io_u->index = i;
io_u->flags = IO_U_F_FREE;
flist_add(&io_u->list, &td->io_u_freelist);
if (td->io_ops->io_u_init) {
int ret = td->io_ops->io_u_init(td, io_u);
if (ret) {
log_err("fio: failed to init engine data: %d\n", ret);
return 1;
}
}
p += max_bs;
}
return 0;
}
static int switch_ioscheduler(struct thread_data *td)
{
char tmp[256], tmp2[128];
FILE *f;
int ret;
if (td->io_ops->flags & FIO_DISKLESSIO)
return 0;
sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
f = fopen(tmp, "r+");
if (!f) {
if (errno == ENOENT) {
log_err("fio: os or kernel doesn't support IO scheduler"
" switching\n");
return 0;
}
td_verror(td, errno, "fopen iosched");
return 1;
}
/*
* Set io scheduler.
*/
ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
if (ferror(f) || ret != 1) {
td_verror(td, errno, "fwrite");
fclose(f);
return 1;
}
rewind(f);
/*
* Read back and check that the selected scheduler is now the default.
*/
ret = fread(tmp, 1, sizeof(tmp), f);
if (ferror(f) || ret < 0) {
td_verror(td, errno, "fread");
fclose(f);
return 1;
}
sprintf(tmp2, "[%s]", td->o.ioscheduler);
if (!strstr(tmp, tmp2)) {
log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
td_verror(td, EINVAL, "iosched_switch");
fclose(f);
return 1;
}
fclose(f);
return 0;
}
static int keep_running(struct thread_data *td)
{
if (td->done)
return 0;
if (td->o.time_based)
return 1;
if (td->o.loops) {
td->o.loops--;
return 1;
}
if (ddir_rw_sum(td->io_bytes) < td->o.size) {
uint64_t diff;
/*
* If the difference is less than the minimum IO size, we
* are done.
*/
diff = td->o.size - ddir_rw_sum(td->io_bytes);
if (diff < td->o.rw_min_bs)
return 0;
return 1;
}
return 0;
}
static int exec_string(const char *string)
{
int ret, newlen = strlen(string) + 1 + 8;
char *str;
str = malloc(newlen);
sprintf(str, "sh -c %s", string);
ret = system(str);
if (ret == -1)
log_err("fio: exec of cmd <%s> failed\n", str);
free(str);
return ret;
}
/*
* Entry point for the thread based jobs. The process based jobs end up
* here as well, after a little setup.
*/
static void *thread_main(void *data)
{
unsigned long long elapsed;
struct thread_data *td = data;
pthread_condattr_t attr;
int clear_state;
if (!td->o.use_thread) {
setsid();
td->pid = getpid();
} else
td->pid = gettid();
fio_local_clock_init(td->o.use_thread);
dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
INIT_FLIST_HEAD(&td->io_u_freelist);
INIT_FLIST_HEAD(&td->io_u_busylist);
INIT_FLIST_HEAD(&td->io_u_requeues);
INIT_FLIST_HEAD(&td->io_log_list);
INIT_FLIST_HEAD(&td->io_hist_list);
INIT_FLIST_HEAD(&td->verify_list);
INIT_FLIST_HEAD(&td->trim_list);
INIT_FLIST_HEAD(&td->next_rand_list);
pthread_mutex_init(&td->io_u_lock, NULL);
td->io_hist_tree = RB_ROOT;
pthread_condattr_init(&attr);
pthread_cond_init(&td->verify_cond, &attr);
pthread_cond_init(&td->free_cond, &attr);
td_set_runstate(td, TD_INITIALIZED);
dprint(FD_MUTEX, "up startup_mutex\n");
fio_mutex_up(startup_mutex);
dprint(FD_MUTEX, "wait on td->mutex\n");
fio_mutex_down(td->mutex);
dprint(FD_MUTEX, "done waiting on td->mutex\n");
/*
* the ->mutex mutex is now no longer used, close it to avoid
* eating a file descriptor
*/
fio_mutex_remove(td->mutex);
/*
* A new gid requires privilege, so we need to do this before setting
* the uid.
*/
if (td->o.gid != -1U && setgid(td->o.gid)) {
td_verror(td, errno, "setgid");
goto err;
}
if (td->o.uid != -1U && setuid(td->o.uid)) {
td_verror(td, errno, "setuid");
goto err;
}
/*
* If we have a gettimeofday() thread, make sure we exclude that
* thread from this job
*/
if (td->o.gtod_cpu)
fio_cpu_clear(&td->o.cpumask, td->o.gtod_cpu);
/*
* Set affinity first, in case it has an impact on the memory
* allocations.
