blob: a2651f0325490d780ee7a9352fa01d53b81350b5 [file] [log] [blame]
/*
* fio - the flexible io tester
*
* Copyright (C) 2005 Jens Axboe <axboe@suse.de>
* Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <signal.h>
#include <time.h>
#include <assert.h>
#include <sys/stat.h>
#include <sys/wait.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include "fio.h"
#include "os.h"
#define MASK (4095)
#define ALIGN(buf) (char *) (((unsigned long) (buf) + MASK) & ~(MASK))
int groupid = 0;
int thread_number = 0;
static char run_str[MAX_JOBS + 1];
int shm_id = 0;
static struct timeval genesis;
static int temp_stall_ts;
static void print_thread_status(void);
extern unsigned long long mlock_size;
/*
* Thread life cycle. Once a thread has a runstate beyond TD_INITIALIZED, it
* will never back again. It may cycle between running/verififying/fsyncing.
* Once the thread reaches TD_EXITED, it is just waiting for the core to
* reap it.
*/
enum {
TD_NOT_CREATED = 0,
TD_CREATED,
TD_INITIALIZED,
TD_RUNNING,
TD_VERIFYING,
TD_FSYNCING,
TD_EXITED,
TD_REAPED,
};
#define should_fsync(td) ((td_write(td) || td_rw(td)) && (!(td)->odirect || (td)->override_sync))
static volatile int startup_sem;
#define TERMINATE_ALL (-1)
#define JOB_START_TIMEOUT (5 * 1000)
static void terminate_threads(int group_id)
{
int i;
for (i = 0; i < thread_number; i++) {
struct thread_data *td = &threads[i];
if (group_id == TERMINATE_ALL || groupid == td->groupid) {
td->terminate = 1;
td->start_delay = 0;
}
}
}
static void sig_handler(int sig)
{
switch (sig) {
case SIGALRM:
update_io_ticks();
disk_util_timer_arm();
print_thread_status();
break;
default:
printf("\nfio: terminating on signal\n");
fflush(stdout);
terminate_threads(TERMINATE_ALL);
break;
}
}
/*
* The ->file_map[] contains a map of blocks we have or have not done io
* to yet. Used to make sure we cover the entire range in a fair fashion.
*/
static int random_map_free(struct thread_data *td, unsigned long long block)
{
unsigned int idx = RAND_MAP_IDX(td, block);
unsigned int bit = RAND_MAP_BIT(td, block);
return (td->file_map[idx] & (1UL << bit)) == 0;
}
/*
* Return the next free block in the map.
*/
static int get_next_free_block(struct thread_data *td, unsigned long long *b)
{
int i;
*b = 0;
i = 0;
while ((*b) * td->min_bs < td->io_size) {
if (td->file_map[i] != -1UL) {
*b += ffz(td->file_map[i]);
return 0;
}
*b += BLOCKS_PER_MAP;
i++;
}
return 1;
}
/*
* Mark a given offset as used in the map.
*/
static void mark_random_map(struct thread_data *td, struct io_u *io_u)
{
unsigned long long block = io_u->offset / (unsigned long long) td->min_bs;
unsigned int blocks = 0;
while (blocks < (io_u->buflen / td->min_bs)) {
unsigned int idx, bit;
if (!random_map_free(td, block))
break;
idx = RAND_MAP_IDX(td, block);
bit = RAND_MAP_BIT(td, block);
assert(idx < td->num_maps);
td->file_map[idx] |= (1UL << bit);
block++;
blocks++;
}
if ((blocks * td->min_bs) < io_u->buflen)
io_u->buflen = blocks * td->min_bs;
}
/*
* For random io, generate a random new block and see if it's used. Repeat
* until we find a free one. For sequential io, just return the end of
* the last io issued.
*/
static int get_next_offset(struct thread_data *td, unsigned long long *offset)
{
unsigned long long b, rb;
long r;
if (!td->sequential) {
unsigned long long max_blocks = td->io_size / td->min_bs;
int loops = 50;
do {
r = os_random_long(&td->random_state);
b = ((max_blocks - 1) * r / (unsigned long long) (RAND_MAX+1.0));
rb = b + (td->file_offset / td->min_bs);
loops--;
} while (!random_map_free(td, rb) && loops);
if (!loops) {
if (get_next_free_block(td, &b))
return 1;
}
} else
b = td->last_pos / td->min_bs;
*offset = (b * td->min_bs) + td->file_offset;
if (*offset > td->real_file_size)
return 1;
return 0;
}
static unsigned int get_next_buflen(struct thread_data *td)
{
unsigned int buflen;
long r;
if (td->min_bs == td->max_bs)
buflen = td->min_bs;
else {
r = os_random_long(&td->bsrange_state);
buflen = (1 + (double) (td->max_bs - 1) * r / (RAND_MAX + 1.0));
buflen = (buflen + td->min_bs - 1) & ~(td->min_bs - 1);
}
if (buflen > td->io_size - td->this_io_bytes[td->ddir])
buflen = td->io_size - td->this_io_bytes[td->ddir];
return buflen;
}
/*
* Check if we are above the minimum rate given.
