blob: 3f68305adb2841c3aac8f98de942be94b8e23d5b [file] [log] [blame]
#ifndef FIO_STAT_H
#define FIO_STAT_H
#include "iolog.h"
struct group_run_stats {
uint64_t max_run[DDIR_RWDIR_CNT], min_run[DDIR_RWDIR_CNT];
uint64_t max_bw[DDIR_RWDIR_CNT], min_bw[DDIR_RWDIR_CNT];
uint64_t io_kb[DDIR_RWDIR_CNT];
uint64_t agg[DDIR_RWDIR_CNT];
uint32_t kb_base;
uint32_t unit_base;
uint32_t groupid;
uint32_t unified_rw_rep;
};
/*
* How many depth levels to log
*/
#define FIO_IO_U_MAP_NR 7
#define FIO_IO_U_LAT_U_NR 10
#define FIO_IO_U_LAT_M_NR 12
/*
* Aggregate clat samples to report percentile(s) of them.
*
* EXECUTIVE SUMMARY
*
* FIO_IO_U_PLAT_BITS determines the maximum statistical error on the
* value of resulting percentiles. The error will be approximately
* 1/2^(FIO_IO_U_PLAT_BITS+1) of the value.
*
* FIO_IO_U_PLAT_GROUP_NR and FIO_IO_U_PLAT_BITS determine the maximum
* range being tracked for latency samples. The maximum value tracked
* accurately will be 2^(GROUP_NR + PLAT_BITS -1) microseconds.
*
* FIO_IO_U_PLAT_GROUP_NR and FIO_IO_U_PLAT_BITS determine the memory
* requirement of storing those aggregate counts. The memory used will
* be (FIO_IO_U_PLAT_GROUP_NR * 2^FIO_IO_U_PLAT_BITS) * sizeof(int)
* bytes.
*
* FIO_IO_U_PLAT_NR is the total number of buckets.
*
* DETAILS
*
* Suppose the clat varies from 0 to 999 (usec), the straightforward
* method is to keep an array of (999 + 1) buckets, in which a counter
* keeps the count of samples which fall in the bucket, e.g.,
* {[0],[1],...,[999]}. However this consumes a huge amount of space,
* and can be avoided if an approximation is acceptable.
*
* One such method is to let the range of the bucket to be greater
* than one. This method has low accuracy when the value is small. For
* example, let the buckets be {[0,99],[100,199],...,[900,999]}, and
* the represented value of each bucket be the mean of the range. Then
* a value 0 has an round-off error of 49.5. To improve on this, we
* use buckets with non-uniform ranges, while bounding the error of
* each bucket within a ratio of the sample value. A simple example
* would be when error_bound = 0.005, buckets are {
* {[0],[1],...,[99]}, {[100,101],[102,103],...,[198,199]},..,
* {[900,909],[910,919]...} }. The total range is partitioned into
* groups with different ranges, then buckets with uniform ranges. An
* upper bound of the error is (range_of_bucket/2)/value_of_bucket
*
* For better efficiency, we implement this using base two. We group
* samples by their Most Significant Bit (MSB), extract the next M bit
* of them as an index within the group, and discard the rest of the
* bits.
*
* E.g., assume a sample 'x' whose MSB is bit n (starting from bit 0),
* and use M bit for indexing
*
* | n | M bits | bit (n-M-1) ... bit 0 |
*
* Because x is at least 2^n, and bit 0 to bit (n-M-1) is at most
* (2^(n-M) - 1), discarding bit 0 to (n-M-1) makes the round-off
* error
*
* 2^(n-M)-1 2^(n-M) 1
* e <= --------- <= ------- = ---
* 2^n 2^n 2^M
*
* Furthermore, we use "mean" of the range to represent the bucket,
* the error e can be lowered by half to 1 / 2^(M+1). By using M bits
* as the index, each group must contains 2^M buckets.
*
* E.g. Let M (FIO_IO_U_PLAT_BITS) be 6
* Error bound is 1/2^(6+1) = 0.0078125 (< 1%)
*
* Group MSB #discarded range of #buckets
* error_bits value
* ----------------------------------------------------------------
* 0* 0~5 0 [0,63] 64
* 1* 6 0 [64,127] 64
* 2 7 1 [128,255] 64
* 3 8 2 [256,511] 64
* 4 9 3 [512,1023] 64
* ... ... ... [...,...] ...
* 18 23 17 [8838608,+inf]** 64
*
* * Special cases: when n < (M-1) or when n == (M-1), in both cases,
* the value cannot be rounded off. Use all bits of the sample as
* index.
*
* ** If a sample's MSB is greater than 23, it will be counted as 23.
