blob: 20794c38a88c5d9bea08d50f8865fe398576a235 [file] [log] [blame]
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <signal.h>
#include <time.h>
#include <assert.h>
#include "fio.h"
#include "hash.h"
#include "verify.h"
#include "trim.h"
#include "lib/rand.h"
struct io_completion_data {
int nr; /* input */
int account; /* input */
int error; /* output */
unsigned long bytes_done[2]; /* output */
struct timeval time; /* output */
};
/*
* The ->file_map[] contains a map of blocks we have or have not done io
* to yet. Used to make sure we cover the entire range in a fair fashion.
*/
static int random_map_free(struct fio_file *f, const unsigned long long block)
{
unsigned int idx = RAND_MAP_IDX(f, block);
unsigned int bit = RAND_MAP_BIT(f, block);
dprint(FD_RANDOM, "free: b=%llu, idx=%u, bit=%u\n", block, idx, bit);
return (f->file_map[idx] & (1UL << bit)) == 0;
}
/*
* Mark a given offset as used in the map.
*/
static void mark_random_map(struct thread_data *td, struct io_u *io_u)
{
unsigned int min_bs = td->o.rw_min_bs;
struct fio_file *f = io_u->file;
unsigned long long block;
unsigned int blocks, nr_blocks;
int busy_check;
block = (io_u->offset - f->file_offset) / (unsigned long long) min_bs;
nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
blocks = 0;
busy_check = !(io_u->flags & IO_U_F_BUSY_OK);
while (nr_blocks) {
unsigned int idx, bit;
unsigned long mask, this_blocks;
/*
* If we have a mixed random workload, we may
* encounter blocks we already did IO to.
*/
if (!busy_check) {
blocks = nr_blocks;
break;
}
if ((td->o.ddir_seq_nr == 1) && !random_map_free(f, block))
break;
idx = RAND_MAP_IDX(f, block);
bit = RAND_MAP_BIT(f, block);
fio_assert(td, idx < f->num_maps);
this_blocks = nr_blocks;
if (this_blocks + bit > BLOCKS_PER_MAP)
this_blocks = BLOCKS_PER_MAP - bit;
do {
if (this_blocks == BLOCKS_PER_MAP)
mask = -1UL;
else
mask = ((1UL << this_blocks) - 1) << bit;
if (!(f->file_map[idx] & mask))
break;
this_blocks--;
} while (this_blocks);
if (!this_blocks)
break;
f->file_map[idx] |= mask;
nr_blocks -= this_blocks;
blocks += this_blocks;
block += this_blocks;
}
if ((blocks * min_bs) < io_u->buflen)
io_u->buflen = blocks * min_bs;
}
static unsigned long long last_block(struct thread_data *td, struct fio_file *f,
enum fio_ddir ddir)
{
unsigned long long max_blocks;
unsigned long long max_size;
assert(ddir_rw(ddir));
/*
* Hmm, should we make sure that ->io_size <= ->real_file_size?
*/
max_size = f->io_size;
if (max_size > f->real_file_size)
max_size = f->real_file_size;
if (td->o.zone_range)
max_size = td->o.zone_range;
max_blocks = max_size / (unsigned long long) td->o.ba[ddir];
if (!max_blocks)
return 0;
return max_blocks;
}
/*
* Return the next free block in the map.
*/
static int get_next_free_block(struct thread_data *td, struct fio_file *f,
enum fio_ddir ddir, unsigned long long *b)
{
unsigned long long block, min_bs = td->o.rw_min_bs, lastb;
int i;
lastb = last_block(td, f, ddir);
if (!lastb)
return 1;
i = f->last_free_lookup;
block = i * BLOCKS_PER_MAP;
while (block * min_bs < f->real_file_size &&
block * min_bs < f->io_size) {
if (f->file_map[i] != -1UL) {
block += ffz(f->file_map[i]);
if (block > lastb)
break;
f->last_free_lookup = i;
*b = block;
return 0;
}
block += BLOCKS_PER_MAP;
i++;
}
dprint(FD_IO, "failed finding a free block\n");
return 1;
}
static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
enum fio_ddir ddir, unsigned long long *b)
{
unsigned long long rmax, r, lastb;
int loops = 5;
lastb = last_block(td, f, ddir);
if (!lastb)
return 1;
if (f->failed_rands >= 200)
goto ffz;
rmax = td->o.use_os_rand ? OS_RAND_MAX : FRAND_MAX;
do {
if (td->o.use_os_rand)
r = os_random_long(&td->random_state);
else
r = __rand(&td->__random_state);
*b = (lastb - 1) * (r / ((unsigned long long) rmax + 1.0));
dprint(FD_RANDOM, "off rand %llu\n", r);
/*
* if we are not maintaining a random map, we are done.
