| #include <unistd.h> |
| #include <fcntl.h> |
| #include <string.h> |
| #include <signal.h> |
| #include <time.h> |
| #include <assert.h> |
| |
| #include "fio.h" |
| #include "hash.h" |
| #include "verify.h" |
| #include "trim.h" |
| #include "lib/rand.h" |
| #include "lib/axmap.h" |
| #include "err.h" |
| |
| struct io_completion_data { |
| int nr; /* input */ |
| |
| int error; /* output */ |
| uint64_t bytes_done[DDIR_RWDIR_CNT]; /* output */ |
| struct timeval time; /* output */ |
| }; |
| |
| /* |
| * The ->io_axmap contains a map of blocks we have or have not done io |
| * to yet. Used to make sure we cover the entire range in a fair fashion. |
| */ |
| static int random_map_free(struct fio_file *f, const uint64_t block) |
| { |
| return !axmap_isset(f->io_axmap, block); |
| } |
| |
| /* |
| * Mark a given offset as used in the map. |
| */ |
| static void mark_random_map(struct thread_data *td, struct io_u *io_u) |
| { |
| unsigned int min_bs = td->o.rw_min_bs; |
| struct fio_file *f = io_u->file; |
| unsigned int nr_blocks; |
| uint64_t block; |
| |
| block = (io_u->offset - f->file_offset) / (uint64_t) min_bs; |
| nr_blocks = (io_u->buflen + min_bs - 1) / min_bs; |
| |
| if (!(io_u->flags & IO_U_F_BUSY_OK)) |
| nr_blocks = axmap_set_nr(f->io_axmap, block, nr_blocks); |
| |
| if ((nr_blocks * min_bs) < io_u->buflen) |
| io_u->buflen = nr_blocks * min_bs; |
| } |
| |
| static uint64_t last_block(struct thread_data *td, struct fio_file *f, |
| enum fio_ddir ddir) |
| { |
| uint64_t max_blocks; |
| uint64_t max_size; |
| |
| assert(ddir_rw(ddir)); |
| |
| /* |
| * Hmm, should we make sure that ->io_size <= ->real_file_size? |
| */ |
| max_size = f->io_size; |
| if (max_size > f->real_file_size) |
| max_size = f->real_file_size; |
| |
| if (td->o.zone_range) |
| max_size = td->o.zone_range; |
| |
| max_blocks = max_size / (uint64_t) td->o.ba[ddir]; |
| if (!max_blocks) |
| return 0; |
| |
| return max_blocks; |
| } |
| |
| struct rand_off { |
| struct flist_head list; |
| uint64_t off; |
| }; |
| |
| static int __get_next_rand_offset(struct thread_data *td, struct fio_file *f, |
| enum fio_ddir ddir, uint64_t *b) |
| { |
| uint64_t r, lastb; |
| |
| lastb = last_block(td, f, ddir); |
| if (!lastb) |
| return 1; |
| |
| if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE) { |
| uint64_t rmax; |
| |
| rmax = td->o.use_os_rand ? OS_RAND_MAX : FRAND_MAX; |
| |
| if (td->o.use_os_rand) { |
| rmax = OS_RAND_MAX; |
| r = os_random_long(&td->random_state); |
| } else { |
| rmax = FRAND_MAX; |
| r = __rand(&td->__random_state); |
| } |
| |
| dprint(FD_RANDOM, "off rand %llu\n", (unsigned long long) r); |
| |
| *b = lastb * (r / ((uint64_t) rmax + 1.0)); |
| } else { |
| uint64_t off = 0; |
| |
| if (lfsr_next(&f->lfsr, &off, lastb)) |
| return 1; |
| |
| *b = off; |
| } |
| |
| /* |
| * if we are not maintaining a random map, we are done. |
| */ |
| if (!file_randommap(td, f)) |
| goto ret; |
| |
| /* |
| * calculate map offset and check if it's free |
| */ |
| if (random_map_free(f, *b)) |
| goto ret; |
| |
| dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n", |
| (unsigned long long) *b); |
| |
| *b = axmap_next_free(f->io_axmap, *b); |
| if (*b == (uint64_t) -1ULL) |
| return 1; |
| ret: |
| return 0; |
| } |
| |
| static int __get_next_rand_offset_zipf(struct thread_data *td, |
| struct fio_file *f, enum fio_ddir ddir, |
| uint64_t *b) |
| { |
| *b = zipf_next(&f->zipf); |
| return 0; |
| } |
| |
| static int __get_next_rand_offset_pareto(struct thread_data *td, |
| struct fio_file *f, enum fio_ddir ddir, |
| uint64_t *b) |
| { |
| *b = pareto_next(&f->zipf); |
| return 0; |
| } |
| |
| static int flist_cmp(void *data, struct flist_head *a, struct flist_head *b) |
| { |
| struct rand_off *r1 = flist_entry(a, struct rand_off, list); |
| struct rand_off *r2 = flist_entry(b, struct rand_off, list); |
| |
| return r1->off - r2->off; |
| } |
| |
| static int get_off_from_method(struct thread_data *td, struct fio_file *f, |
| enum fio_ddir ddir, uint64_t *b) |
| { |
| if (td->o.random_distribution == FIO_RAND_DIST_RANDOM) |
| return __get_next_rand_offset(td, f, ddir, b); |
| else if (td->o.random_distribution == FIO_RAND_DIST_ZIPF) |
| return __get_next_rand_offset_zipf(td, f, ddir, b); |
| else if (td->o.random_distribution == FIO_RAND_DIST_PARETO) |
| return __get_next_rand_offset_pareto(td, f, ddir, b); |
| |
| log_err("fio: unknown random distribution: %d\n", td->o.random_distribution); |
| return 1; |
| } |
| |
| /* |
| * Sort the reads for a verify phase in batches of verifysort_nr, if |
| * specified. |
| */ |
| static inline int should_sort_io(struct thread_data *td) |
| { |
| if (!td->o.verifysort_nr || !td->o.do_verify) |
| return 0; |
| if (!td_random(td)) |
| return 0; |
| if (td->runstate != TD_VERIFYING) |
| return 0; |
| if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE) |
| return 0; |
| |
| return 1; |
| } |
| |
| static int should_do_random(struct thread_data *td, enum fio_ddir ddir) |
| { |
| unsigned int v; |
| unsigned long r; |
| |
| if (td->o.perc_rand[ddir] == 100) |
| return 1; |
| |
| if (td->o.use_os_rand) { |
| r = os_random_long(&td->seq_rand_state[ddir]); |
| v = 1 + (int) (100.0 * (r / (OS_RAND_MAX + 1.0))); |
| } else { |
| r = __rand(&td->__seq_rand_state[ddir]); |
| v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0))); |
| } |
| |
| return v <= td->o.perc_rand[ddir]; |
| } |
| |
| static int get_next_rand_offset(struct thread_data *td, struct fio_file *f, |
| enum fio_ddir ddir, uint64_t *b) |
| { |
| struct rand_off *r; |
| int i, ret = 1; |
| |
| if (!should_sort_io(td)) |
| return get_off_from_method(td, f, ddir, b); |
| |
| if (!flist_empty(&td->next_rand_list)) { |
| struct rand_off *r; |
| fetch: |
| r = flist_first_entry(&td->next_rand_list, struct rand_off, list); |