*/
#define FIO_IO_U_PLAT_BITS 6
#define FIO_IO_U_PLAT_VAL (1 << FIO_IO_U_PLAT_BITS)
#define FIO_IO_U_PLAT_GROUP_NR 19
#define FIO_IO_U_PLAT_NR (FIO_IO_U_PLAT_GROUP_NR * FIO_IO_U_PLAT_VAL)
#define FIO_IO_U_LIST_MAX_LEN 20 /* The size of the default and user-specified
list of percentiles */
#define MAX_PATTERN_SIZE 512
#define FIO_JOBNAME_SIZE 128
#define FIO_JOBDESC_SIZE 256
#define FIO_VERROR_SIZE 128
struct thread_stat {
char name[FIO_JOBNAME_SIZE];
char verror[FIO_VERROR_SIZE];
uint32_t error;
uint32_t thread_number;
uint32_t groupid;
uint32_t pid;
char description[FIO_JOBDESC_SIZE];
uint32_t members;
uint32_t unified_rw_rep;
/*
* bandwidth and latency stats
*/
struct io_stat clat_stat[DDIR_RWDIR_CNT]; /* completion latency */
struct io_stat slat_stat[DDIR_RWDIR_CNT]; /* submission latency */
struct io_stat lat_stat[DDIR_RWDIR_CNT]; /* total latency */
struct io_stat bw_stat[DDIR_RWDIR_CNT]; /* bandwidth stats */
struct io_stat iops_stat[DDIR_RWDIR_CNT]; /* IOPS stats */
/*
* fio system usage accounting
*/
uint64_t usr_time;
uint64_t sys_time;
uint64_t ctx;
uint64_t minf, majf;
/*
* IO depth and latency stats
*/
uint64_t clat_percentiles;
uint64_t percentile_precision;
fio_fp64_t percentile_list[FIO_IO_U_LIST_MAX_LEN];
uint32_t io_u_map[FIO_IO_U_MAP_NR];
uint32_t io_u_submit[FIO_IO_U_MAP_NR];
uint32_t io_u_complete[FIO_IO_U_MAP_NR];
uint32_t io_u_lat_u[FIO_IO_U_LAT_U_NR];
uint32_t io_u_lat_m[FIO_IO_U_LAT_M_NR];
uint32_t io_u_plat[DDIR_RWDIR_CNT][FIO_IO_U_PLAT_NR];
uint64_t total_io_u[3];
uint64_t short_io_u[3];
uint64_t total_submit;
uint64_t total_complete;
uint64_t io_bytes[DDIR_RWDIR_CNT];
uint64_t runtime[DDIR_RWDIR_CNT];
uint64_t total_run_time;
/*
* IO Error related stats
*/
uint16_t continue_on_error;
uint64_t total_err_count;
uint32_t first_error;
uint32_t kb_base;
uint32_t unit_base;
uint32_t latency_depth;
uint64_t latency_target;
fio_fp64_t latency_percentile;
uint64_t latency_window;
};
struct jobs_eta {
uint32_t nr_running;
uint32_t nr_ramp;
uint32_t nr_pending;
uint32_t nr_setting_up;
uint32_t files_open;
uint32_t m_rate[DDIR_RWDIR_CNT], t_rate[DDIR_RWDIR_CNT];
uint32_t m_iops[DDIR_RWDIR_CNT], t_iops[DDIR_RWDIR_CNT];
uint32_t rate[DDIR_RWDIR_CNT];
uint32_t iops[DDIR_RWDIR_CNT];
uint64_t elapsed_sec;
uint64_t eta_sec;
uint32_t is_pow2;
uint32_t unit_base;
/*
* Network 'copy' of run_str[]
*/
uint32_t nr_threads;
uint8_t run_str[];
};
extern void stat_init(void);
extern void stat_exit(void);
extern struct json_object * show_thread_status(struct thread_stat *ts, struct group_run_stats *rs);
extern void show_group_stats(struct group_run_stats *rs);
extern int calc_thread_status(struct jobs_eta *je, int force);
extern void display_thread_status(struct jobs_eta *je);
extern void show_run_stats(void);
extern void show_running_run_stats(void);
extern void check_for_running_stats(void);
extern void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src, int nr);
extern void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src);
extern void init_thread_stat(struct thread_stat *ts);
extern void init_group_run_stat(struct group_run_stats *gs);
extern void eta_to_str(char *str, unsigned long eta_sec);
extern int calc_lat(struct io_stat *is, unsigned long *min, unsigned long *max, double *mean, double *dev);
extern unsigned int calc_clat_percentiles(unsigned int *io_u_plat, unsigned long nr, fio_fp64_t *plist, unsigned int **output, unsigned int *maxv, unsigned int *minv);
extern void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat);
extern void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat);
extern void stat_calc_dist(unsigned int *map, unsigned long total, double *io_u_dist);
extern void reset_io_stats(struct thread_data *);
static inline int usec_to_msec(unsigned long *min, unsigned long *max,
double *mean, double *dev)
{
if (*min > 1000 && *max > 1000 && *mean > 1000.0 && *dev > 1000.0) {
*min /= 1000;
*max /= 1000;
*mean /= 1000.0;
*dev /= 1000.0;
return 0;
}
return 1;
}
#endif