*/
if (!file_randommap(td, f))
goto ret_good;
/*
* calculate map offset and check if it's free
*/
if (random_map_free(f, *b))
goto ret_good;
dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n",
*b);
} while (--loops);
if (!f->failed_rands++)
f->last_free_lookup = 0;
/*
* we get here, if we didn't suceed in looking up a block. generate
* a random start offset into the filemap, and find the first free
* block from there.
*/
loops = 10;
do {
f->last_free_lookup = (f->num_maps - 1) *
(r / ((unsigned long long) rmax + 1.0));
if (!get_next_free_block(td, f, ddir, b))
goto ret;
if (td->o.use_os_rand)
r = os_random_long(&td->random_state);
else
r = __rand(&td->__random_state);
} while (--loops);
/*
* that didn't work either, try exhaustive search from the start
*/
f->last_free_lookup = 0;
ffz:
if (!get_next_free_block(td, f, ddir, b))
return 0;
f->last_free_lookup = 0;
return get_next_free_block(td, f, ddir, b);
ret_good:
f->failed_rands = 0;
ret:
return 0;
}
static int get_next_rand_block(struct thread_data *td, struct fio_file *f,
enum fio_ddir ddir, unsigned long long *b)
{
if (get_next_rand_offset(td, f, ddir, b)) {
dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n",
f->file_name, f->last_pos, f->real_file_size);
return 1;
}
return 0;
}
static int get_next_seq_block(struct thread_data *td, struct fio_file *f,
enum fio_ddir ddir, unsigned long long *b)
{
assert(ddir_rw(ddir));
if (f->last_pos < f->real_file_size) {
unsigned long long pos;
if (f->last_pos == f->file_offset && td->o.ddir_seq_add < 0)
f->last_pos = f->real_file_size;
pos = f->last_pos - f->file_offset;
if (pos)
pos += td->o.ddir_seq_add;
*b = pos / td->o.min_bs[ddir];
return 0;
}
return 1;
}
static int get_next_block(struct thread_data *td, struct io_u *io_u,
enum fio_ddir ddir, int rw_seq, unsigned long long *b)
{
struct fio_file *f = io_u->file;
int ret;
assert(ddir_rw(ddir));
if (rw_seq) {
if (td_random(td))
ret = get_next_rand_block(td, f, ddir, b);
else
ret = get_next_seq_block(td, f, ddir, b);
} else {
io_u->flags |= IO_U_F_BUSY_OK;
if (td->o.rw_seq == RW_SEQ_SEQ) {
ret = get_next_seq_block(td, f, ddir, b);
if (ret)
ret = get_next_rand_block(td, f, ddir, b);
} else if (td->o.rw_seq == RW_SEQ_IDENT) {
if (f->last_start != -1ULL)
*b = (f->last_start - f->file_offset)
/ td->o.min_bs[ddir];
else
*b = 0;
ret = 0;
} else {
log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq);
ret = 1;
}
}
return ret;
}
/*
* For random io, generate a random new block and see if it's used. Repeat
* until we find a free one. For sequential io, just return the end of
* the last io issued.
*/
static int __get_next_offset(struct thread_data *td, struct io_u *io_u)
{
struct fio_file *f = io_u->file;
unsigned long long b;
enum fio_ddir ddir = io_u->ddir;
int rw_seq_hit = 0;
assert(ddir_rw(ddir));
if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) {
rw_seq_hit = 1;
td->ddir_seq_nr = td->o.ddir_seq_nr;
}
if (get_next_block(td, io_u, ddir, rw_seq_hit, &b))
return 1;
io_u->offset = b * td->o.ba[ddir];
if (io_u->offset >= f->io_size) {
dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n",
io_u->offset, f->io_size);
return 1;
}
io_u->offset += f->file_offset;
if (io_u->offset >= f->real_file_size) {
dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n",
io_u->offset, f->real_file_size);
return 1;
}
return 0;
}
static int get_next_offset(struct thread_data *td, struct io_u *io_u)
{
struct prof_io_ops *ops = &td->prof_io_ops;
if (ops->fill_io_u_off)
return ops->fill_io_u_off(td, io_u);
return __get_next_offset(td, io_u);
}
static inline int io_u_fits(struct thread_data *td, struct io_u *io_u,
unsigned int buflen)
{
struct fio_file *f = io_u->file;
return io_u->offset + buflen <= f->io_size + td->o.start_offset;
}
static unsigned int __get_next_buflen(struct thread_data *td, struct io_u *io_u)
{
const int ddir = io_u->ddir;
unsigned int uninitialized_var(buflen);
unsigned int minbs, maxbs;
unsigned long r, rand_max;
assert(ddir_rw(ddir));
minbs = td->o.min_bs[ddir];
maxbs = td->o.max_bs[ddir];
if (minbs == maxbs)
return minbs;
/*