*/
static int check_min_rate(struct thread_data *td, struct timeval *now)
{
unsigned long spent;
unsigned long rate;
int ddir = td->ddir;
/*
* allow a 2 second settle period in the beginning
*/
if (mtime_since(&td->start, now) < 2000)
return 0;
/*
* if rate blocks is set, sample is running
*/
if (td->rate_bytes) {
spent = mtime_since(&td->lastrate, now);
if (spent < td->ratecycle)
return 0;
rate = (td->this_io_bytes[ddir] - td->rate_bytes) / spent;
if (rate < td->ratemin) {
fprintf(f_out, "%s: min rate %d not met, got %ldKiB/sec\n", td->name, td->ratemin, rate);
if (rate_quit)
terminate_threads(td->groupid);
return 1;
}
}
td->rate_bytes = td->this_io_bytes[ddir];
memcpy(&td->lastrate, now, sizeof(*now));
return 0;
}
static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
{
if (!td->timeout)
return 0;
if (mtime_since(&td->epoch, t) >= td->timeout * 1000)
return 1;
return 0;
}
static void fill_random_bytes(struct thread_data *td,
unsigned char *p, unsigned int len)
{
unsigned int todo;
double r;
while (len) {
r = os_random_double(&td->verify_state);
/*
* lrand48_r seems to be broken and only fill the bottom
* 32-bits, even on 64-bit archs with 64-bit longs
*/
todo = sizeof(r);
if (todo > len)
todo = len;
memcpy(p, &r, todo);
len -= todo;
p += todo;
}
}
static void hexdump(void *buffer, int len)
{
unsigned char *p = buffer;
int i;
for (i = 0; i < len; i++)
fprintf(f_out, "%02x", p[i]);
fprintf(f_out, "\n");
}
static int verify_io_u_crc32(struct verify_header *hdr, struct io_u *io_u)
{
unsigned char *p = (unsigned char *) io_u->buf;
unsigned long c;
p += sizeof(*hdr);
c = crc32(p, hdr->len - sizeof(*hdr));
if (c != hdr->crc32) {
log_err("crc32: verify failed at %llu/%u\n", io_u->offset, io_u->buflen);
log_err("crc32: wanted %lx, got %lx\n", hdr->crc32, c);
return 1;
}
return 0;
}
static int verify_io_u_md5(struct verify_header *hdr, struct io_u *io_u)
{
unsigned char *p = (unsigned char *) io_u->buf;
struct md5_ctx md5_ctx;
memset(&md5_ctx, 0, sizeof(md5_ctx));
p += sizeof(*hdr);
md5_update(&md5_ctx, p, hdr->len - sizeof(*hdr));
if (memcmp(hdr->md5_digest, md5_ctx.hash, sizeof(md5_ctx.hash))) {
log_err("md5: verify failed at %llu/%u\n", io_u->offset, io_u->buflen);
hexdump(hdr->md5_digest, sizeof(hdr->md5_digest));
hexdump(md5_ctx.hash, sizeof(md5_ctx.hash));
return 1;
}
return 0;
}
static int verify_io_u(struct io_u *io_u)
{
struct verify_header *hdr = (struct verify_header *) io_u->buf;
int ret;
if (hdr->fio_magic != FIO_HDR_MAGIC)
return 1;
if (hdr->verify_type == VERIFY_MD5)
ret = verify_io_u_md5(hdr, io_u);
else if (hdr->verify_type == VERIFY_CRC32)
ret = verify_io_u_crc32(hdr, io_u);
else {
log_err("Bad verify type %d\n", hdr->verify_type);
ret = 1;
}
return ret;
}
static void fill_crc32(struct verify_header *hdr, void *p, unsigned int len)
{
hdr->crc32 = crc32(p, len);
}
static void fill_md5(struct verify_header *hdr, void *p, unsigned int len)
{
struct md5_ctx md5_ctx;
memset(&md5_ctx, 0, sizeof(md5_ctx));
md5_update(&md5_ctx, p, len);
memcpy(hdr->md5_digest, md5_ctx.hash, sizeof(md5_ctx.hash));
}
/*
* Return the data direction for the next io_u. If the job is a
* mixed read/write workload, check the rwmix cycle and switch if
* necessary.
*/
static int get_rw_ddir(struct thread_data *td)
{
if (td_rw(td)) {
struct timeval now;
unsigned long elapsed;
gettimeofday(&now, NULL);
elapsed = mtime_since_now(&td->rwmix_switch);
/*
* Check if it's time to seed a new data direction.
*/
if (elapsed >= td->rwmixcycle) {
int v;
long r;
r = os_random_long(&td->rwmix_state);
v = 1 + (int) (100.0 * (r / (RAND_MAX + 1.0)));
if (v < td->rwmixread)
td->rwmix_ddir = DDIR_READ;
else
td->rwmix_ddir = DDIR_WRITE;
memcpy(&td->rwmix_switch, &now, sizeof(now));
}
return td->rwmix_ddir;
} else if (td_read(td))
return DDIR_READ;
else
return DDIR_WRITE;
}
/*
* fill body of io_u->buf with random data and add a header with the
* crc32 or md5 sum of that data.
*/
static void populate_io_u(struct thread_data *td, struct io_u *io_u)
{
unsigned char *p = (unsigned char *) io_u->buf;
struct verify_header hdr;
hdr.fio_magic = FIO_HDR_MAGIC;
hdr.len = io_u->buflen;
p += sizeof(hdr);
fill_random_bytes(td, p, io_u->buflen - sizeof(hdr));
if (td->verify == VERIFY_MD5) {
fill_md5(&hdr, p, io_u->buflen - sizeof(hdr));
hdr.verify_type = VERIFY_MD5;
} else {
fill_crc32(&hdr, p, io_u->buflen - sizeof(hdr));
hdr.verify_type = VERIFY_CRC32;
}
memcpy(io_u->buf, &hdr, sizeof(hdr));
}
static int td_io_prep(struct thread_data *td, struct io_u *io_u)
{
if (td->io_ops->prep && td->io_ops->prep(td, io_u))
return 1;
return 0;
}
void put_io_u(struct thread_data *td, struct io_u *io_u)
{
list_del(&io_u->list);
list_add(&io_u->list, &td->io_u_freelist);
td->cur_depth--;
}
static int fill_io_u(struct thread_data *td, struct io_u *io_u)
{
/*
* If using an iolog, grab next piece if any available.
*/
if (td->read_iolog)
return read_iolog_get(td, io_u);
/*
* No log, let the seq/rand engine retrieve the next position.