| flist_del(&r->list); |
| *b = r->off; |
| free(r); |
| return 0; |
| } |
| |
| for (i = 0; i < td->o.verifysort_nr; i++) { |
| r = malloc(sizeof(*r)); |
| |
| ret = get_off_from_method(td, f, ddir, &r->off); |
| if (ret) { |
| free(r); |
| break; |
| } |
| |
| flist_add(&r->list, &td->next_rand_list); |
| } |
| |
| if (ret && !i) |
| return ret; |
| |
| assert(!flist_empty(&td->next_rand_list)); |
| flist_sort(NULL, &td->next_rand_list, flist_cmp); |
| goto fetch; |
| } |
| |
| static int get_next_rand_block(struct thread_data *td, struct fio_file *f, |
| enum fio_ddir ddir, uint64_t *b) |
| { |
| if (!get_next_rand_offset(td, f, ddir, b)) |
| return 0; |
| |
| if (td->o.time_based) { |
| fio_file_reset(td, f); |
| if (!get_next_rand_offset(td, f, ddir, b)) |
| return 0; |
| } |
| |
| dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n", |
| f->file_name, (unsigned long long) f->last_pos, |
| (unsigned long long) f->real_file_size); |
| return 1; |
| } |
| |
| static int get_next_seq_offset(struct thread_data *td, struct fio_file *f, |
| enum fio_ddir ddir, uint64_t *offset) |
| { |
| assert(ddir_rw(ddir)); |
| |
| if (f->last_pos >= f->io_size + get_start_offset(td, f) && td->o.time_based) |
| f->last_pos = f->last_pos - f->io_size; |
| |
| if (f->last_pos < f->real_file_size) { |
| uint64_t pos; |
| |
| if (f->last_pos == f->file_offset && td->o.ddir_seq_add < 0) |
| f->last_pos = f->real_file_size; |
| |
| pos = f->last_pos - f->file_offset; |
| if (pos) |
| pos += td->o.ddir_seq_add; |
| |
| *offset = pos; |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static int get_next_block(struct thread_data *td, struct io_u *io_u, |
| enum fio_ddir ddir, int rw_seq, |
| unsigned int *is_random) |
| { |
| struct fio_file *f = io_u->file; |
| uint64_t b, offset; |
| int ret; |
| |
| assert(ddir_rw(ddir)); |
| |
| b = offset = -1ULL; |
| |
| if (rw_seq) { |
| if (td_random(td)) { |
| if (should_do_random(td, ddir)) { |
| ret = get_next_rand_block(td, f, ddir, &b); |
| *is_random = 1; |
| } else { |
| *is_random = 0; |
| io_u->flags |= IO_U_F_BUSY_OK; |
| ret = get_next_seq_offset(td, f, ddir, &offset); |
| if (ret) |
| ret = get_next_rand_block(td, f, ddir, &b); |
| } |
| } else { |
| *is_random = 0; |
| ret = get_next_seq_offset(td, f, ddir, &offset); |
| } |
| } else { |
| io_u->flags |= IO_U_F_BUSY_OK; |
| *is_random = 0; |
| |
| if (td->o.rw_seq == RW_SEQ_SEQ) { |
| ret = get_next_seq_offset(td, f, ddir, &offset); |
| if (ret) { |
| ret = get_next_rand_block(td, f, ddir, &b); |
| *is_random = 0; |
| } |
| } else if (td->o.rw_seq == RW_SEQ_IDENT) { |
| if (f->last_start != -1ULL) |
| offset = f->last_start - f->file_offset; |
| else |
| offset = 0; |
| ret = 0; |
| } else { |
| log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq); |
| ret = 1; |
| } |
| } |
| |
| if (!ret) { |
| if (offset != -1ULL) |
| io_u->offset = offset; |
| else if (b != -1ULL) |
| io_u->offset = b * td->o.ba[ddir]; |
| else { |
| log_err("fio: bug in offset generation: offset=%llu, b=%llu\n", (unsigned long long) offset, (unsigned long long) b); |
| ret = 1; |
| } |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * For random io, generate a random new block and see if it's used. Repeat |
| * until we find a free one. For sequential io, just return the end of |
| * the last io issued. |
| */ |
| static int __get_next_offset(struct thread_data *td, struct io_u *io_u, |
| unsigned int *is_random) |
| { |
| struct fio_file *f = io_u->file; |
| enum fio_ddir ddir = io_u->ddir; |
| int rw_seq_hit = 0; |
| |
| assert(ddir_rw(ddir)); |
| |
| if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) { |
| rw_seq_hit = 1; |
| td->ddir_seq_nr = td->o.ddir_seq_nr; |
| } |
| |
| if (get_next_block(td, io_u, ddir, rw_seq_hit, is_random)) |
| return 1; |
| |
| if (io_u->offset >= f->io_size) { |
| dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n", |
| (unsigned long long) io_u->offset, |
| (unsigned long long) f->io_size); |
| return 1; |
| } |
| |
| io_u->offset += f->file_offset; |
| if (io_u->offset >= f->real_file_size) { |
| dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n", |
| (unsigned long long) io_u->offset, |
| (unsigned long long) f->real_file_size); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static int get_next_offset(struct thread_data *td, struct io_u *io_u, |
| unsigned int *is_random) |
| { |
| if (td->flags & TD_F_PROFILE_OPS) { |
| struct prof_io_ops *ops = &td->prof_io_ops; |
| |
| if (ops->fill_io_u_off) |
| return ops->fill_io_u_off(td, io_u, is_random); |
| } |
| |
| return __get_next_offset(td, io_u, is_random); |
| } |
| |
| static inline int io_u_fits(struct thread_data *td, struct io_u *io_u, |
| unsigned int buflen) |
| { |
| struct fio_file *f = io_u->file; |
| |
| return io_u->offset + buflen <= f->io_size + get_start_offset(td, f); |
| } |
| |
| static unsigned int __get_next_buflen(struct thread_data *td, struct io_u *io_u, |
| unsigned int is_random) |
| { |
| int ddir = io_u->ddir; |
| unsigned int buflen = 0; |
| unsigned int minbs, maxbs; |
| unsigned long r, rand_max; |
| |
| assert(ddir_rw(ddir)); |
| |
| if (td->o.bs_is_seq_rand) |
| ddir = is_random ? DDIR_WRITE: DDIR_READ; |
| |
| minbs = td->o.min_bs[ddir]; |
| maxbs = td->o.max_bs[ddir]; |
| |
| if (minbs == maxbs) |
| return minbs; |
| |
| /* |
| * If we can't satisfy the min block size from here, then fail |
| */ |
| if (!io_u_fits(td, io_u, minbs)) |
| return 0; |
| |
| if (td->o.use_os_rand) |
| rand_max = OS_RAND_MAX; |
| else |
| rand_max = FRAND_MAX; |
| |
| do { |
| if (td->o.use_os_rand) |
| r = os_random_long(&td->bsrange_state); |
| else |
| r = __rand(&td->__bsrange_state); |
| |
| if (!td->o.bssplit_nr[ddir]) { |
| buflen = 1 + (unsigned int) ((double) maxbs * |