* If we can't satisfy the min block size from here, then fail
*/
if (!io_u_fits(td, io_u, minbs))
return 0;
if (td->o.use_os_rand)
rand_max = OS_RAND_MAX;
else
rand_max = FRAND_MAX;
do {
if (td->o.use_os_rand)
r = os_random_long(&td->bsrange_state);
else
r = __rand(&td->__bsrange_state);
if (!td->o.bssplit_nr[ddir]) {
buflen = 1 + (unsigned int) ((double) maxbs *
(r / (rand_max + 1.0)));
if (buflen < minbs)
buflen = minbs;
} else {
long perc = 0;
unsigned int i;
for (i = 0; i < td->o.bssplit_nr[ddir]; i++) {
struct bssplit *bsp = &td->o.bssplit[ddir][i];
buflen = bsp->bs;
perc += bsp->perc;
if ((r <= ((rand_max / 100L) * perc)) &&
io_u_fits(td, io_u, buflen))
break;
}
}
if (!td->o.bs_unaligned && is_power_of_2(minbs))
buflen = (buflen + minbs - 1) & ~(minbs - 1);
} while (!io_u_fits(td, io_u, buflen));
return buflen;
}
static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u)
{
struct prof_io_ops *ops = &td->prof_io_ops;
if (ops->fill_io_u_size)
return ops->fill_io_u_size(td, io_u);
return __get_next_buflen(td, io_u);
}
static void set_rwmix_bytes(struct thread_data *td)
{
unsigned int diff;
/*
* we do time or byte based switch. this is needed because
* buffered writes may issue a lot quicker than they complete,
* whereas reads do not.
*/
diff = td->o.rwmix[td->rwmix_ddir ^ 1];
td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100;
}
static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
{
unsigned int v;
unsigned long r;
if (td->o.use_os_rand) {
r = os_random_long(&td->rwmix_state);
v = 1 + (int) (100.0 * (r / (OS_RAND_MAX + 1.0)));
} else {
r = __rand(&td->__rwmix_state);
v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0)));
}
if (v <= td->o.rwmix[DDIR_READ])
return DDIR_READ;
return DDIR_WRITE;
}
static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir)
{
enum fio_ddir odir = ddir ^ 1;
struct timeval t;
long usec;
assert(ddir_rw(ddir));
if (td->rate_pending_usleep[ddir] <= 0)
return ddir;
/*
* We have too much pending sleep in this direction. See if we
* should switch.
*/
if (td_rw(td)) {
/*
* Other direction does not have too much pending, switch
*/
if (td->rate_pending_usleep[odir] < 100000)
return odir;
/*
* Both directions have pending sleep. Sleep the minimum time
* and deduct from both.
*/
if (td->rate_pending_usleep[ddir] <=
td->rate_pending_usleep[odir]) {
usec = td->rate_pending_usleep[ddir];
} else {
usec = td->rate_pending_usleep[odir];
ddir = odir;
}
} else
usec = td->rate_pending_usleep[ddir];
/*
* We are going to sleep, ensure that we flush anything pending as
* not to skew our latency numbers.
*
* Changed to only monitor 'in flight' requests here instead of the
* td->cur_depth, b/c td->cur_depth does not accurately represent
* io's that have been actually submitted to an async engine,
* and cur_depth is meaningless for sync engines.
*/
if (td->io_u_in_flight) {
int fio_unused ret;
ret = io_u_queued_complete(td, td->io_u_in_flight, NULL);
}
fio_gettime(&t, NULL);
usec_sleep(td, usec);
usec = utime_since_now(&t);
td->rate_pending_usleep[ddir] -= usec;
odir = ddir ^ 1;
if (td_rw(td) && __should_check_rate(td, odir))
td->rate_pending_usleep[odir] -= usec;
return ddir;
}
/*
* Return the data direction for the next io_u. If the job is a
* mixed read/write workload, check the rwmix cycle and switch if
* necessary.
*/
static enum fio_ddir get_rw_ddir(struct thread_data *td)
{
enum fio_ddir ddir;
/*
* see if it's time to fsync
*/
if (td->o.fsync_blocks &&
!(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) &&
td->io_issues[DDIR_WRITE] && should_fsync(td))
return DDIR_SYNC;
/*
* see if it's time to fdatasync
*/
if (td->o.fdatasync_blocks &&
!(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks) &&
td->io_issues[DDIR_WRITE] && should_fsync(td))
return DDIR_DATASYNC;
/*
* see if it's time to sync_file_range
*/
if (td->sync_file_range_nr &&
!(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr) &&
td->io_issues[DDIR_WRITE] && should_fsync(td))
return DDIR_SYNC_FILE_RANGE;
if (td_rw(td)) {
/*
* Check if it's time to seed a new data direction.