*/
if (!get_next_offset(td, &io_u->offset)) {
io_u->buflen = get_next_buflen(td);
if (io_u->buflen) {
io_u->ddir = get_rw_ddir(td);
/*
* If using a write iolog, store this entry.
*/
if (td->write_iolog)
write_iolog_put(td, io_u);
return 0;
}
}
return 1;
}
#define queue_full(td) list_empty(&(td)->io_u_freelist)
struct io_u *__get_io_u(struct thread_data *td)
{
struct io_u *io_u = NULL;
if (!queue_full(td)) {
io_u = list_entry(td->io_u_freelist.next, struct io_u, list);
io_u->error = 0;
io_u->resid = 0;
list_del(&io_u->list);
list_add(&io_u->list, &td->io_u_busylist);
td->cur_depth++;
}
return io_u;
}
/*
* Return an io_u to be processed. Gets a buflen and offset, sets direction,
* etc. The returned io_u is fully ready to be prepped and submitted.
*/
static struct io_u *get_io_u(struct thread_data *td)
{
struct io_u *io_u;
io_u = __get_io_u(td);
if (!io_u)
return NULL;
if (td->zone_bytes >= td->zone_size) {
td->zone_bytes = 0;
td->last_pos += td->zone_skip;
}
if (fill_io_u(td, io_u)) {
put_io_u(td, io_u);
return NULL;
}
if (io_u->buflen + io_u->offset > td->real_file_size)
io_u->buflen = td->real_file_size - io_u->offset;
if (!io_u->buflen) {
put_io_u(td, io_u);
return NULL;
}
if (!td->read_iolog && !td->sequential)
mark_random_map(td, io_u);
td->last_pos += io_u->buflen;
if (td->verify != VERIFY_NONE)
populate_io_u(td, io_u);
if (td_io_prep(td, io_u)) {
put_io_u(td, io_u);
return NULL;
}
gettimeofday(&io_u->start_time, NULL);
return io_u;
}
static inline void td_set_runstate(struct thread_data *td, int runstate)
{
td->runstate = runstate;
}
static int get_next_verify(struct thread_data *td, struct io_u *io_u)
{
struct io_piece *ipo;
if (!list_empty(&td->io_hist_list)) {
ipo = list_entry(td->io_hist_list.next, struct io_piece, list);
list_del(&ipo->list);
io_u->offset = ipo->offset;
io_u->buflen = ipo->len;
io_u->ddir = DDIR_READ;
free(ipo);
return 0;
}
return 1;
}
static int sync_td(struct thread_data *td)
{
if (td->io_ops->sync)
return td->io_ops->sync(td);
return 0;
}
static int io_u_getevents(struct thread_data *td, int min, int max,
struct timespec *t)
{
return td->io_ops->getevents(td, min, max, t);
}
static int io_u_queue(struct thread_data *td, struct io_u *io_u)
{
gettimeofday(&io_u->issue_time, NULL);
return td->io_ops->queue(td, io_u);
}
#define iocb_time(iocb) ((unsigned long) (iocb)->data)
static void io_completed(struct thread_data *td, struct io_u *io_u,
struct io_completion_data *icd)
{
struct timeval e;
unsigned long msec;
gettimeofday(&e, NULL);
if (!io_u->error) {
unsigned int bytes = io_u->buflen - io_u->resid;
const int idx = io_u->ddir;
td->io_blocks[idx]++;
td->io_bytes[idx] += bytes;
td->zone_bytes += bytes;
td->this_io_bytes[idx] += bytes;
msec = mtime_since(&io_u->issue_time, &e);
add_clat_sample(td, idx, msec);
add_bw_sample(td, idx);
if ((td_rw(td) || td_write(td)) && idx == DDIR_WRITE)
log_io_piece(td, io_u);
icd->bytes_done[idx] += bytes;
} else
icd->error = io_u->error;
}
static void ios_completed(struct thread_data *td,struct io_completion_data *icd)
{
struct io_u *io_u;
int i;
icd->error = 0;
icd->bytes_done[0] = icd->bytes_done[1] = 0;
for (i = 0; i < icd->nr; i++) {
io_u = td->io_ops->event(td, i);
io_completed(td, io_u, icd);
put_io_u(td, io_u);
}
}
/*
* When job exits, we can cancel the in-flight IO if we are using async
* io. Attempt to do so.
*/
static void cleanup_pending_aio(struct thread_data *td)
{
struct timespec ts = { .tv_sec = 0, .tv_nsec = 0};
struct list_head *entry, *n;
struct io_completion_data icd;
struct io_u *io_u;
int r;
/*
* get immediately available events, if any
*/
r = io_u_getevents(td, 0, td->cur_depth, &ts);
if (r > 0) {
icd.nr = r;
ios_completed(td, &icd);
}
/*
* now cancel remaining active events
*/
if (td->io_ops->cancel) {
list_for_each_safe(entry, n, &td->io_u_busylist) {
io_u = list_entry(entry, struct io_u, list);
r = td->io_ops->cancel(td, io_u);
if (!r)
put_io_u(td, io_u);
}
}
if (td->cur_depth) {
r = io_u_getevents(td, td->cur_depth, td->cur_depth, NULL);
if (r > 0) {
icd.nr = r;
ios_completed(td, &icd);
}
}
}
static int do_io_u_verify(struct thread_data *td, struct io_u **io_u)
{
struct io_u *v_io_u = *io_u;
int ret = 0;
if (v_io_u) {
ret = verify_io_u(v_io_u);
put_io_u(td, v_io_u);
*io_u = NULL;
}
return ret;
}
/*
* The main verify engine. Runs over the writes we previusly submitted,
* reads the blocks back in, and checks the crc/md5 of the data.