| (r / (rand_max + 1.0))); |
| if (buflen < minbs) |
| buflen = minbs; |
| } else { |
| long perc = 0; |
| unsigned int i; |
| |
| for (i = 0; i < td->o.bssplit_nr[ddir]; i++) { |
| struct bssplit *bsp = &td->o.bssplit[ddir][i]; |
| |
| buflen = bsp->bs; |
| perc += bsp->perc; |
| if ((r <= ((rand_max / 100L) * perc)) && |
| io_u_fits(td, io_u, buflen)) |
| break; |
| } |
| } |
| |
| if (td->o.do_verify && td->o.verify != VERIFY_NONE) |
| buflen = (buflen + td->o.verify_interval - 1) & |
| ~(td->o.verify_interval - 1); |
| |
| if (!td->o.bs_unaligned && is_power_of_2(minbs)) |
| buflen = (buflen + minbs - 1) & ~(minbs - 1); |
| |
| } while (!io_u_fits(td, io_u, buflen)); |
| |
| return buflen; |
| } |
| |
| static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u, |
| unsigned int is_random) |
| { |
| if (td->flags & TD_F_PROFILE_OPS) { |
| struct prof_io_ops *ops = &td->prof_io_ops; |
| |
| if (ops->fill_io_u_size) |
| return ops->fill_io_u_size(td, io_u, is_random); |
| } |
| |
| return __get_next_buflen(td, io_u, is_random); |
| } |
| |
| static void set_rwmix_bytes(struct thread_data *td) |
| { |
| unsigned int diff; |
| |
| /* |
| * we do time or byte based switch. this is needed because |
| * buffered writes may issue a lot quicker than they complete, |
| * whereas reads do not. |
| */ |
| diff = td->o.rwmix[td->rwmix_ddir ^ 1]; |
| td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100; |
| } |
| |
| static inline enum fio_ddir get_rand_ddir(struct thread_data *td) |
| { |
| unsigned int v; |
| unsigned long r; |
| |
| if (td->o.use_os_rand) { |
| r = os_random_long(&td->rwmix_state); |
| v = 1 + (int) (100.0 * (r / (OS_RAND_MAX + 1.0))); |
| } else { |
| r = __rand(&td->__rwmix_state); |
| v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0))); |
| } |
| |
| if (v <= td->o.rwmix[DDIR_READ]) |
| return DDIR_READ; |
| |
| return DDIR_WRITE; |
| } |
| |
| void io_u_quiesce(struct thread_data *td) |
| { |
| /* |
| * We are going to sleep, ensure that we flush anything pending as |
| * not to skew our latency numbers. |
| * |
| * Changed to only monitor 'in flight' requests here instead of the |
| * td->cur_depth, b/c td->cur_depth does not accurately represent |
| * io's that have been actually submitted to an async engine, |
| * and cur_depth is meaningless for sync engines. |
| */ |
| while (td->io_u_in_flight) { |
| int fio_unused ret; |
| |
| ret = io_u_queued_complete(td, 1, NULL); |
| } |
| } |
| |
| static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir) |
| { |
| enum fio_ddir odir = ddir ^ 1; |
| struct timeval t; |
| long usec; |
| |
| assert(ddir_rw(ddir)); |
| |
| if (td->rate_pending_usleep[ddir] <= 0) |
| return ddir; |
| |
| /* |
| * We have too much pending sleep in this direction. See if we |
| * should switch. |
| */ |
| if (td_rw(td) && td->o.rwmix[odir]) { |
| /* |
| * Other direction does not have too much pending, switch |
| */ |
| if (td->rate_pending_usleep[odir] < 100000) |
| return odir; |
| |
| /* |
| * Both directions have pending sleep. Sleep the minimum time |
| * and deduct from both. |
| */ |
| if (td->rate_pending_usleep[ddir] <= |
| td->rate_pending_usleep[odir]) { |
| usec = td->rate_pending_usleep[ddir]; |
| } else { |
| usec = td->rate_pending_usleep[odir]; |
| ddir = odir; |
| } |
| } else |
| usec = td->rate_pending_usleep[ddir]; |
| |
| io_u_quiesce(td); |
| |
| fio_gettime(&t, NULL); |
| usec_sleep(td, usec); |
| usec = utime_since_now(&t); |
| |
| td->rate_pending_usleep[ddir] -= usec; |
| |
| odir = ddir ^ 1; |
| if (td_rw(td) && __should_check_rate(td, odir)) |
| td->rate_pending_usleep[odir] -= usec; |
| |
| if (ddir_trim(ddir)) |
| return ddir; |
| |
| return ddir; |
| } |
| |
| /* |
| * Return the data direction for the next io_u. If the job is a |
| * mixed read/write workload, check the rwmix cycle and switch if |
| * necessary. |
| */ |
| static enum fio_ddir get_rw_ddir(struct thread_data *td) |
| { |
| enum fio_ddir ddir; |
| |
| /* |
| * see if it's time to fsync |
| */ |
| if (td->o.fsync_blocks && |
| !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) && |
| td->io_issues[DDIR_WRITE] && should_fsync(td)) |
| return DDIR_SYNC; |
| |
| /* |
| * see if it's time to fdatasync |
| */ |
| if (td->o.fdatasync_blocks && |
| !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks) && |
| td->io_issues[DDIR_WRITE] && should_fsync(td)) |
| return DDIR_DATASYNC; |
| |
| /* |
| * see if it's time to sync_file_range |
| */ |
| if (td->sync_file_range_nr && |
| !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr) && |
| td->io_issues[DDIR_WRITE] && should_fsync(td)) |
| return DDIR_SYNC_FILE_RANGE; |
| |
| if (td_rw(td)) { |
| /* |
| * Check if it's time to seed a new data direction. |
| */ |
| if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) { |
| /* |
| * Put a top limit on how many bytes we do for |
| * one data direction, to avoid overflowing the |
| * ranges too much |
| */ |
| ddir = get_rand_ddir(td); |
| |
| if (ddir != td->rwmix_ddir) |
| set_rwmix_bytes(td); |
| |
| td->rwmix_ddir = ddir; |
| } |
| ddir = td->rwmix_ddir; |
| } else if (td_read(td)) |
| ddir = DDIR_READ; |
| else if (td_write(td)) |
| ddir = DDIR_WRITE; |
| else |
| ddir = DDIR_TRIM; |
| |
| td->rwmix_ddir = rate_ddir(td, ddir); |
| return td->rwmix_ddir; |
| } |
| |
| static void set_rw_ddir(struct thread_data *td, struct io_u *io_u) |
| { |
| io_u->ddir = io_u->acct_ddir = get_rw_ddir(td); |
| |
| if (io_u->ddir == DDIR_WRITE && (td->io_ops->flags & FIO_BARRIER) && |
| td->o.barrier_blocks && |
| !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) && |
| td->io_issues[DDIR_WRITE]) |
| io_u->flags |= IO_U_F_BARRIER; |
| } |
| |
| void put_file_log(struct thread_data *td, struct fio_file *f) |
| { |
| unsigned int ret = put_file(td, f); |
| |