*/
if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) {
/*
* Put a top limit on how many bytes we do for
* one data direction, to avoid overflowing the
* ranges too much
*/
ddir = get_rand_ddir(td);
if (ddir != td->rwmix_ddir)
set_rwmix_bytes(td);
td->rwmix_ddir = ddir;
}
ddir = td->rwmix_ddir;
} else if (td_read(td))
ddir = DDIR_READ;
else
ddir = DDIR_WRITE;
td->rwmix_ddir = rate_ddir(td, ddir);
return td->rwmix_ddir;
}
static void set_rw_ddir(struct thread_data *td, struct io_u *io_u)
{
io_u->ddir = get_rw_ddir(td);
if (io_u->ddir == DDIR_WRITE && (td->io_ops->flags & FIO_BARRIER) &&
td->o.barrier_blocks &&
!(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) &&
td->io_issues[DDIR_WRITE])
io_u->flags |= IO_U_F_BARRIER;
}
void put_file_log(struct thread_data *td, struct fio_file *f)
{
int ret = put_file(td, f);
if (ret)
td_verror(td, ret, "file close");
}
void put_io_u(struct thread_data *td, struct io_u *io_u)
{
td_io_u_lock(td);
if (io_u->file && !(io_u->flags & IO_U_F_FREE_DEF))
put_file_log(td, io_u->file);
io_u->file = NULL;
io_u->flags &= ~IO_U_F_FREE_DEF;
io_u->flags |= IO_U_F_FREE;
if (io_u->flags & IO_U_F_IN_CUR_DEPTH)
td->cur_depth--;
flist_del_init(&io_u->list);
flist_add(&io_u->list, &td->io_u_freelist);
td_io_u_unlock(td);
td_io_u_free_notify(td);
}
void clear_io_u(struct thread_data *td, struct io_u *io_u)
{
io_u->flags &= ~IO_U_F_FLIGHT;
put_io_u(td, io_u);
}
void requeue_io_u(struct thread_data *td, struct io_u **io_u)
{
struct io_u *__io_u = *io_u;
dprint(FD_IO, "requeue %p\n", __io_u);
td_io_u_lock(td);
__io_u->flags |= IO_U_F_FREE;
if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(__io_u->ddir))
td->io_issues[__io_u->ddir]--;
__io_u->flags &= ~IO_U_F_FLIGHT;
if (__io_u->flags & IO_U_F_IN_CUR_DEPTH)
td->cur_depth--;
flist_del(&__io_u->list);
flist_add_tail(&__io_u->list, &td->io_u_requeues);
td_io_u_unlock(td);
*io_u = NULL;
}
static int fill_io_u(struct thread_data *td, struct io_u *io_u)
{
if (td->io_ops->flags & FIO_NOIO)
goto out;
set_rw_ddir(td, io_u);
/*
* fsync() or fdatasync() or trim etc, we are done
*/
if (!ddir_rw(io_u->ddir))
goto out;
/*
* See if it's time to switch to a new zone
*/
if (td->zone_bytes >= td->o.zone_size && td->o.zone_skip) {
td->zone_bytes = 0;
io_u->file->file_offset += td->o.zone_range + td->o.zone_skip;
io_u->file->last_pos = io_u->file->file_offset;
td->io_skip_bytes += td->o.zone_skip;
}
/*
* No log, let the seq/rand engine retrieve the next buflen and
* position.
*/
if (get_next_offset(td, io_u)) {
dprint(FD_IO, "io_u %p, failed getting offset\n", io_u);
return 1;
}
io_u->buflen = get_next_buflen(td, io_u);
if (!io_u->buflen) {
dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
return 1;
}
if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
dprint(FD_IO, "io_u %p, offset too large\n", io_u);
dprint(FD_IO, " off=%llu/%lu > %llu\n", io_u->offset,
io_u->buflen, io_u->file->real_file_size);
return 1;
}
/*
* mark entry before potentially trimming io_u
*/
if (td_random(td) && file_randommap(td, io_u->file))
mark_random_map(td, io_u);
/*
* If using a write iolog, store this entry.