*/
static void do_verify(struct thread_data *td)
{
struct timeval t;
struct io_u *io_u, *v_io_u = NULL;
struct io_completion_data icd;
int ret;
td_set_runstate(td, TD_VERIFYING);
do {
if (td->terminate)
break;
gettimeofday(&t, NULL);
if (runtime_exceeded(td, &t))
break;
io_u = __get_io_u(td);
if (!io_u)
break;
if (get_next_verify(td, io_u)) {
put_io_u(td, io_u);
break;
}
if (td_io_prep(td, io_u)) {
put_io_u(td, io_u);
break;
}
ret = io_u_queue(td, io_u);
if (ret) {
put_io_u(td, io_u);
td_verror(td, ret);
break;
}
/*
* we have one pending to verify, do that while
* we are doing io on the next one
*/
if (do_io_u_verify(td, &v_io_u))
break;
ret = io_u_getevents(td, 1, 1, NULL);
if (ret != 1) {
if (ret < 0)
td_verror(td, ret);
break;
}
v_io_u = td->io_ops->event(td, 0);
icd.nr = 1;
icd.error = 0;
io_completed(td, v_io_u, &icd);
if (icd.error) {
td_verror(td, icd.error);
put_io_u(td, v_io_u);
v_io_u = NULL;
break;
}
/*
* if we can't submit more io, we need to verify now
*/
if (queue_full(td) && do_io_u_verify(td, &v_io_u))
break;
} while (1);
do_io_u_verify(td, &v_io_u);
if (td->cur_depth)
cleanup_pending_aio(td);
td_set_runstate(td, TD_RUNNING);
}
/*
* Not really an io thread, all it does is burn CPU cycles in the specified
* manner.
*/
static void do_cpuio(struct thread_data *td)
{
struct timeval e;
int split = 100 / td->cpuload;
int i = 0;
while (!td->terminate) {
gettimeofday(&e, NULL);
if (runtime_exceeded(td, &e))
break;
if (!(i % split))
__usec_sleep(10000);
else
usec_sleep(td, 10000);
i++;
}
}
/*
* Main IO worker function. It retrieves io_u's to process and queues
* and reaps them, checking for rate and errors along the way.
*/
static void do_io(struct thread_data *td)
{
struct io_completion_data icd;
struct timeval s, e;
unsigned long usec;
td_set_runstate(td, TD_RUNNING);
while (td->this_io_bytes[td->ddir] < td->io_size) {
struct timespec ts = { .tv_sec = 0, .tv_nsec = 0};
struct timespec *timeout;
int ret, min_evts = 0;
struct io_u *io_u;
if (td->terminate)
break;
io_u = get_io_u(td);
if (!io_u)
break;
memcpy(&s, &io_u->start_time, sizeof(s));
ret = io_u_queue(td, io_u);
if (ret) {
put_io_u(td, io_u);
td_verror(td, ret);
break;
}
add_slat_sample(td, io_u->ddir, mtime_since(&io_u->start_time, &io_u->issue_time));
if (td->cur_depth < td->iodepth) {
timeout = &ts;
min_evts = 0;
} else {
timeout = NULL;
min_evts = 1;
}
ret = io_u_getevents(td, min_evts, td->cur_depth, timeout);
if (ret < 0) {
td_verror(td, ret);
break;
} else if (!ret)
continue;
icd.nr = ret;
ios_completed(td, &icd);
if (icd.error) {
td_verror(td, icd.error);
break;
}
/*
* the rate is batched for now, it should work for batches
* of completions except the very first one which may look
* a little bursty
*/
gettimeofday(&e, NULL);
usec = utime_since(&s, &e);
rate_throttle(td, usec, icd.bytes_done[td->ddir]);
if (check_min_rate(td, &e)) {
td_verror(td, ENOMEM);
break;
}
if (runtime_exceeded(td, &e))
break;
if (td->thinktime)
usec_sleep(td, td->thinktime);
if (should_fsync(td) && td->fsync_blocks &&
(td->io_blocks[DDIR_WRITE] % td->fsync_blocks) == 0)
sync_td(td);
}
if (td->cur_depth)
cleanup_pending_aio(td);
if (should_fsync(td) && td->end_fsync) {
td_set_runstate(td, TD_FSYNCING);
sync_td(td);
}
}
static int init_io(struct thread_data *td)
{
if (td->io_ops->init)
return td->io_ops->init(td);
return 0;
}
static void cleanup_io_u(struct thread_data *td)
{
struct list_head *entry, *n;
struct io_u *io_u;
list_for_each_safe(entry, n, &td->io_u_freelist) {
io_u = list_entry(entry, struct io_u, list);
list_del(&io_u->list);
free(io_u);
}
if (td->mem_type == MEM_MALLOC)
free(td->orig_buffer);
else if (td->mem_type == MEM_SHM) {
struct shmid_ds sbuf;
shmdt(td->orig_buffer);
shmctl(td->shm_id, IPC_RMID, &sbuf);
} else if (td->mem_type == MEM_MMAP)
munmap(td->orig_buffer, td->orig_buffer_size);
else
log_err("Bad memory type %d\n", td->mem_type);
td->orig_buffer = NULL;
}
static int init_io_u(struct thread_data *td)
{
struct io_u *io_u;
int i, max_units;
char *p;
if (td->io_ops->flags & FIO_CPUIO)
return 0;
if (td->io_ops->flags & FIO_SYNCIO)
max_units = 1;
else
max_units = td->iodepth;
td->orig_buffer_size = td->max_bs * max_units + MASK;
if (td->mem_type == MEM_MALLOC)
td->orig_buffer = malloc(td->orig_buffer_size);
else if (td->mem_type == MEM_SHM) {
td->shm_id = shmget(IPC_PRIVATE, td->orig_buffer_size, IPC_CREAT | 0600);
if (td->shm_id < 0) {
td_verror(td, errno);
perror("shmget");
return 1;
}
td->orig_buffer = shmat(td->shm_id, NULL, 0);
if (td->orig_buffer == (void *) -1) {
td_verror(td, errno);
perror("shmat");
td->orig_buffer = NULL;
return 1;
}
} else if (td->mem_type == MEM_MMAP) {
td->orig_buffer = mmap(NULL, td->orig_buffer_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | OS_MAP_ANON, 0, 0);
if (td->orig_buffer == MAP_FAILED) {
td_verror(td, errno);
perror("mmap");
td->orig_buffer = NULL;
return 1;
}
}
p = ALIGN(td->orig_buffer);
for (i = 0; i < max_units; i++) {
io_u = malloc(sizeof(*io_u));
memset(io_u, 0, sizeof(*io_u));
INIT_LIST_HEAD(&io_u->list);
io_u->buf = p + td->max_bs * i;