| if (ret) |
| td_verror(td, ret, "file close"); |
| } |
| |
| void put_io_u(struct thread_data *td, struct io_u *io_u) |
| { |
| td_io_u_lock(td); |
| |
| if (io_u->file && !(io_u->flags & IO_U_F_NO_FILE_PUT)) |
| put_file_log(td, io_u->file); |
| |
| io_u->file = NULL; |
| io_u->flags |= IO_U_F_FREE; |
| |
| if (io_u->flags & IO_U_F_IN_CUR_DEPTH) |
| td->cur_depth--; |
| io_u_qpush(&td->io_u_freelist, io_u); |
| td_io_u_unlock(td); |
| td_io_u_free_notify(td); |
| } |
| |
| void clear_io_u(struct thread_data *td, struct io_u *io_u) |
| { |
| io_u->flags &= ~IO_U_F_FLIGHT; |
| put_io_u(td, io_u); |
| } |
| |
| void requeue_io_u(struct thread_data *td, struct io_u **io_u) |
| { |
| struct io_u *__io_u = *io_u; |
| enum fio_ddir ddir = acct_ddir(__io_u); |
| |
| dprint(FD_IO, "requeue %p\n", __io_u); |
| |
| td_io_u_lock(td); |
| |
| __io_u->flags |= IO_U_F_FREE; |
| if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(ddir)) |
| td->io_issues[ddir]--; |
| |
| __io_u->flags &= ~IO_U_F_FLIGHT; |
| if (__io_u->flags & IO_U_F_IN_CUR_DEPTH) |
| td->cur_depth--; |
| |
| io_u_rpush(&td->io_u_requeues, __io_u); |
| td_io_u_unlock(td); |
| *io_u = NULL; |
| } |
| |
| static int fill_io_u(struct thread_data *td, struct io_u *io_u) |
| { |
| unsigned int is_random; |
| |
| if (td->io_ops->flags & FIO_NOIO) |
| goto out; |
| |
| set_rw_ddir(td, io_u); |
| |
| /* |
| * fsync() or fdatasync() or trim etc, we are done |
| */ |
| if (!ddir_rw(io_u->ddir)) |
| goto out; |
| |
| /* |
| * See if it's time to switch to a new zone |
| */ |
| if (td->zone_bytes >= td->o.zone_size && td->o.zone_skip) { |
| td->zone_bytes = 0; |
| io_u->file->file_offset += td->o.zone_range + td->o.zone_skip; |
| io_u->file->last_pos = io_u->file->file_offset; |
| td->io_skip_bytes += td->o.zone_skip; |
| } |
| |
| /* |
| * No log, let the seq/rand engine retrieve the next buflen and |
| * position. |
| */ |
| if (get_next_offset(td, io_u, &is_random)) { |
| dprint(FD_IO, "io_u %p, failed getting offset\n", io_u); |
| return 1; |
| } |
| |
| io_u->buflen = get_next_buflen(td, io_u, is_random); |
| if (!io_u->buflen) { |
| dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u); |
| return 1; |
| } |
| |
| if (io_u->offset + io_u->buflen > io_u->file->real_file_size) { |
| dprint(FD_IO, "io_u %p, offset too large\n", io_u); |
| dprint(FD_IO, " off=%llu/%lu > %llu\n", |
| (unsigned long long) io_u->offset, io_u->buflen, |
| (unsigned long long) io_u->file->real_file_size); |
| return 1; |
| } |
| |
| /* |
| * mark entry before potentially trimming io_u |
| */ |
| if (td_random(td) && file_randommap(td, io_u->file)) |
| mark_random_map(td, io_u); |
| |
| out: |
| dprint_io_u(io_u, "fill_io_u"); |
| td->zone_bytes += io_u->buflen; |
| return 0; |
| } |
| |
| static void __io_u_mark_map(unsigned int *map, unsigned int nr) |
| { |
| int idx = 0; |
| |
| switch (nr) { |
| default: |
| idx = 6; |
| break; |
| case 33 ... 64: |
| idx = 5; |
| break; |
| case 17 ... 32: |
| idx = 4; |
| break; |
| case 9 ... 16: |
| idx = 3; |
| break; |
| case 5 ... 8: |
| idx = 2; |
| break; |
| case 1 ... 4: |
| idx = 1; |
| case 0: |
| break; |
| } |
| |
| map[idx]++; |
| } |
| |
| void io_u_mark_submit(struct thread_data *td, unsigned int nr) |
| { |
| __io_u_mark_map(td->ts.io_u_submit, nr); |
| td->ts.total_submit++; |
| } |
| |
| void io_u_mark_complete(struct thread_data *td, unsigned int nr) |
| { |
| __io_u_mark_map(td->ts.io_u_complete, nr); |
| td->ts.total_complete++; |
| } |
| |
| void io_u_mark_depth(struct thread_data *td, unsigned int nr) |
| { |
| int idx = 0; |
| |
| switch (td->cur_depth) { |
| default: |
| idx = 6; |
| break; |
| case 32 ... 63: |
| idx = 5; |
| break; |
| case 16 ... 31: |
| idx = 4; |
| break; |
| case 8 ... 15: |
| idx = 3; |
| break; |
| case 4 ... 7: |
| idx = 2; |
| break; |
| case 2 ... 3: |
| idx = 1; |
| case 1: |
| break; |
| } |
| |
| td->ts.io_u_map[idx] += nr; |
| } |
| |
| static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec) |
| { |
| int idx = 0; |
| |
| assert(usec < 1000); |
| |
| switch (usec) { |
| case 750 ... 999: |
| idx = 9; |
| break; |
| case 500 ... 749: |
| idx = 8; |
| break; |
| case 250 ... 499: |
| idx = 7; |
| break; |
| case 100 ... 249: |
| idx = 6; |
| break; |
| case 50 ... 99: |
| idx = 5; |
| break; |
| case 20 ... 49: |
| idx = 4; |
| break; |
| case 10 ... 19: |
| idx = 3; |
| break; |
| case 4 ... 9: |
| idx = 2; |
| break; |
| case 2 ... 3: |
| idx = 1; |
| case 0 ... 1: |
| break; |
| } |
| |
| assert(idx < FIO_IO_U_LAT_U_NR); |
| td->ts.io_u_lat_u[idx]++; |
| } |
| |
| static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec) |
| { |
| int idx = 0; |
| |
| switch (msec) { |
| default: |
| idx = 11; |
| break; |
| case 1000 ... 1999: |
| idx = 10; |
| break; |
| case 750 ... 999: |
| idx = 9; |
| break; |
| case 500 ... 749: |
| idx = 8; |
| break; |
| case 250 ... 499: |
| idx = 7; |
| break; |
| case 100 ... 249: |
| idx = 6; |
| break; |
| case 50 ... 99: |
| idx = 5; |
| break; |
| case 20 ... 49: |
| idx = 4; |
| break; |
| case 10 ... 19: |
| idx = 3; |
| break; |
| case 4 ... 9: |
| idx = 2; |
| break; |
| case 2 ... 3: |
| idx = 1; |
| case 0 ... 1: |
| break; |
| } |
| |
| assert(idx < FIO_IO_U_LAT_M_NR); |
| td->ts.io_u_lat_m[idx]++; |
| } |
| |
| static void io_u_mark_latency(struct thread_data *td, unsigned long usec) |
| { |
| if (usec < 1000) |
| io_u_mark_lat_usec(td, usec); |
| else |
| io_u_mark_lat_msec(td, usec / 1000); |
| } |
| |
| /* |
| * Get next file to service by choosing one at random |
| */ |
| static struct fio_file *get_next_file_rand(struct thread_data *td, |
| enum fio_file_flags goodf, |
| enum fio_file_flags badf) |
| { |
| struct fio_file *f; |
| int fno; |
| |
| do { |
| int opened = 0; |
| unsigned long r; |
| |