*/
out:
dprint_io_u(io_u, "fill_io_u");
td->zone_bytes += io_u->buflen;
log_io_u(td, io_u);
return 0;
}
static void __io_u_mark_map(unsigned int *map, unsigned int nr)
{
int idx = 0;
switch (nr) {
default:
idx = 6;
break;
case 33 ... 64:
idx = 5;
break;
case 17 ... 32:
idx = 4;
break;
case 9 ... 16:
idx = 3;
break;
case 5 ... 8:
idx = 2;
break;
case 1 ... 4:
idx = 1;
case 0:
break;
}
map[idx]++;
}
void io_u_mark_submit(struct thread_data *td, unsigned int nr)
{
__io_u_mark_map(td->ts.io_u_submit, nr);
td->ts.total_submit++;
}
void io_u_mark_complete(struct thread_data *td, unsigned int nr)
{
__io_u_mark_map(td->ts.io_u_complete, nr);
td->ts.total_complete++;
}
void io_u_mark_depth(struct thread_data *td, unsigned int nr)
{
int idx = 0;
switch (td->cur_depth) {
default:
idx = 6;
break;
case 32 ... 63:
idx = 5;
break;
case 16 ... 31:
idx = 4;
break;
case 8 ... 15:
idx = 3;
break;
case 4 ... 7:
idx = 2;
break;
case 2 ... 3:
idx = 1;
case 1:
break;
}
td->ts.io_u_map[idx] += nr;
}
static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec)
{
int idx = 0;
assert(usec < 1000);
switch (usec) {
case 750 ... 999:
idx = 9;
break;
case 500 ... 749:
idx = 8;
break;
case 250 ... 499:
idx = 7;
break;
case 100 ... 249:
idx = 6;
break;
case 50 ... 99:
idx = 5;
break;
case 20 ... 49:
idx = 4;
break;
case 10 ... 19:
idx = 3;
break;
case 4 ... 9:
idx = 2;
break;
case 2 ... 3:
idx = 1;
case 0 ... 1:
break;
}
assert(idx < FIO_IO_U_LAT_U_NR);
td->ts.io_u_lat_u[idx]++;
}
static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec)
{
int idx = 0;
switch (msec) {
default:
idx = 11;
break;
case 1000 ... 1999:
idx = 10;
break;
case 750 ... 999:
idx = 9;
break;
case 500 ... 749:
idx = 8;
break;
case 250 ... 499:
idx = 7;
break;
case 100 ... 249:
idx = 6;
break;
case 50 ... 99:
idx = 5;
break;
case 20 ... 49:
idx = 4;
break;
case 10 ... 19:
idx = 3;
break;
case 4 ... 9:
idx = 2;
break;
case 2 ... 3:
idx = 1;
case 0 ... 1:
break;
}
assert(idx < FIO_IO_U_LAT_M_NR);
td->ts.io_u_lat_m[idx]++;
}
static void io_u_mark_latency(struct thread_data *td, unsigned long usec)
{
if (usec < 1000)
io_u_mark_lat_usec(td, usec);
else
io_u_mark_lat_msec(td, usec / 1000);
}
/*
* Get next file to service by choosing one at random
*/
static struct fio_file *get_next_file_rand(struct thread_data *td,
enum fio_file_flags goodf,
enum fio_file_flags badf)
{
struct fio_file *f;
int fno;
do {
int opened = 0;
unsigned long r;
if (td->o.use_os_rand) {
r = os_random_long(&td->next_file_state);
fno = (unsigned int) ((double) td->o.nr_files
* (r / (OS_RAND_MAX + 1.0)));
} else {
r = __rand(&td->__next_file_state);
fno = (unsigned int) ((double) td->o.nr_files
* (r / (FRAND_MAX + 1.0)));
}
f = td->files[fno];
if (fio_file_done(f))
continue;
if (!fio_file_open(f)) {
int err;
err = td_io_open_file(td, f);
if (err)
continue;
opened = 1;
}
if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) {
dprint(FD_FILE, "get_next_file_rand: %p\n", f);
return f;
}
if (opened)
td_io_close_file(td, f);
} while (1);
}
/*
* Get next file to service by doing round robin between all available ones
*/
static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
int badf)
{
unsigned int old_next_file = td->next_file;
struct fio_file *f;
do {
int opened = 0;
f = td->files[td->next_file];
td->next_file++;
if (td->next_file >= td->o.nr_files)
td->next_file = 0;
dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags);
if (fio_file_done(f)) {
f = NULL;
continue;
}
if (!fio_file_open(f)) {
int err;
err = td_io_open_file(td, f);
if (err) {
dprint(FD_FILE, "error %d on open of %s\n",
err, f->file_name);
f = NULL;
continue;
}
opened = 1;
}
dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf,
f->flags);
if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
break;
if (opened)
td_io_close_file(td, f);
f = NULL;
} while (td->next_file != old_next_file);
dprint(FD_FILE, "get_next_file_rr: %p\n", f);
return f;
}
static struct fio_file *__get_next_file(struct thread_data *td)
{
struct fio_file *f;
assert(td->o.nr_files <= td->files_index);
if (td->nr_done_files >= td->o.nr_files) {
dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d,"
" nr_files=%d\n", td->nr_open_files,
td->nr_done_files,
td->o.nr_files);