io_u->index = i;
list_add(&io_u->list, &td->io_u_freelist);
}
return 0;
}
static int create_file(struct thread_data *td, unsigned long long size)
{
unsigned long long left;
unsigned int bs;
char *b;
int r;
/*
* unless specifically asked for overwrite, let normal io extend it
*/
if (!td->overwrite) {
td->real_file_size = size;
return 0;
}
if (!size) {
log_err("Need size for create\n");
td_verror(td, EINVAL);
return 1;
}
temp_stall_ts = 1;
fprintf(f_out, "%s: Laying out IO file (%LuMiB)\n",td->name,size >> 20);
td->fd = open(td->file_name, O_WRONLY | O_CREAT | O_TRUNC, 0644);
if (td->fd < 0) {
td_verror(td, errno);
goto done_noclose;
}
if (ftruncate(td->fd, td->file_size) == -1) {
td_verror(td, errno);
goto done;
}
td->io_size = td->file_size;
b = malloc(td->max_bs);
memset(b, 0, td->max_bs);
left = size;
while (left && !td->terminate) {
bs = td->max_bs;
if (bs > left)
bs = left;
r = write(td->fd, b, bs);
if (r == (int) bs) {
left -= bs;
continue;
} else {
if (r < 0)
td_verror(td, errno);
else
td_verror(td, EIO);
break;
}
}
if (td->terminate)
unlink(td->file_name);
else if (td->create_fsync)
fsync(td->fd);
free(b);
done:
close(td->fd);
td->fd = -1;
done_noclose:
temp_stall_ts = 0;
return 0;
}
static int file_size(struct thread_data *td)
{
struct stat st;
if (td->overwrite) {
if (fstat(td->fd, &st) == -1) {
td_verror(td, errno);
return 1;
}
td->real_file_size = st.st_size;
if (!td->file_size || td->file_size > td->real_file_size)
td->file_size = td->real_file_size;
}
td->file_size -= td->file_offset;
return 0;
}
static int bdev_size(struct thread_data *td)
{
unsigned long long bytes;
int r;
r = blockdev_size(td->fd, &bytes);
if (r) {
td_verror(td, r);
return 1;
}
td->real_file_size = bytes;
/*
* no extend possibilities, so limit size to device size if too large
*/
if (!td->file_size || td->file_size > td->real_file_size)
td->file_size = td->real_file_size;
td->file_size -= td->file_offset;
return 0;
}
static int get_file_size(struct thread_data *td)
{
int ret = 0;
if (td->filetype == FIO_TYPE_FILE)
ret = file_size(td);
else if (td->filetype == FIO_TYPE_BD)
ret = bdev_size(td);
else
td->real_file_size = -1;
if (ret)
return ret;
if (td->file_offset > td->real_file_size) {
log_err("%s: offset extends end (%Lu > %Lu)\n", td->name, td->file_offset, td->real_file_size);
return 1;
}
td->io_size = td->file_size;
if (td->io_size == 0) {
log_err("%s: no io blocks\n", td->name);
td_verror(td, EINVAL);
return 1;
}
if (!td->zone_size)
td->zone_size = td->io_size;
td->total_io_size = td->io_size * td->loops;
return 0;
}
static int setup_file_mmap(struct thread_data *td)
{
int flags;
if (td_rw(td))
flags = PROT_READ | PROT_WRITE;
else if (td_write(td)) {
flags = PROT_WRITE;
if (td->verify != VERIFY_NONE)
flags |= PROT_READ;
} else
flags = PROT_READ;
td->mmap = mmap(NULL, td->file_size, flags, MAP_SHARED, td->fd, td->file_offset);
if (td->mmap == MAP_FAILED) {
td->mmap = NULL;
td_verror(td, errno);
return 1;
}
if (td->invalidate_cache) {
if (madvise(td->mmap, td->file_size, MADV_DONTNEED) < 0) {
td_verror(td, errno);
return 1;
}
}
if (td->sequential) {
if (madvise(td->mmap, td->file_size, MADV_SEQUENTIAL) < 0) {
td_verror(td, errno);
return 1;
}
} else {
if (madvise(td->mmap, td->file_size, MADV_RANDOM) < 0) {
td_verror(td, errno);
return 1;
}
}
return 0;
}
static int setup_file_plain(struct thread_data *td)
{
if (td->invalidate_cache) {
if (fadvise(td->fd, td->file_offset, td->file_size, POSIX_FADV_DONTNEED) < 0) {
td_verror(td, errno);
return 1;
}
}
if (td->sequential) {
if (fadvise(td->fd, td->file_offset, td->file_size, POSIX_FADV_SEQUENTIAL) < 0) {
td_verror(td, errno);
return 1;
}
} else {
if (fadvise(td->fd, td->file_offset, td->file_size, POSIX_FADV_RANDOM) < 0) {
td_verror(td, errno);
return 1;
}
}
return 0;
}
static int setup_file(struct thread_data *td)
{
struct stat st;
int flags = 0;
if (td->io_ops->flags & FIO_CPUIO)
return 0;
if (stat(td->file_name, &st) == -1) {
if (errno != ENOENT) {
td_verror(td, errno);
return 1;
}
if (!td->create_file) {
td_verror(td, ENOENT);
return 1;
}
if (create_file(td, td->file_size))
return 1;
} else if (td->filetype == FIO_TYPE_FILE &&
st.st_size < (off_t) td->file_size) {
if (create_file(td, td->file_size))
return 1;
}
if (td->odirect)
flags |= OS_O_DIRECT;
if (td_write(td) || td_rw(td)) {
if (td->filetype == FIO_TYPE_FILE) {
if (!td->overwrite)
flags |= O_TRUNC;
flags |= O_CREAT;
}
if (td->sync_io)
flags |= O_SYNC;
flags |= O_RDWR;
td->fd = open(td->file_name, flags, 0600);
} else {
if (td->filetype == FIO_TYPE_CHAR)
flags |= O_RDWR;
else
flags |= O_RDONLY;
td->fd = open(td->file_name, flags);
}
if (td->fd == -1) {
td_verror(td, errno);
return 1;
}
if (get_file_size(td))
return 1;
if (td->io_ops->flags & FIO_MMAPIO)
return setup_file_mmap(td);
else
return setup_file_plain(td);
}
static int switch_ioscheduler(struct thread_data *td)
{
char tmp[256], tmp2[128];
FILE *f;
int ret;
sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
f = fopen(tmp, "r+");
if (!f) {
td_verror(td, errno);
return 1;
}
/*
* Set io scheduler.