| if (td->o.use_os_rand) { |
| r = os_random_long(&td->next_file_state); |
| fno = (unsigned int) ((double) td->o.nr_files |
| * (r / (OS_RAND_MAX + 1.0))); |
| } else { |
| r = __rand(&td->__next_file_state); |
| fno = (unsigned int) ((double) td->o.nr_files |
| * (r / (FRAND_MAX + 1.0))); |
| } |
| |
| f = td->files[fno]; |
| if (fio_file_done(f)) |
| continue; |
| |
| if (!fio_file_open(f)) { |
| int err; |
| |
| if (td->nr_open_files >= td->o.open_files) |
| return ERR_PTR(-EBUSY); |
| |
| err = td_io_open_file(td, f); |
| if (err) |
| continue; |
| opened = 1; |
| } |
| |
| if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) { |
| dprint(FD_FILE, "get_next_file_rand: %p\n", f); |
| return f; |
| } |
| if (opened) |
| td_io_close_file(td, f); |
| } while (1); |
| } |
| |
| /* |
| * Get next file to service by doing round robin between all available ones |
| */ |
| static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf, |
| int badf) |
| { |
| unsigned int old_next_file = td->next_file; |
| struct fio_file *f; |
| |
| do { |
| int opened = 0; |
| |
| f = td->files[td->next_file]; |
| |
| td->next_file++; |
| if (td->next_file >= td->o.nr_files) |
| td->next_file = 0; |
| |
| dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags); |
| if (fio_file_done(f)) { |
| f = NULL; |
| continue; |
| } |
| |
| if (!fio_file_open(f)) { |
| int err; |
| |
| if (td->nr_open_files >= td->o.open_files) |
| return ERR_PTR(-EBUSY); |
| |
| err = td_io_open_file(td, f); |
| if (err) { |
| dprint(FD_FILE, "error %d on open of %s\n", |
| err, f->file_name); |
| f = NULL; |
| continue; |
| } |
| opened = 1; |
| } |
| |
| dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf, |
| f->flags); |
| if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) |
| break; |
| |
| if (opened) |
| td_io_close_file(td, f); |
| |
| f = NULL; |
| } while (td->next_file != old_next_file); |
| |
| dprint(FD_FILE, "get_next_file_rr: %p\n", f); |
| return f; |
| } |
| |
| static struct fio_file *__get_next_file(struct thread_data *td) |
| { |
| struct fio_file *f; |
| |
| assert(td->o.nr_files <= td->files_index); |
| |
| if (td->nr_done_files >= td->o.nr_files) { |
| dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d," |
| " nr_files=%d\n", td->nr_open_files, |
| td->nr_done_files, |
| td->o.nr_files); |
| return NULL; |
| } |
| |
| f = td->file_service_file; |
| if (f && fio_file_open(f) && !fio_file_closing(f)) { |
| if (td->o.file_service_type == FIO_FSERVICE_SEQ) |
| goto out; |
| if (td->file_service_left--) |
| goto out; |
| } |
| |
| if (td->o.file_service_type == FIO_FSERVICE_RR || |
| td->o.file_service_type == FIO_FSERVICE_SEQ) |
| f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing); |
| else |
| f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing); |
| |
| if (IS_ERR(f)) |
| return f; |
| |
| td->file_service_file = f; |
| td->file_service_left = td->file_service_nr - 1; |
| out: |
| if (f) |
| dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name); |
| else |
| dprint(FD_FILE, "get_next_file: NULL\n"); |
| return f; |
| } |
| |
| static struct fio_file *get_next_file(struct thread_data *td) |
| { |
| if (td->flags & TD_F_PROFILE_OPS) { |
| struct prof_io_ops *ops = &td->prof_io_ops; |
| |
| if (ops->get_next_file) |
| return ops->get_next_file(td); |
| } |
| |
| return __get_next_file(td); |
| } |
| |
| static long set_io_u_file(struct thread_data *td, struct io_u *io_u) |
| { |
| struct fio_file *f; |
| |
| do { |
| f = get_next_file(td); |
| if (IS_ERR_OR_NULL(f)) |
| return PTR_ERR(f); |
| |
| io_u->file = f; |
| get_file(f); |
| |
| if (!fill_io_u(td, io_u)) |
| break; |
| |
| put_file_log(td, f); |
| td_io_close_file(td, f); |
| io_u->file = NULL; |
| fio_file_set_done(f); |
| td->nr_done_files++; |
| dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name, |
| td->nr_done_files, td->o.nr_files); |
| } while (1); |
| |
| return 0; |
| } |
| |
| static void lat_fatal(struct thread_data *td, struct io_completion_data *icd, |
| unsigned long tusec, unsigned long max_usec) |
| { |
| if (!td->error) |
| log_err("fio: latency of %lu usec exceeds specified max (%lu usec)\n", tusec, max_usec); |
| td_verror(td, ETIMEDOUT, "max latency exceeded"); |
| icd->error = ETIMEDOUT; |
| } |
| |
| static void lat_new_cycle(struct thread_data *td) |
| { |
| fio_gettime(&td->latency_ts, NULL); |
| td->latency_ios = ddir_rw_sum(td->io_blocks); |
| td->latency_failed = 0; |
| } |
| |
| /* |
| * We had an IO outside the latency target. Reduce the queue depth. If we |
| * are at QD=1, then it's time to give up. |
| */ |
| static int __lat_target_failed(struct thread_data *td) |
| { |
| if (td->latency_qd == 1) |
| return 1; |
| |
| td->latency_qd_high = td->latency_qd; |
| |
| if (td->latency_qd == td->latency_qd_low) |
| td->latency_qd_low--; |
| |
| td->latency_qd = (td->latency_qd + td->latency_qd_low) / 2; |
| |
| dprint(FD_RATE, "Ramped down: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high); |
| |
| /* |
| * When we ramp QD down, quiesce existing IO to prevent |
| * a storm of ramp downs due to pending higher depth. |
| */ |
| io_u_quiesce(td); |
| lat_new_cycle(td); |
| return 0; |
| } |
| |
| static int lat_target_failed(struct thread_data *td) |
| { |
| if (td->o.latency_percentile.u.f == 100.0) |
| return __lat_target_failed(td); |
| |
| td->latency_failed++; |
| return 0; |
| } |
| |
| void lat_target_init(struct thread_data *td) |
| { |
| td->latency_end_run = 0; |
| |
| if (td->o.latency_target) { |
| dprint(FD_RATE, "Latency target=%llu\n", td->o.latency_target); |
| fio_gettime(&td->latency_ts, NULL); |
| td->latency_qd = 1; |
| td->latency_qd_high = td->o.iodepth; |
| td->latency_qd_low = 1; |
| td->latency_ios = ddir_rw_sum(td->io_blocks); |
| } else |
| td->latency_qd = td->o.iodepth; |