return NULL;
}
f = td->file_service_file;
if (f && fio_file_open(f) && !fio_file_closing(f)) {
if (td->o.file_service_type == FIO_FSERVICE_SEQ)
goto out;
if (td->file_service_left--)
goto out;
}
if (td->o.file_service_type == FIO_FSERVICE_RR ||
td->o.file_service_type == FIO_FSERVICE_SEQ)
f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing);
else
f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing);
td->file_service_file = f;
td->file_service_left = td->file_service_nr - 1;
out:
dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name);
return f;
}
static struct fio_file *get_next_file(struct thread_data *td)
{
struct prof_io_ops *ops = &td->prof_io_ops;
if (ops->get_next_file)
return ops->get_next_file(td);
return __get_next_file(td);
}
static int set_io_u_file(struct thread_data *td, struct io_u *io_u)
{
struct fio_file *f;
do {
f = get_next_file(td);
if (!f)
return 1;
io_u->file = f;
get_file(f);
if (!fill_io_u(td, io_u))
break;
put_file_log(td, f);
td_io_close_file(td, f);
io_u->file = NULL;
fio_file_set_done(f);
td->nr_done_files++;
dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name,
td->nr_done_files, td->o.nr_files);
} while (1);
return 0;
}
struct io_u *__get_io_u(struct thread_data *td)
{
struct io_u *io_u = NULL;
td_io_u_lock(td);
again:
if (!flist_empty(&td->io_u_requeues))
io_u = flist_entry(td->io_u_requeues.next, struct io_u, list);
else if (!queue_full(td)) {
io_u = flist_entry(td->io_u_freelist.next, struct io_u, list);
io_u->buflen = 0;
io_u->resid = 0;
io_u->file = NULL;
io_u->end_io = NULL;
}
if (io_u) {
assert(io_u->flags & IO_U_F_FREE);
io_u->flags &= ~(IO_U_F_FREE | IO_U_F_FREE_DEF);
io_u->flags &= ~(IO_U_F_TRIMMED | IO_U_F_BARRIER);
io_u->flags &= ~IO_U_F_VER_LIST;
io_u->error = 0;
flist_del(&io_u->list);
flist_add(&io_u->list, &td->io_u_busylist);
td->cur_depth++;
io_u->flags |= IO_U_F_IN_CUR_DEPTH;
} else if (td->o.verify_async) {
/*
* We ran out, wait for async verify threads to finish and
* return one
*/
pthread_cond_wait(&td->free_cond, &td->io_u_lock);
goto again;
}
td_io_u_unlock(td);
return io_u;
}
static int check_get_trim(struct thread_data *td, struct io_u *io_u)
{
if (td->o.trim_backlog && td->trim_entries) {
int get_trim = 0;
if (td->trim_batch) {
td->trim_batch--;
get_trim = 1;
} else if (!(td->io_hist_len % td->o.trim_backlog) &&
td->last_ddir != DDIR_READ) {
td->trim_batch = td->o.trim_batch;
if (!td->trim_batch)
td->trim_batch = td->o.trim_backlog;
get_trim = 1;
}
if (get_trim && !get_next_trim(td, io_u))
return 1;
}
return 0;
}
static int check_get_verify(struct thread_data *td, struct io_u *io_u)
{
if (td->o.verify_backlog && td->io_hist_len) {
int get_verify = 0;
if (td->verify_batch)
get_verify = 1;
else if (!(td->io_hist_len % td->o.verify_backlog) &&
td->last_ddir != DDIR_READ) {
td->verify_batch = td->o.verify_batch;
if (!td->verify_batch)
td->verify_batch = td->o.verify_backlog;
get_verify = 1;
}
if (get_verify && !get_next_verify(td, io_u)) {
td->verify_batch--;
return 1;
}
}
return 0;
}
/*
* Fill offset and start time into the buffer content, to prevent too
* easy compressible data for simple de-dupe attempts. Do this for every
* 512b block in the range, since that should be the smallest block size
* we can expect from a device.
*/
static void small_content_scramble(struct io_u *io_u)
{
unsigned int i, nr_blocks = io_u->buflen / 512;
unsigned long long boffset;
unsigned int offset;
void *p, *end;
if (!nr_blocks)
return;
p = io_u->xfer_buf;
boffset = io_u->offset;
io_u->buf_filled_len = 0;
for (i = 0; i < nr_blocks; i++) {
/*
* Fill the byte offset into a "random" start offset of
* the buffer, given by the product of the usec time
* and the actual offset.
*/
offset = (io_u->start_time.tv_usec ^ boffset) & 511;
offset &= ~(sizeof(unsigned long long) - 1);
if (offset >= 512 - sizeof(unsigned long long))
offset -= sizeof(unsigned long long);
memcpy(p + offset, &boffset, sizeof(boffset));
end = p + 512 - sizeof(io_u->start_time);
memcpy(end, &io_u->start_time, sizeof(io_u->start_time));
p += 512;
boffset += 512;
}
}
/*
* Return an io_u to be processed. Gets a buflen and offset, sets direction,
* etc. The returned io_u is fully ready to be prepped and submitted.