*/
if (td->o.cpumask_set && fio_setaffinity(td->pid, td->o.cpumask) == -1) {
td_verror(td, errno, "cpu_set_affinity");
goto err;
}
#ifdef CONFIG_LIBNUMA
/* numa node setup */
if (td->o.numa_cpumask_set || td->o.numa_memmask_set) {
int ret;
if (numa_available() < 0) {
td_verror(td, errno, "Does not support NUMA API\n");
goto err;
}
if (td->o.numa_cpumask_set) {
ret = numa_run_on_node_mask(td->o.numa_cpunodesmask);
if (ret == -1) {
td_verror(td, errno, \
"numa_run_on_node_mask failed\n");
goto err;
}
}
if (td->o.numa_memmask_set) {
switch (td->o.numa_mem_mode) {
case MPOL_INTERLEAVE:
numa_set_interleave_mask(td->o.numa_memnodesmask);
break;
case MPOL_BIND:
numa_set_membind(td->o.numa_memnodesmask);
break;
case MPOL_LOCAL:
numa_set_localalloc();
break;
case MPOL_PREFERRED:
numa_set_preferred(td->o.numa_mem_prefer_node);
break;
case MPOL_DEFAULT:
default:
break;
}
}
}
#endif
/*
* May alter parameters that init_io_u() will use, so we need to
* do this first.
*/
if (init_iolog(td))
goto err;
if (init_io_u(td))
goto err;
if (td->o.verify_async && verify_async_init(td))
goto err;
if (td->ioprio_set) {
if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
td_verror(td, errno, "ioprio_set");
goto err;
}
}
if (td->o.cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
goto err;
errno = 0;
if (nice(td->o.nice) == -1 && errno != 0) {
td_verror(td, errno, "nice");
goto err;
}
if (td->o.ioscheduler && switch_ioscheduler(td))
goto err;
if (!td->o.create_serialize && setup_files(td))
goto err;
if (td_io_init(td))
goto err;
if (init_random_map(td))
goto err;
if (td->o.exec_prerun) {
if (exec_string(td->o.exec_prerun))
goto err;
}
if (td->o.pre_read) {
if (pre_read_files(td) < 0)
goto err;
}
fio_gettime(&td->epoch, NULL);
fio_getrusage(&td->ru_start);
clear_state = 0;
while (keep_running(td)) {
uint64_t verify_bytes;
fio_gettime(&td->start, NULL);
memcpy(&td->bw_sample_time, &td->start, sizeof(td->start));
memcpy(&td->iops_sample_time, &td->start, sizeof(td->start));
memcpy(&td->tv_cache, &td->start, sizeof(td->start));
if (td->o.ratemin[DDIR_READ] || td->o.ratemin[DDIR_WRITE] ||
td->o.ratemin[DDIR_TRIM]) {
memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
sizeof(td->bw_sample_time));
memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
sizeof(td->bw_sample_time));
memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
sizeof(td->bw_sample_time));
}
if (clear_state)
clear_io_state(td);
prune_io_piece_log(td);
verify_bytes = do_io(td);
clear_state = 1;
if (td_read(td) && td->io_bytes[DDIR_READ]) {
elapsed = utime_since_now(&td->start);
td->ts.runtime[DDIR_READ] += elapsed;
}
if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
elapsed = utime_since_now(&td->start);
td->ts.runtime[DDIR_WRITE] += elapsed;
}
if (td_trim(td) && td->io_bytes[DDIR_TRIM]) {
elapsed = utime_since_now(&td->start);
td->ts.runtime[DDIR_TRIM] += elapsed;
}
if (td->error || td->terminate)
break;
if (!td->o.do_verify ||
td->o.verify == VERIFY_NONE ||
(td->io_ops->flags & FIO_UNIDIR))
continue;
clear_io_state(td);
fio_gettime(&td->start, NULL);
do_verify(td, verify_bytes);
td->ts.runtime[DDIR_READ] += utime_since_now(&td->start);
if (td->error || td->terminate)
break;
}
update_rusage_stat(td);
td->ts.runtime[DDIR_READ] = (td->ts.runtime[DDIR_READ] + 999) / 1000;
td->ts.runtime[DDIR_WRITE] = (td->ts.runtime[DDIR_WRITE] + 999) / 1000;
td->ts.runtime[DDIR_TRIM] = (td->ts.runtime[DDIR_TRIM] + 999) / 1000;
td->ts.total_run_time = mtime_since_now(&td->epoch);
td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
fio_mutex_down(writeout_mutex);
if (td->bw_log) {
if (td->o.bw_log_file) {
finish_log_named(td, td->bw_log,
td->o.bw_log_file, "bw");
} else
finish_log(td, td->bw_log, "bw");
}