| } |
| |
| void lat_target_reset(struct thread_data *td) |
| { |
| if (!td->latency_end_run) |
| lat_target_init(td); |
| } |
| |
| static void lat_target_success(struct thread_data *td) |
| { |
| const unsigned int qd = td->latency_qd; |
| struct thread_options *o = &td->o; |
| |
| td->latency_qd_low = td->latency_qd; |
| |
| /* |
| * If we haven't failed yet, we double up to a failing value instead |
| * of bisecting from highest possible queue depth. If we have set |
| * a limit other than td->o.iodepth, bisect between that. |
| */ |
| if (td->latency_qd_high != o->iodepth) |
| td->latency_qd = (td->latency_qd + td->latency_qd_high) / 2; |
| else |
| td->latency_qd *= 2; |
| |
| if (td->latency_qd > o->iodepth) |
| td->latency_qd = o->iodepth; |
| |
| dprint(FD_RATE, "Ramped up: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high); |
| |
| /* |
| * Same as last one, we are done. Let it run a latency cycle, so |
| * we get only the results from the targeted depth. |
| */ |
| if (td->latency_qd == qd) { |
| if (td->latency_end_run) { |
| dprint(FD_RATE, "We are done\n"); |
| td->done = 1; |
| } else { |
| dprint(FD_RATE, "Quiesce and final run\n"); |
| io_u_quiesce(td); |
| td->latency_end_run = 1; |
| reset_all_stats(td); |
| reset_io_stats(td); |
| } |
| } |
| |
| lat_new_cycle(td); |
| } |
| |
| /* |
| * Check if we can bump the queue depth |
| */ |
| void lat_target_check(struct thread_data *td) |
| { |
| uint64_t usec_window; |
| uint64_t ios; |
| double success_ios; |
| |
| usec_window = utime_since_now(&td->latency_ts); |
| if (usec_window < td->o.latency_window) |
| return; |
| |
| ios = ddir_rw_sum(td->io_blocks) - td->latency_ios; |
| success_ios = (double) (ios - td->latency_failed) / (double) ios; |
| success_ios *= 100.0; |
| |
| dprint(FD_RATE, "Success rate: %.2f%% (target %.2f%%)\n", success_ios, td->o.latency_percentile.u.f); |
| |
| if (success_ios >= td->o.latency_percentile.u.f) |
| lat_target_success(td); |
| else |
| __lat_target_failed(td); |
| } |
| |
| /* |
| * If latency target is enabled, we might be ramping up or down and not |
| * using the full queue depth available. |
| */ |
| int queue_full(struct thread_data *td) |
| { |
| const int qempty = io_u_qempty(&td->io_u_freelist); |
| |
| if (qempty) |
| return 1; |
| if (!td->o.latency_target) |
| return 0; |
| |
| return td->cur_depth >= td->latency_qd; |
| } |
| |
| struct io_u *__get_io_u(struct thread_data *td) |
| { |
| struct io_u *io_u = NULL; |
| |
| td_io_u_lock(td); |
| |
| again: |
| if (!io_u_rempty(&td->io_u_requeues)) |
| io_u = io_u_rpop(&td->io_u_requeues); |
| else if (!queue_full(td)) { |
| io_u = io_u_qpop(&td->io_u_freelist); |
| |
| io_u->file = NULL; |
| io_u->buflen = 0; |
| io_u->resid = 0; |
| io_u->end_io = NULL; |
| } |
| |
| if (io_u) { |
| assert(io_u->flags & IO_U_F_FREE); |
| io_u->flags &= ~(IO_U_F_FREE | IO_U_F_NO_FILE_PUT | |
| IO_U_F_TRIMMED | IO_U_F_BARRIER | |
| IO_U_F_VER_LIST); |
| |
| io_u->error = 0; |
| io_u->acct_ddir = -1; |
| td->cur_depth++; |
| io_u->flags |= IO_U_F_IN_CUR_DEPTH; |
| io_u->ipo = NULL; |
| } else if (td->o.verify_async) { |
| /* |
| * We ran out, wait for async verify threads to finish and |
| * return one |
| */ |
| pthread_cond_wait(&td->free_cond, &td->io_u_lock); |
| goto again; |
| } |
| |
| td_io_u_unlock(td); |
| return io_u; |
| } |
| |
| static int check_get_trim(struct thread_data *td, struct io_u *io_u) |
| { |
| if (!(td->flags & TD_F_TRIM_BACKLOG)) |
| return 0; |
| |
| if (td->trim_entries) { |
| int get_trim = 0; |
| |
| if (td->trim_batch) { |
| td->trim_batch--; |
| get_trim = 1; |
| } else if (!(td->io_hist_len % td->o.trim_backlog) && |
| td->last_ddir != DDIR_READ) { |
| td->trim_batch = td->o.trim_batch; |
| if (!td->trim_batch) |
| td->trim_batch = td->o.trim_backlog; |
| get_trim = 1; |
| } |
| |
| if (get_trim && !get_next_trim(td, io_u)) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static int check_get_verify(struct thread_data *td, struct io_u *io_u) |
| { |
| if (!(td->flags & TD_F_VER_BACKLOG)) |
| return 0; |
| |
| if (td->io_hist_len) { |
| int get_verify = 0; |
| |
| if (td->verify_batch) |
| get_verify = 1; |
| else if (!(td->io_hist_len % td->o.verify_backlog) && |
| td->last_ddir != DDIR_READ) { |
| td->verify_batch = td->o.verify_batch; |
| if (!td->verify_batch) |
| td->verify_batch = td->o.verify_backlog; |
| get_verify = 1; |
| } |
| |
| if (get_verify && !get_next_verify(td, io_u)) { |
| td->verify_batch--; |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Fill offset and start time into the buffer content, to prevent too |
| * easy compressible data for simple de-dupe attempts. Do this for every |
| * 512b block in the range, since that should be the smallest block size |
| * we can expect from a device. |
| */ |
| static void small_content_scramble(struct io_u *io_u) |
| { |
| unsigned int i, nr_blocks = io_u->buflen / 512; |
| uint64_t boffset; |
| unsigned int offset; |
| void *p, *end; |
| |
| if (!nr_blocks) |
| return; |
| |
| p = io_u->xfer_buf; |
| boffset = io_u->offset; |
| io_u->buf_filled_len = 0; |
| |
| for (i = 0; i < nr_blocks; i++) { |
| /* |
| * Fill the byte offset into a "random" start offset of |
| * the buffer, given by the product of the usec time |
| * and the actual offset. |
| */ |
| offset = (io_u->start_time.tv_usec ^ boffset) & 511; |
| offset &= ~(sizeof(uint64_t) - 1); |
| if (offset >= 512 - sizeof(uint64_t)) |
| offset -= sizeof(uint64_t); |
| memcpy(p + offset, &boffset, sizeof(boffset)); |
| |
| end = p + 512 - sizeof(io_u->start_time); |
| memcpy(end, &io_u->start_time, sizeof(io_u->start_time)); |
| p += 512; |
| boffset += 512; |
| } |
| } |
| |
| /* |
| * Return an io_u to be processed. Gets a buflen and offset, sets direction, |