*/
struct io_u *get_io_u(struct thread_data *td)
{
struct fio_file *f;
struct io_u *io_u;
int do_scramble = 0;
io_u = __get_io_u(td);
if (!io_u) {
dprint(FD_IO, "__get_io_u failed\n");
return NULL;
}
if (check_get_verify(td, io_u))
goto out;
if (check_get_trim(td, io_u))
goto out;
/*
* from a requeue, io_u already setup
*/
if (io_u->file)
goto out;
/*
* If using an iolog, grab next piece if any available.
*/
if (td->o.read_iolog_file) {
if (read_iolog_get(td, io_u))
goto err_put;
} else if (set_io_u_file(td, io_u)) {
dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
goto err_put;
}
f = io_u->file;
assert(fio_file_open(f));
if (ddir_rw(io_u->ddir)) {
if (!io_u->buflen && !(td->io_ops->flags & FIO_NOIO)) {
dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u);
goto err_put;
}
f->last_start = io_u->offset;
f->last_pos = io_u->offset + io_u->buflen;
if (io_u->ddir == DDIR_WRITE) {
if (td->o.refill_buffers) {
io_u_fill_buffer(td, io_u,
io_u->xfer_buflen, io_u->xfer_buflen);
} else if (td->o.scramble_buffers)
do_scramble = 1;
if (td->o.verify != VERIFY_NONE) {
populate_verify_io_u(td, io_u);
do_scramble = 0;
}
} else if (io_u->ddir == DDIR_READ) {
/*
* Reset the buf_filled parameters so next time if the
* buffer is used for writes it is refilled.
*/
io_u->buf_filled_len = 0;
}
}
/*
* Set io data pointers.
*/
io_u->xfer_buf = io_u->buf;
io_u->xfer_buflen = io_u->buflen;
out:
assert(io_u->file);
if (!td_io_prep(td, io_u)) {
if (!td->o.disable_slat)
fio_gettime(&io_u->start_time, NULL);
if (do_scramble)
small_content_scramble(io_u);
return io_u;
}
err_put:
dprint(FD_IO, "get_io_u failed\n");
put_io_u(td, io_u);
return NULL;
}
void io_u_log_error(struct thread_data *td, struct io_u *io_u)
{
const char *msg[] = { "read", "write", "sync", "datasync",
"sync_file_range", "wait", "trim" };
log_err("fio: io_u error");
if (io_u->file)
log_err(" on file %s", io_u->file->file_name);
log_err(": %s\n", strerror(io_u->error));
log_err(" %s offset=%llu, buflen=%lu\n", msg[io_u->ddir],
io_u->offset, io_u->xfer_buflen);
if (!td->error)
td_verror(td, io_u->error, "io_u error");
}
static void account_io_completion(struct thread_data *td, struct io_u *io_u,
struct io_completion_data *icd,
const enum fio_ddir idx, unsigned int bytes)
{
unsigned long uninitialized_var(lusec);
if (!icd->account)
return;
if (!td->o.disable_clat || !td->o.disable_bw)
lusec = utime_since(&io_u->issue_time, &icd->time);
if (!td->o.disable_lat) {
unsigned long tusec;
tusec = utime_since(&io_u->start_time, &icd->time);
add_lat_sample(td, idx, tusec, bytes);
}
if (!td->o.disable_clat) {
add_clat_sample(td, idx, lusec, bytes);
io_u_mark_latency(td, lusec);
}
if (!td->o.disable_bw)
add_bw_sample(td, idx, bytes, &icd->time);
add_iops_sample(td, idx, &icd->time);
}
static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
{
unsigned long long secs, remainder, bps, bytes;
bytes = td->this_io_bytes[ddir];
bps = td->rate_bps[ddir];
secs = bytes / bps;
remainder = bytes % bps;
return remainder * 1000000 / bps + secs * 1000000;
}
static void io_completed(struct thread_data *td, struct io_u *io_u,
struct io_completion_data *icd)
{
/*
* Older gcc's are too dumb to realize that usec is always used
* initialized, silence that warning.