*/
ret = fwrite(td->ioscheduler, strlen(td->ioscheduler), 1, f);
if (ferror(f) || ret != 1) {
td_verror(td, errno);
fclose(f);
return 1;
}
rewind(f);
/*
* Read back and check that the selected scheduler is now the default.
*/
ret = fread(tmp, 1, sizeof(tmp), f);
if (ferror(f) || ret < 0) {
td_verror(td, errno);
fclose(f);
return 1;
}
sprintf(tmp2, "[%s]", td->ioscheduler);
if (!strstr(tmp, tmp2)) {
log_err("fio: io scheduler %s not found\n", td->ioscheduler);
td_verror(td, EINVAL);
fclose(f);
return 1;
}
fclose(f);
return 0;
}
static void clear_io_state(struct thread_data *td)
{
if (td->io_ops->flags & FIO_SYNCIO)
lseek(td->fd, SEEK_SET, 0);
td->last_pos = 0;
td->stat_io_bytes[0] = td->stat_io_bytes[1] = 0;
td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
td->zone_bytes = 0;
if (td->file_map)
memset(td->file_map, 0, td->num_maps * sizeof(long));
}
/*
* Entry point for the thread based jobs. The process based jobs end up
* here as well, after a little setup.
*/
static void *thread_main(void *data)
{
struct thread_data *td = data;
if (!td->use_thread)
setsid();
td->pid = getpid();
INIT_LIST_HEAD(&td->io_u_freelist);
INIT_LIST_HEAD(&td->io_u_busylist);
INIT_LIST_HEAD(&td->io_hist_list);
INIT_LIST_HEAD(&td->io_log_list);
if (init_io_u(td))
goto err;
if (fio_setaffinity(td) == -1) {
td_verror(td, errno);
goto err;
}
if (init_io(td))
goto err;
if (init_iolog(td))
goto err;
if (td->ioprio) {
if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
td_verror(td, errno);
goto err;
}
}
if (nice(td->nice) == -1) {
td_verror(td, errno);
goto err;
}
if (init_random_state(td))
goto err;
if (td->ioscheduler && switch_ioscheduler(td))
goto err;
td_set_runstate(td, TD_INITIALIZED);
fio_sem_up(&startup_sem);
fio_sem_down(&td->mutex);
if (!td->create_serialize && setup_file(td))
goto err;
gettimeofday(&td->epoch, NULL);
if (td->exec_prerun)
system(td->exec_prerun);
while (td->loops--) {
getrusage(RUSAGE_SELF, &td->ru_start);
gettimeofday(&td->start, NULL);
memcpy(&td->stat_sample_time, &td->start, sizeof(td->start));
if (td->ratemin)
memcpy(&td->lastrate, &td->stat_sample_time, sizeof(td->lastrate));
clear_io_state(td);
prune_io_piece_log(td);
if (td->io_ops->flags & FIO_CPUIO)
do_cpuio(td);
else
do_io(td);
td->runtime[td->ddir] += mtime_since_now(&td->start);
if (td_rw(td) && td->io_bytes[td->ddir ^ 1])
td->runtime[td->ddir ^ 1] = td->runtime[td->ddir];
update_rusage_stat(td);
if (td->error || td->terminate)
break;
if (td->verify == VERIFY_NONE)
continue;
clear_io_state(td);
gettimeofday(&td->start, NULL);
do_verify(td);
td->runtime[DDIR_READ] += mtime_since_now(&td->start);
if (td->error || td->terminate)
break;
}
if (td->bw_log)
finish_log(td, td->bw_log, "bw");
if (td->slat_log)
finish_log(td, td->slat_log, "slat");
if (td->clat_log)
finish_log(td, td->clat_log, "clat");
if (td->write_iolog)
write_iolog_close(td);
if (td->exec_postrun)
system(td->exec_postrun);
if (exitall_on_terminate)
terminate_threads(td->groupid);
err:
if (td->fd != -1) {
close(td->fd);
td->fd = -1;
}
if (td->mmap)
munmap(td->mmap, td->file_size);
close_ioengine(td);
cleanup_io_u(td);
td_set_runstate(td, TD_EXITED);
return NULL;
}
/*
* We cannot pass the td data into a forked process, so attach the td and
* pass it to the thread worker.