if (td->lat_log) {
if (td->o.lat_log_file) {
finish_log_named(td, td->lat_log,
td->o.lat_log_file, "lat");
} else
finish_log(td, td->lat_log, "lat");
}
if (td->slat_log) {
if (td->o.lat_log_file) {
finish_log_named(td, td->slat_log,
td->o.lat_log_file, "slat");
} else
finish_log(td, td->slat_log, "slat");
}
if (td->clat_log) {
if (td->o.lat_log_file) {
finish_log_named(td, td->clat_log,
td->o.lat_log_file, "clat");
} else
finish_log(td, td->clat_log, "clat");
}
if (td->iops_log) {
if (td->o.iops_log_file) {
finish_log_named(td, td->iops_log,
td->o.iops_log_file, "iops");
} else
finish_log(td, td->iops_log, "iops");
}
fio_mutex_up(writeout_mutex);
if (td->o.exec_postrun)
exec_string(td->o.exec_postrun);
if (exitall_on_terminate)
fio_terminate_threads(td->groupid);
err:
if (td->error)
log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
td->verror);
if (td->o.verify_async)
verify_async_exit(td);
close_and_free_files(td);
cleanup_io_u(td);
close_ioengine(td);
cgroup_shutdown(td, &cgroup_mnt);
if (td->o.cpumask_set) {
int ret = fio_cpuset_exit(&td->o.cpumask);
td_verror(td, ret, "fio_cpuset_exit");
}
/*
* do this very late, it will log file closing as well
*/
if (td->o.write_iolog_file)
write_iolog_close(td);
td_set_runstate(td, TD_EXITED);
return (void *) (uintptr_t) td->error;
}
/*
* We cannot pass the td data into a forked process, so attach the td and
* pass it to the thread worker.
*/
static int fork_main(int shmid, int offset)
{
struct thread_data *td;
void *data, *ret;
#ifndef __hpux
data = shmat(shmid, NULL, 0);
if (data == (void *) -1) {
int __err = errno;
perror("shmat");
return __err;
}
#else
/*
* HP-UX inherits shm mappings?
*/
data = threads;
#endif
td = data + offset * sizeof(struct thread_data);
ret = thread_main(td);
shmdt(data);
return (int) (uintptr_t) ret;
}
/*
* Run over the job map and reap the threads that have exited, if any.
*/
static void reap_threads(unsigned int *nr_running, unsigned int *t_rate,
unsigned int *m_rate)
{
struct thread_data *td;
unsigned int cputhreads, realthreads, pending;
int i, status, ret;
/*
* reap exited threads (TD_EXITED -> TD_REAPED)
*/
realthreads = pending = cputhreads = 0;
for_each_td(td, i) {
int flags = 0;
/*
* ->io_ops is NULL for a thread that has closed its
* io engine
*/
if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
cputhreads++;
else
realthreads++;
if (!td->pid) {
pending++;
continue;
}
if (td->runstate == TD_REAPED)
continue;
if (td->o.use_thread) {
if (td->runstate == TD_EXITED) {
td_set_runstate(td, TD_REAPED);
goto reaped;
}
continue;
}
flags = WNOHANG;
if (td->runstate == TD_EXITED)
flags = 0;
/*
* check if someone quit or got killed in an unusual way
*/
ret = waitpid(td->pid, &status, flags);
if (ret < 0) {
if (errno == ECHILD) {
log_err("fio: pid=%d disappeared %d\n",
(int) td->pid, td->runstate);
td->sig = ECHILD;
td_set_runstate(td, TD_REAPED);
goto reaped;
}
perror("waitpid");
} else if (ret == td->pid) {
if (WIFSIGNALED(status)) {
int sig = WTERMSIG(status);
if (sig != SIGTERM && sig != SIGUSR2)
log_err("fio: pid=%d, got signal=%d\n",
(int) td->pid, sig);
td->sig = sig;
td_set_runstate(td, TD_REAPED);
goto reaped;
}
if (WIFEXITED(status)) {
if (WEXITSTATUS(status) && !td->error)
td->error = WEXITSTATUS(status);
td_set_runstate(td, TD_REAPED);
goto reaped;
}
}
/*
* thread is not dead, continue
*/
pending++;
continue;
reaped:
(*nr_running)--;
(*m_rate) -= ddir_rw_sum(td->o.ratemin);
(*t_rate) -= ddir_rw_sum(td->o.rate);
if (!td->pid)
pending--;
if (td->error)
exit_value++;
done_secs += mtime_since_now(&td->epoch) / 1000;
}
if (*nr_running == cputhreads && !pending && realthreads)
fio_terminate_threads(TERMINATE_ALL);
}
/*
* Main function for kicking off and reaping jobs, as needed.