*/
unsigned long uninitialized_var(usec);
struct fio_file *f;
dprint_io_u(io_u, "io complete");
td_io_u_lock(td);
assert(io_u->flags & IO_U_F_FLIGHT);
io_u->flags &= ~(IO_U_F_FLIGHT | IO_U_F_BUSY_OK);
td_io_u_unlock(td);
if (ddir_sync(io_u->ddir)) {
td->last_was_sync = 1;
f = io_u->file;
if (f) {
f->first_write = -1ULL;
f->last_write = -1ULL;
}
return;
}
td->last_was_sync = 0;
td->last_ddir = io_u->ddir;
if (!io_u->error && ddir_rw(io_u->ddir)) {
unsigned int bytes = io_u->buflen - io_u->resid;
const enum fio_ddir idx = io_u->ddir;
const enum fio_ddir odx = io_u->ddir ^ 1;
int ret;
td->io_blocks[idx]++;
td->this_io_blocks[idx]++;
td->io_bytes[idx] += bytes;
td->this_io_bytes[idx] += bytes;
if (idx == DDIR_WRITE) {
f = io_u->file;
if (f) {
if (f->first_write == -1ULL ||
io_u->offset < f->first_write)
f->first_write = io_u->offset;
if (f->last_write == -1ULL ||
((io_u->offset + bytes) > f->last_write))
f->last_write = io_u->offset + bytes;
}
}
if (ramp_time_over(td) && (td->runstate == TD_RUNNING ||
td->runstate == TD_VERIFYING)) {
account_io_completion(td, io_u, icd, idx, bytes);
if (__should_check_rate(td, idx)) {
td->rate_pending_usleep[idx] =
(usec_for_io(td, idx) -
utime_since_now(&td->start));
}
if (__should_check_rate(td, odx))
td->rate_pending_usleep[odx] =
(usec_for_io(td, odx) -
utime_since_now(&td->start));
}
if (td_write(td) && idx == DDIR_WRITE &&
td->o.do_verify &&
td->o.verify != VERIFY_NONE)
log_io_piece(td, io_u);
icd->bytes_done[idx] += bytes;
if (io_u->end_io) {
ret = io_u->end_io(td, io_u);
if (ret && !icd->error)
icd->error = ret;
}
} else if (io_u->error) {
icd->error = io_u->error;
io_u_log_error(td, io_u);
}
if (icd->error && td_non_fatal_error(icd->error) &&
(td->o.continue_on_error & td_error_type(io_u->ddir, icd->error))) {
/*
* If there is a non_fatal error, then add to the error count
* and clear all the errors.
*/
update_error_count(td, icd->error);
td_clear_error(td);
icd->error = 0;
io_u->error = 0;
}
}
static void init_icd(struct thread_data *td, struct io_completion_data *icd,
int nr)
{
if (!td->o.disable_clat || !td->o.disable_bw)
fio_gettime(&icd->time, NULL);
icd->nr = nr;
icd->account = 1;
icd->error = 0;
icd->bytes_done[0] = icd->bytes_done[1] = 0;
}
static void ios_completed(struct thread_data *td,
struct io_completion_data *icd)
{
struct io_u *io_u;
int i;
for (i = 0; i < icd->nr; i++) {
io_u = td->io_ops->event(td, i);
io_completed(td, io_u, icd);
if (!(io_u->flags & IO_U_F_FREE_DEF))
put_io_u(td, io_u);
icd->account = 0;
}
}
/*
* Complete a single io_u for the sync engines.
*/
int io_u_sync_complete(struct thread_data *td, struct io_u *io_u,
unsigned long *bytes)
{
struct io_completion_data icd;
init_icd(td, &icd, 1);
io_completed(td, io_u, &icd);
if (!(io_u->flags & IO_U_F_FREE_DEF))
put_io_u(td, io_u);
if (icd.error) {
td_verror(td, icd.error, "io_u_sync_complete");
return -1;
}
if (bytes) {
bytes[0] += icd.bytes_done[0];
bytes[1] += icd.bytes_done[1];
}
return 0;
}
/*
* Called to complete min_events number of io for the async engines.
*/
int io_u_queued_complete(struct thread_data *td, int min_evts,
unsigned long *bytes)
{
struct io_completion_data icd;
struct timespec *tvp = NULL;
int ret;
struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
dprint(FD_IO, "io_u_queued_completed: min=%d\n", min_evts);
if (!min_evts)
tvp = &ts;
ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete, tvp);
if (ret < 0) {
td_verror(td, -ret, "td_io_getevents");
return ret;
} else if (!ret)
return ret;
init_icd(td, &icd, ret);
ios_completed(td, &icd);
if (icd.error) {
td_verror(td, icd.error, "io_u_queued_complete");
return -1;
}
if (bytes) {
bytes[0] += icd.bytes_done[0];
bytes[1] += icd.bytes_done[1];
}
return 0;
}
/*
* Call when io_u is really queued, to update the submission latency.
*/
void io_u_queued(struct thread_data *td, struct io_u *io_u)
{
if (!td->o.disable_slat) {
unsigned long slat_time;
slat_time = utime_since(&io_u->start_time, &io_u->issue_time);
add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen);
}
}
/*
* "randomly" fill the buffer contents
*/
void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u,
unsigned int min_write, unsigned int max_bs)
{
io_u->buf_filled_len = 0;
if (!td->o.zero_buffers) {
unsigned int perc = td->o.compress_percentage;
if (perc) {
unsigned int seg = min_write;
seg = min(min_write, td->o.compress_chunk);
fill_random_buf_percentage(&td->buf_state, io_u->buf,
perc, seg, max_bs);
} else
fill_random_buf(&td->buf_state, io_u->buf, max_bs);
} else
memset(io_u->buf, 0, max_bs);
}