*/
static void *fork_main(int shmid, int offset)
{
struct thread_data *td;
void *data;
data = shmat(shmid, NULL, 0);
if (data == (void *) -1) {
perror("shmat");
return NULL;
}
td = data + offset * sizeof(struct thread_data);
thread_main(td);
shmdt(data);
return NULL;
}
/*
* Sets the status of the 'td' in the printed status map.
*/
static void check_str_update(struct thread_data *td)
{
char c = run_str[td->thread_number - 1];
switch (td->runstate) {
case TD_REAPED:
c = '_';
break;
case TD_EXITED:
c = 'E';
break;
case TD_RUNNING:
if (td_rw(td)) {
if (td->sequential)
c = 'M';
else
c = 'm';
} else if (td_read(td)) {
if (td->sequential)
c = 'R';
else
c = 'r';
} else {
if (td->sequential)
c = 'W';
else
c = 'w';
}
break;
case TD_VERIFYING:
c = 'V';
break;
case TD_FSYNCING:
c = 'F';
break;
case TD_CREATED:
c = 'C';
break;
case TD_INITIALIZED:
c = 'I';
break;
case TD_NOT_CREATED:
c = 'P';
break;
default:
log_err("state %d\n", td->runstate);
}
run_str[td->thread_number - 1] = c;
}
/*
* Convert seconds to a printable string.
*/
static void eta_to_str(char *str, int eta_sec)
{
unsigned int d, h, m, s;
static int always_d, always_h;
d = h = m = s = 0;
s = eta_sec % 60;
eta_sec /= 60;
m = eta_sec % 60;
eta_sec /= 60;
h = eta_sec % 24;
eta_sec /= 24;
d = eta_sec;
if (d || always_d) {
always_d = 1;
str += sprintf(str, "%02dd:", d);
}
if (h || always_h) {
always_h = 1;
str += sprintf(str, "%02dh:", h);
}
str += sprintf(str, "%02dm:", m);
str += sprintf(str, "%02ds", s);
}
/*
* Best effort calculation of the estimated pending runtime of a job.
*/
static int thread_eta(struct thread_data *td, unsigned long elapsed)
{
unsigned long long bytes_total, bytes_done;
unsigned int eta_sec = 0;
bytes_total = td->total_io_size;
/*
* if writing, bytes_total will be twice the size. If mixing,
* assume a 50/50 split and thus bytes_total will be 50% larger.
*/
if (td->verify) {
if (td_rw(td))
bytes_total = bytes_total * 3 / 2;
else
bytes_total <<= 1;
}
if (td->zone_size && td->zone_skip)
bytes_total /= (td->zone_skip / td->zone_size);
if (td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING) {
double perc;
bytes_done = td->io_bytes[DDIR_READ] + td->io_bytes[DDIR_WRITE];
perc = (double) bytes_done / (double) bytes_total;
if (perc > 1.0)
perc = 1.0;
eta_sec = (elapsed * (1.0 / perc)) - elapsed;
if (td->timeout && eta_sec > (td->timeout - elapsed))
eta_sec = td->timeout - elapsed;
} else if (td->runstate == TD_NOT_CREATED || td->runstate == TD_CREATED
|| td->runstate == TD_INITIALIZED) {
int t_eta = 0, r_eta = 0;
/*
* We can only guess - assume it'll run the full timeout
* if given, otherwise assume it'll run at the specified rate.
*/
if (td->timeout)
t_eta = td->timeout + td->start_delay - elapsed;
if (td->rate) {
r_eta = (bytes_total / 1024) / td->rate;
r_eta += td->start_delay - elapsed;
}
if (r_eta && t_eta)
eta_sec = min(r_eta, t_eta);
else if (r_eta)
eta_sec = r_eta;
else if (t_eta)
eta_sec = t_eta;
else
eta_sec = 0;
} else {
/*
* thread is already done or waiting for fsync
*/
eta_sec = 0;
}
return eta_sec;
}
/*
* Print status of the jobs we know about. This includes rate estimates,
* ETA, thread state, etc.
*/
static void print_thread_status(void)
{
unsigned long elapsed = time_since_now(&genesis);
int i, nr_running, nr_pending, t_rate, m_rate, *eta_secs, eta_sec;
char eta_str[32];
double perc = 0.0;
if (temp_stall_ts || terse_output)
return;
eta_secs = malloc(thread_number * sizeof(int));
memset(eta_secs, 0, thread_number * sizeof(int));
nr_pending = nr_running = t_rate = m_rate = 0;
for (i = 0; i < thread_number; i++) {
struct thread_data *td = &threads[i];
if (td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING||
td->runstate == TD_FSYNCING) {
nr_running++;
t_rate += td->rate;
m_rate += td->ratemin;
} else if (td->runstate < TD_RUNNING)
nr_pending++;
if (elapsed >= 3)
eta_secs[i] = thread_eta(td, elapsed);
else
eta_secs[i] = INT_MAX;
check_str_update(td);
}
if (exitall_on_terminate)
eta_sec = INT_MAX;
else
eta_sec = 0;
for (i = 0; i < thread_number; i++) {
if (exitall_on_terminate) {
if (eta_secs[i] < eta_sec)
eta_sec = eta_secs[i];
} else {
if (eta_secs[i] > eta_sec)
eta_sec = eta_secs[i];
}
}
if (eta_sec != INT_MAX && elapsed) {
perc = (double) elapsed / (double) (elapsed + eta_sec);
eta_to_str(eta_str, eta_sec);
}
if (!nr_running && !nr_pending)
return;
printf("Threads running: %d", nr_running);
if (m_rate || t_rate)
printf(", commitrate %d/%dKiB/sec", t_rate, m_rate);
if (eta_sec != INT_MAX && nr_running) {
perc *= 100.0;
printf(": [%s] [%3.2f%% done] [eta %s]", run_str, perc,eta_str);
}
printf("\r");
fflush(stdout);
free(eta_secs);
}
/*
* Run over the job map and reap the threads that have exited, if any.