*/
static void run_threads(void)
{
struct thread_data *td;
unsigned long spent;
unsigned int i, todo, nr_running, m_rate, t_rate, nr_started;
if (fio_pin_memory())
return;
if (fio_gtod_offload && fio_start_gtod_thread())
return;
fio_idle_prof_init();
set_sig_handlers();
if (output_format == FIO_OUTPUT_NORMAL) {
log_info("Starting ");
if (nr_thread)
log_info("%d thread%s", nr_thread,
nr_thread > 1 ? "s" : "");
if (nr_process) {
if (nr_thread)
log_info(" and ");
log_info("%d process%s", nr_process,
nr_process > 1 ? "es" : "");
}
log_info("\n");
fflush(stdout);
}
todo = thread_number;
nr_running = 0;
nr_started = 0;
m_rate = t_rate = 0;
for_each_td(td, i) {
print_status_init(td->thread_number - 1);
if (!td->o.create_serialize)
continue;
/*
* do file setup here so it happens sequentially,
* we don't want X number of threads getting their
* client data interspersed on disk
*/
if (setup_files(td)) {
exit_value++;
if (td->error)
log_err("fio: pid=%d, err=%d/%s\n",
(int) td->pid, td->error, td->verror);
td_set_runstate(td, TD_REAPED);
todo--;
} else {
struct fio_file *f;
unsigned int j;
/*
* for sharing to work, each job must always open
* its own files. so close them, if we opened them
* for creation
*/
for_each_file(td, f, j) {
if (fio_file_open(f))
td_io_close_file(td, f);
}
}
}
/* start idle threads before io threads start to run */
fio_idle_prof_start();
set_genesis_time();
while (todo) {
struct thread_data *map[REAL_MAX_JOBS];
struct timeval this_start;
int this_jobs = 0, left;
/*
* create threads (TD_NOT_CREATED -> TD_CREATED)
*/
for_each_td(td, i) {
if (td->runstate != TD_NOT_CREATED)
continue;
/*
* never got a chance to start, killed by other
* thread for some reason
*/
if (td->terminate) {
todo--;
continue;
}
if (td->o.start_delay) {
spent = mtime_since_genesis();
if (td->o.start_delay * 1000 > spent)
continue;
}
if (td->o.stonewall && (nr_started || nr_running)) {
dprint(FD_PROCESS, "%s: stonewall wait\n",
td->o.name);
break;
}
init_disk_util(td);
/*
* Set state to created. Thread will transition
* to TD_INITIALIZED when it's done setting up.
*/
td_set_runstate(td, TD_CREATED);
map[this_jobs++] = td;
nr_started++;
if (td->o.use_thread) {
int ret;
dprint(FD_PROCESS, "will pthread_create\n");
ret = pthread_create(&td->thread, NULL,
thread_main, td);
if (ret) {
log_err("pthread_create: %s\n",
strerror(ret));
nr_started--;
break;
}
ret = pthread_detach(td->thread);
if (ret)
log_err("pthread_detach: %s",
strerror(ret));
} else {
pid_t pid;
dprint(FD_PROCESS, "will fork\n");
pid = fork();
if (!pid) {
int ret = fork_main(shm_id, i);
_exit(ret);
} else if (i == fio_debug_jobno)
*fio_debug_jobp = pid;
}
dprint(FD_MUTEX, "wait on startup_mutex\n");
if (fio_mutex_down_timeout(startup_mutex, 10)) {
log_err("fio: job startup hung? exiting.\n");
fio_terminate_threads(TERMINATE_ALL);
fio_abort = 1;
nr_started--;
break;
}
dprint(FD_MUTEX, "done waiting on startup_mutex\n");
}
/*
* Wait for the started threads to transition to
* TD_INITIALIZED.