| * etc. The returned io_u is fully ready to be prepped and submitted. |
| */ |
| struct io_u *get_io_u(struct thread_data *td) |
| { |
| struct fio_file *f; |
| struct io_u *io_u; |
| int do_scramble = 0; |
| long ret = 0; |
| |
| io_u = __get_io_u(td); |
| if (!io_u) { |
| dprint(FD_IO, "__get_io_u failed\n"); |
| return NULL; |
| } |
| |
| if (check_get_verify(td, io_u)) |
| goto out; |
| if (check_get_trim(td, io_u)) |
| goto out; |
| |
| /* |
| * from a requeue, io_u already setup |
| */ |
| if (io_u->file) |
| goto out; |
| |
| /* |
| * If using an iolog, grab next piece if any available. |
| */ |
| if (td->flags & TD_F_READ_IOLOG) { |
| if (read_iolog_get(td, io_u)) |
| goto err_put; |
| } else if (set_io_u_file(td, io_u)) { |
| ret = -EBUSY; |
| dprint(FD_IO, "io_u %p, setting file failed\n", io_u); |
| goto err_put; |
| } |
| |
| f = io_u->file; |
| if (!f) { |
| dprint(FD_IO, "io_u %p, setting file failed\n", io_u); |
| goto err_put; |
| } |
| |
| assert(fio_file_open(f)); |
| |
| if (ddir_rw(io_u->ddir)) { |
| if (!io_u->buflen && !(td->io_ops->flags & FIO_NOIO)) { |
| dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u); |
| goto err_put; |
| } |
| |
| f->last_start = io_u->offset; |
| f->last_pos = io_u->offset + io_u->buflen; |
| |
| if (io_u->ddir == DDIR_WRITE) { |
| if (td->flags & TD_F_REFILL_BUFFERS) { |
| io_u_fill_buffer(td, io_u, |
| td->o.min_bs[DDIR_WRITE], |
| io_u->xfer_buflen); |
| } else if ((td->flags & TD_F_SCRAMBLE_BUFFERS) && |
| !(td->flags & TD_F_COMPRESS)) |
| do_scramble = 1; |
| if (td->flags & TD_F_VER_NONE) { |
| populate_verify_io_u(td, io_u); |
| do_scramble = 0; |
| } |
| } else if (io_u->ddir == DDIR_READ) { |
| /* |
| * Reset the buf_filled parameters so next time if the |
| * buffer is used for writes it is refilled. |
| */ |
| io_u->buf_filled_len = 0; |
| } |
| } |
| |
| /* |
| * Set io data pointers. |
| */ |
| io_u->xfer_buf = io_u->buf; |
| io_u->xfer_buflen = io_u->buflen; |
| |
| out: |
| assert(io_u->file); |
| if (!td_io_prep(td, io_u)) { |
| if (!td->o.disable_slat) |
| fio_gettime(&io_u->start_time, NULL); |
| if (do_scramble) |
| small_content_scramble(io_u); |
| return io_u; |
| } |
| err_put: |
| dprint(FD_IO, "get_io_u failed\n"); |
| put_io_u(td, io_u); |
| return ERR_PTR(ret); |
| } |
| |
| void io_u_log_error(struct thread_data *td, struct io_u *io_u) |
| { |
| enum error_type_bit eb = td_error_type(io_u->ddir, io_u->error); |
| |
| if (td_non_fatal_error(td, eb, io_u->error) && !td->o.error_dump) |
| return; |
| |
| log_err("fio: io_u error%s%s: %s: %s offset=%llu, buflen=%lu\n", |
| io_u->file ? " on file " : "", |
| io_u->file ? io_u->file->file_name : "", |
| strerror(io_u->error), |
| io_ddir_name(io_u->ddir), |
| io_u->offset, io_u->xfer_buflen); |
| |
| if (!td->error) |
| td_verror(td, io_u->error, "io_u error"); |
| } |
| |
| static inline int gtod_reduce(struct thread_data *td) |
| { |
| return td->o.disable_clat && td->o.disable_lat && td->o.disable_slat |
| && td->o.disable_bw; |
| } |
| |
| static void account_io_completion(struct thread_data *td, struct io_u *io_u, |
| struct io_completion_data *icd, |
| const enum fio_ddir idx, unsigned int bytes) |
| { |
| unsigned long lusec = 0; |
| |
| if (!gtod_reduce(td)) |
| lusec = utime_since(&io_u->issue_time, &icd->time); |
| |
| if (!td->o.disable_lat) { |
| unsigned long tusec; |
| |
| tusec = utime_since(&io_u->start_time, &icd->time); |
| add_lat_sample(td, idx, tusec, bytes, io_u->offset); |
| |
| if (td->flags & TD_F_PROFILE_OPS) { |
| struct prof_io_ops *ops = &td->prof_io_ops; |
| |
| if (ops->io_u_lat) |
| icd->error = ops->io_u_lat(td, tusec); |
| } |
| |
| if (td->o.max_latency && tusec > td->o.max_latency) |
| lat_fatal(td, icd, tusec, td->o.max_latency); |
| if (td->o.latency_target && tusec > td->o.latency_target) { |
| if (lat_target_failed(td)) |
| lat_fatal(td, icd, tusec, td->o.latency_target); |
| } |
| } |
| |
| if (!td->o.disable_clat) { |
| add_clat_sample(td, idx, lusec, bytes, io_u->offset); |
| io_u_mark_latency(td, lusec); |
| } |
| |
| if (!td->o.disable_bw) |
| add_bw_sample(td, idx, bytes, &icd->time); |
| |
| if (!gtod_reduce(td)) |
| add_iops_sample(td, idx, bytes, &icd->time); |
| } |
| |
| static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir) |
| { |
| uint64_t secs, remainder, bps, bytes; |
| |
| bytes = td->this_io_bytes[ddir]; |
| bps = td->rate_bps[ddir]; |
| secs = bytes / bps; |
| remainder = bytes % bps; |
| return remainder * 1000000 / bps + secs * 1000000; |
| } |
| |
| static void io_completed(struct thread_data *td, struct io_u **io_u_ptr, |
| struct io_completion_data *icd) |
| { |
| struct io_u *io_u = *io_u_ptr; |
| enum fio_ddir ddir = io_u->ddir; |
| struct fio_file *f = io_u->file; |
| |
| dprint_io_u(io_u, "io complete"); |
| |
| td_io_u_lock(td); |
| assert(io_u->flags & IO_U_F_FLIGHT); |
| io_u->flags &= ~(IO_U_F_FLIGHT | IO_U_F_BUSY_OK); |
| |
| /* |
| * Mark IO ok to verify |
| */ |
| if (io_u->ipo) { |
| /* |
| * Remove errored entry from the verification list |
| */ |
| if (io_u->error) |
| unlog_io_piece(td, io_u); |
| else { |
| io_u->ipo->flags &= ~IP_F_IN_FLIGHT; |
| write_barrier(); |
| } |
| } |
| |
| td_io_u_unlock(td); |
| |
| if (ddir_sync(ddir)) { |
| td->last_was_sync = 1; |
| if (f) { |
| f->first_write = -1ULL; |
| f->last_write = -1ULL; |
| } |
| return; |
| } |
| |
| td->last_was_sync = 0; |
| td->last_ddir = ddir; |
| |
| if (!io_u->error && ddir_rw(ddir)) { |
| unsigned int bytes = io_u->buflen - io_u->resid; |
| const enum fio_ddir oddir = ddir ^ 1; |
| int ret; |
| |
| td->io_blocks[ddir]++; |
| td->this_io_blocks[ddir]++; |
| td->io_bytes[ddir] += bytes; |
| |
| if (!(io_u->flags & IO_U_F_VER_LIST)) |
| td->this_io_bytes[ddir] += bytes; |
| |
| if (ddir == DDIR_WRITE && f) { |
| if (f->first_write == -1ULL || |