*/
static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
{
int i, cputhreads;
/*
* reap exited threads (TD_EXITED -> TD_REAPED)
*/
for (i = 0, cputhreads = 0; i < thread_number; i++) {
struct thread_data *td = &threads[i];
if (td->io_ops->flags & FIO_CPUIO)
cputhreads++;
if (td->runstate != TD_EXITED)
continue;
td_set_runstate(td, TD_REAPED);
if (td->use_thread) {
long ret;
if (pthread_join(td->thread, (void *) &ret))
perror("thread_join");
} else
waitpid(td->pid, NULL, 0);
(*nr_running)--;
(*m_rate) -= td->ratemin;
(*t_rate) -= td->rate;
}
if (*nr_running == cputhreads)
terminate_threads(TERMINATE_ALL);
}
static void fio_unpin_memory(void *pinned)
{
if (pinned) {
if (munlock(pinned, mlock_size) < 0)
perror("munlock");
munmap(pinned, mlock_size);
}
}
static void *fio_pin_memory(void)
{
unsigned long long phys_mem;
void *ptr;
if (!mlock_size)
return NULL;
/*
* Don't allow mlock of more than real_mem-128MB
*/
phys_mem = os_phys_mem();
if (phys_mem) {
if ((mlock_size + 128 * 1024 * 1024) > phys_mem) {
mlock_size = phys_mem - 128 * 1024 * 1024;
fprintf(f_out, "fio: limiting mlocked memory to %lluMiB\n", mlock_size >> 20);
}
}
ptr = mmap(NULL, mlock_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | OS_MAP_ANON, 0, 0);
if (!ptr) {
perror("malloc locked mem");
return NULL;
}
if (mlock(ptr, mlock_size) < 0) {
munmap(ptr, mlock_size);
perror("mlock");
return NULL;
}
return ptr;
}
/*
* Main function for kicking off and reaping jobs, as needed.
*/
static void run_threads(void)
{
struct thread_data *td;
unsigned long spent;
int i, todo, nr_running, m_rate, t_rate, nr_started;
void *mlocked_mem;
mlocked_mem = fio_pin_memory();
if (!terse_output) {
printf("Starting %d thread%s\n", thread_number, thread_number > 1 ? "s" : "");
fflush(stdout);
}
signal(SIGINT, sig_handler);
signal(SIGALRM, sig_handler);
todo = thread_number;
nr_running = 0;
nr_started = 0;
m_rate = t_rate = 0;
for (i = 0; i < thread_number; i++) {
td = &threads[i];
run_str[td->thread_number - 1] = 'P';
init_disk_util(td);
if (!td->create_serialize)
continue;
/*
* do file setup here so it happens sequentially,
* we don't want X number of threads getting their
* client data interspersed on disk
*/
if (setup_file(td)) {
td_set_runstate(td, TD_REAPED);
todo--;
}
}
gettimeofday(&genesis, NULL);
while (todo) {
struct thread_data *map[MAX_JOBS];
struct timeval this_start;
int this_jobs = 0, left;
/*
* create threads (TD_NOT_CREATED -> TD_CREATED)
*/
for (i = 0; i < thread_number; i++) {
td = &threads[i];
if (td->runstate != TD_NOT_CREATED)
continue;
/*
* never got a chance to start, killed by other
* thread for some reason
*/
if (td->terminate) {
todo--;
continue;
}
if (td->start_delay) {
spent = mtime_since_now(&genesis);
if (td->start_delay * 1000 > spent)
continue;
}
if (td->stonewall && (nr_started || nr_running))
break;
/*
* Set state to created. Thread will transition
* to TD_INITIALIZED when it's done setting up.
*/
td_set_runstate(td, TD_CREATED);
map[this_jobs++] = td;
fio_sem_init(&startup_sem, 1);
nr_started++;
if (td->use_thread) {
if (pthread_create(&td->thread, NULL, thread_main, td)) {
perror("thread_create");
nr_started--;
}
} else {
if (fork())
fio_sem_down(&startup_sem);
else {
fork_main(shm_id, i);
exit(0);
}
}
}
/*
* Wait for the started threads to transition to
* TD_INITIALIZED.
*/
gettimeofday(&this_start, NULL);
left = this_jobs;
while (left) {
if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
break;
usleep(100000);
for (i = 0; i < this_jobs; i++) {
td = map[i];
if (!td)
continue;
if (td->runstate == TD_INITIALIZED) {
map[i] = NULL;
left--;
} else if (td->runstate >= TD_EXITED) {
map[i] = NULL;
left--;
todo--;
nr_running++; /* work-around... */
}
}
}
if (left) {
log_err("fio: %d jobs failed to start\n", left);
for (i = 0; i < this_jobs; i++) {
td = map[i];
if (!td)
continue;
kill(td->pid, SIGTERM);
}
break;
}
/*
* start created threads (TD_INITIALIZED -> TD_RUNNING).
*/
for (i = 0; i < thread_number; i++) {
td = &threads[i];
if (td->runstate != TD_INITIALIZED)
continue;
td_set_runstate(td, TD_RUNNING);
nr_running++;
nr_started--;
m_rate += td->ratemin;
t_rate += td->rate;
todo--;
fio_sem_up(&td->mutex);
}
reap_threads(&nr_running, &t_rate, &m_rate);
if (todo)
usleep(100000);
}
while (nr_running) {
reap_threads(&nr_running, &t_rate, &m_rate);
usleep(10000);
}
update_io_ticks();
fio_unpin_memory(mlocked_mem);
}
int main(int argc, char *argv[])
{
if (parse_options(argc, argv))
return 1;
if (!thread_number) {
log_err("Nothing to do\n");
return 1;
}
disk_util_timer_arm();
run_threads();
show_run_stats();
return 0;
}