*/
fio_gettime(&this_start, NULL);
left = this_jobs;
while (left && !fio_abort) {
if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
break;
usleep(100000);
for (i = 0; i < this_jobs; i++) {
td = map[i];
if (!td)
continue;
if (td->runstate == TD_INITIALIZED) {
map[i] = NULL;
left--;
} else if (td->runstate >= TD_EXITED) {
map[i] = NULL;
left--;
todo--;
nr_running++; /* work-around... */
}
}
}
if (left) {
log_err("fio: %d job%s failed to start\n", left,
left > 1 ? "s" : "");
for (i = 0; i < this_jobs; i++) {
td = map[i];
if (!td)
continue;
kill(td->pid, SIGTERM);
}
break;
}
/*
* start created threads (TD_INITIALIZED -> TD_RUNNING).
*/
for_each_td(td, i) {
if (td->runstate != TD_INITIALIZED)
continue;
if (in_ramp_time(td))
td_set_runstate(td, TD_RAMP);
else
td_set_runstate(td, TD_RUNNING);
nr_running++;
nr_started--;
m_rate += ddir_rw_sum(td->o.ratemin);
t_rate += ddir_rw_sum(td->o.rate);
todo--;
fio_mutex_up(td->mutex);
}
reap_threads(&nr_running, &t_rate, &m_rate);
if (todo) {
if (is_backend)
fio_server_idle_loop();
else
usleep(100000);
}
}
while (nr_running) {
reap_threads(&nr_running, &t_rate, &m_rate);
if (is_backend)
fio_server_idle_loop();
else
usleep(10000);
}
fio_idle_prof_stop();
update_io_ticks();
fio_unpin_memory();
}
void wait_for_disk_thread_exit(void)
{
fio_mutex_down(disk_thread_mutex);
}
static void free_disk_util(void)
{
disk_util_start_exit();
wait_for_disk_thread_exit();
disk_util_prune_entries();
}
static void *disk_thread_main(void *data)
{
int ret = 0;
fio_mutex_up(startup_mutex);
while (threads && !ret) {
usleep(DISK_UTIL_MSEC * 1000);
if (!threads)
break;
ret = update_io_ticks();
if (!is_backend)
print_thread_status();
}
fio_mutex_up(disk_thread_mutex);
return NULL;
}
static int create_disk_util_thread(void)
{
int ret;
setup_disk_util();
disk_thread_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
ret = pthread_create(&disk_util_thread, NULL, disk_thread_main, NULL);
if (ret) {
fio_mutex_remove(disk_thread_mutex);
log_err("Can't create disk util thread: %s\n", strerror(ret));
return 1;
}
ret = pthread_detach(disk_util_thread);
if (ret) {
fio_mutex_remove(disk_thread_mutex);
log_err("Can't detatch disk util thread: %s\n", strerror(ret));
return 1;
}
dprint(FD_MUTEX, "wait on startup_mutex\n");
fio_mutex_down(startup_mutex);
dprint(FD_MUTEX, "done waiting on startup_mutex\n");
return 0;
}
int fio_backend(void)
{
struct thread_data *td;
int i;
if (exec_profile) {
if (load_profile(exec_profile))
return 1;
free(exec_profile);
exec_profile = NULL;
}
if (!thread_number)
return 0;
if (write_bw_log) {
setup_log(&agg_io_log[DDIR_READ], 0);
setup_log(&agg_io_log[DDIR_WRITE], 0);
setup_log(&agg_io_log[DDIR_TRIM], 0);
}
startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
if (startup_mutex == NULL)
return 1;
writeout_mutex = fio_mutex_init(FIO_MUTEX_UNLOCKED);
if (writeout_mutex == NULL)
return 1;
set_genesis_time();
create_disk_util_thread();
cgroup_list = smalloc(sizeof(*cgroup_list));
INIT_FLIST_HEAD(cgroup_list);
run_threads();
if (!fio_abort) {
show_run_stats();
if (write_bw_log) {
__finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
__finish_log(agg_io_log[DDIR_WRITE],
"agg-write_bw.log");
__finish_log(agg_io_log[DDIR_TRIM],
"agg-write_bw.log");
}
}
for_each_td(td, i)
fio_options_free(td);
free_disk_util();
cgroup_kill(cgroup_list);
sfree(cgroup_list);
sfree(cgroup_mnt);
fio_mutex_remove(startup_mutex);
fio_mutex_remove(writeout_mutex);
fio_mutex_remove(disk_thread_mutex);
return exit_value;
}