| io_u->offset < f->first_write) |
| f->first_write = io_u->offset; |
| if (f->last_write == -1ULL || |
| ((io_u->offset + bytes) > f->last_write)) |
| f->last_write = io_u->offset + bytes; |
| } |
| |
| if (ramp_time_over(td) && (td->runstate == TD_RUNNING || |
| td->runstate == TD_VERIFYING)) { |
| account_io_completion(td, io_u, icd, ddir, bytes); |
| |
| if (__should_check_rate(td, ddir)) { |
| td->rate_pending_usleep[ddir] = |
| (usec_for_io(td, ddir) - |
| utime_since_now(&td->start)); |
| } |
| if (ddir != DDIR_TRIM && |
| __should_check_rate(td, oddir)) { |
| td->rate_pending_usleep[oddir] = |
| (usec_for_io(td, oddir) - |
| utime_since_now(&td->start)); |
| } |
| } |
| |
| icd->bytes_done[ddir] += bytes; |
| |
| if (io_u->end_io) { |
| ret = io_u->end_io(td, io_u_ptr); |
| io_u = *io_u_ptr; |
| if (ret && !icd->error) |
| icd->error = ret; |
| } |
| } else if (io_u->error) { |
| icd->error = io_u->error; |
| io_u_log_error(td, io_u); |
| } |
| if (icd->error) { |
| enum error_type_bit eb = td_error_type(ddir, icd->error); |
| |
| if (!td_non_fatal_error(td, eb, icd->error)) |
| return; |
| |
| /* |
| * If there is a non_fatal error, then add to the error count |
| * and clear all the errors. |
| */ |
| update_error_count(td, icd->error); |
| td_clear_error(td); |
| icd->error = 0; |
| if (io_u) |
| io_u->error = 0; |
| } |
| } |
| |
| static void init_icd(struct thread_data *td, struct io_completion_data *icd, |
| int nr) |
| { |
| int ddir; |
| |
| if (!gtod_reduce(td)) |
| fio_gettime(&icd->time, NULL); |
| |
| icd->nr = nr; |
| |
| icd->error = 0; |
| for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++) |
| icd->bytes_done[ddir] = 0; |
| } |
| |
| static void ios_completed(struct thread_data *td, |
| struct io_completion_data *icd) |
| { |
| struct io_u *io_u; |
| int i; |
| |
| for (i = 0; i < icd->nr; i++) { |
| io_u = td->io_ops->event(td, i); |
| |
| io_completed(td, &io_u, icd); |
| |
| if (io_u) |
| put_io_u(td, io_u); |
| } |
| } |
| |
| /* |
| * Complete a single io_u for the sync engines. |
| */ |
| int io_u_sync_complete(struct thread_data *td, struct io_u *io_u, |
| uint64_t *bytes) |
| { |
| struct io_completion_data icd; |
| |
| init_icd(td, &icd, 1); |
| io_completed(td, &io_u, &icd); |
| |
| if (io_u) |
| put_io_u(td, io_u); |
| |
| if (icd.error) { |
| td_verror(td, icd.error, "io_u_sync_complete"); |
| return -1; |
| } |
| |
| if (bytes) { |
| int ddir; |
| |
| for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++) |
| bytes[ddir] += icd.bytes_done[ddir]; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Called to complete min_events number of io for the async engines. |
| */ |
| int io_u_queued_complete(struct thread_data *td, int min_evts, |
| uint64_t *bytes) |
| { |
| struct io_completion_data icd; |
| struct timespec *tvp = NULL; |
| int ret; |
| struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, }; |
| |
| dprint(FD_IO, "io_u_queued_completed: min=%d\n", min_evts); |
| |
| if (!min_evts) |
| tvp = &ts; |
| else if (min_evts > td->cur_depth) |
| min_evts = td->cur_depth; |
| |
| ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete, tvp); |
| if (ret < 0) { |
| td_verror(td, -ret, "td_io_getevents"); |
| return ret; |
| } else if (!ret) |
| return ret; |
| |
| init_icd(td, &icd, ret); |
| ios_completed(td, &icd); |
| if (icd.error) { |
| td_verror(td, icd.error, "io_u_queued_complete"); |
| return -1; |
| } |
| |
| if (bytes) { |
| int ddir; |
| |
| for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++) |
| bytes[ddir] += icd.bytes_done[ddir]; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Call when io_u is really queued, to update the submission latency. |
| */ |
| void io_u_queued(struct thread_data *td, struct io_u *io_u) |
| { |
| if (!td->o.disable_slat) { |
| unsigned long slat_time; |
| |
| slat_time = utime_since(&io_u->start_time, &io_u->issue_time); |
| add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen, |
| io_u->offset); |
| } |
| } |
| |
| /* |
| * See if we should reuse the last seed, if dedupe is enabled |
| */ |
| static struct frand_state *get_buf_state(struct thread_data *td) |
| { |
| unsigned int v; |
| unsigned long r; |
| |
| if (!td->o.dedupe_percentage) |
| return &td->buf_state; |
| else if (td->o.dedupe_percentage == 100) |
| return &td->buf_state_prev; |
| |
| r = __rand(&td->dedupe_state); |
| v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0))); |
| |
| if (v <= td->o.dedupe_percentage) |
| return &td->buf_state_prev; |
| |
| return &td->buf_state; |
| } |
| |
| static void save_buf_state(struct thread_data *td, struct frand_state *rs) |
| { |
| if (rs == &td->buf_state) |
| frand_copy(&td->buf_state_prev, rs); |
| } |
| |
| void fill_io_buffer(struct thread_data *td, void *buf, unsigned int min_write, |
| unsigned int max_bs) |
| { |
| if (td->o.buffer_pattern_bytes) |
| fill_buffer_pattern(td, buf, max_bs); |
| else if (!td->o.zero_buffers) { |
| unsigned int perc = td->o.compress_percentage; |
| struct frand_state *rs; |
| unsigned int left = max_bs; |
| |
| do { |
| rs = get_buf_state(td); |
| |
| min_write = min(min_write, left); |
| |
| if (perc) { |
| unsigned int seg = min_write; |
| |
| seg = min(min_write, td->o.compress_chunk); |
| if (!seg) |
| seg = min_write; |
| |
| fill_random_buf_percentage(rs, buf, perc, seg, |
| min_write); |
| } else |
| fill_random_buf(rs, buf, min_write); |
| |
| buf += min_write; |
| left -= min_write; |
| save_buf_state(td, rs); |
| } while (left); |
| } else |
| memset(buf, 0, max_bs); |
| } |
| |
| /* |
| * "randomly" fill the buffer contents |
| */ |
| void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u, |
| unsigned int min_write, unsigned int max_bs) |
| { |
| io_u->buf_filled_len = 0; |
| fill_io_buffer(td, io_u->buf, min_write, max_bs); |
| } |