| /* |
| * fio - the flexible io tester |
| * |
| * Copyright (C) 2005 Jens Axboe <axboe@suse.de> |
| * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk> |
| * |
| * The license below covers all files distributed with fio unless otherwise |
| * noted in the file itself. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| * |
| */ |
| #include <unistd.h> |
| #include <fcntl.h> |
| #include <string.h> |
| #include <signal.h> |
| #include <time.h> |
| #include <locale.h> |
| #include <assert.h> |
| #include <sys/stat.h> |
| #include <sys/wait.h> |
| #include <sys/ipc.h> |
| #include <sys/shm.h> |
| #include <sys/mman.h> |
| |
| #include "fio.h" |
| #include "os.h" |
| |
| unsigned long page_mask; |
| unsigned long page_size; |
| #define ALIGN(buf) \ |
| (char *) (((unsigned long) (buf) + page_mask) & ~page_mask) |
| |
| int groupid = 0; |
| int thread_number = 0; |
| int nr_process = 0; |
| int nr_thread = 0; |
| int shm_id = 0; |
| int temp_stall_ts; |
| |
| static struct fio_sem *startup_sem; |
| static volatile int fio_abort; |
| static int exit_value; |
| |
| struct io_log *agg_io_log[2]; |
| |
| #define TERMINATE_ALL (-1) |
| #define JOB_START_TIMEOUT (5 * 1000) |
| |
| static inline void td_set_runstate(struct thread_data *td, int runstate) |
| { |
| td->runstate = runstate; |
| } |
| |
| static void terminate_threads(int group_id) |
| { |
| struct thread_data *td; |
| int i; |
| |
| for_each_td(td, i) { |
| if (group_id == TERMINATE_ALL || groupid == td->groupid) { |
| /* |
| * if the thread is running, just let it exit |
| */ |
| if (td->runstate < TD_RUNNING) |
| kill(td->pid, SIGQUIT); |
| td->terminate = 1; |
| td->o.start_delay = 0; |
| } |
| } |
| } |
| |
| static void sig_handler(int sig) |
| { |
| switch (sig) { |
| case SIGALRM: |
| update_io_ticks(); |
| disk_util_timer_arm(); |
| print_thread_status(); |
| break; |
| default: |
| printf("\nfio: terminating on signal %d\n", sig); |
| fflush(stdout); |
| terminate_threads(TERMINATE_ALL); |
| break; |
| } |
| } |
| |
| /* |
| * Check if we are above the minimum rate given. |
| */ |
| static int check_min_rate(struct thread_data *td, struct timeval *now) |
| { |
| unsigned long long bytes = 0; |
| unsigned long iops = 0; |
| unsigned long spent; |
| unsigned long rate; |
| |
| /* |
| * No minimum rate set, always ok |
| */ |
| if (!td->o.ratemin && !td->o.rate_iops_min) |
| return 0; |
| |
| /* |
| * allow a 2 second settle period in the beginning |
| */ |
| if (mtime_since(&td->start, now) < 2000) |
| return 0; |
| |
| if (td_read(td)) { |
| iops += td->io_blocks[DDIR_READ]; |
| bytes += td->this_io_bytes[DDIR_READ]; |
| } |
| if (td_write(td)) { |
| iops += td->io_blocks[DDIR_WRITE]; |
| bytes += td->this_io_bytes[DDIR_WRITE]; |
| } |
| |
| /* |
| * if rate blocks is set, sample is running |
| */ |
| if (td->rate_bytes || td->rate_blocks) { |
| spent = mtime_since(&td->lastrate, now); |
| if (spent < td->o.ratecycle) |
| return 0; |
| |
| if (td->o.rate) { |
| /* |
| * check bandwidth specified rate |
| */ |
| if (bytes < td->rate_bytes) { |
| log_err("%s: min rate %u not met\n", td->o.name, td->o.ratemin); |
| return 1; |
| } else { |
| rate = (bytes - td->rate_bytes) / spent; |
| if (rate < td->o.ratemin || bytes < td->rate_bytes) { |
| log_err("%s: min rate %u not met, got %luKiB/sec\n", td->o.name, td->o.ratemin, rate); |
| return 1; |
| } |
| } |
| } else { |
| /* |
| * checks iops specified rate |
| */ |
| if (iops < td->o.rate_iops) { |
| log_err("%s: min iops rate %u not met\n", td->o.name, td->o.rate_iops); |
| return 1; |
| } else { |
| rate = (iops - td->rate_blocks) / spent; |
| if (rate < td->o.rate_iops_min || iops < td->rate_blocks) { |
| log_err("%s: min iops rate %u not met, got %lu\n", td->o.name, td->o.rate_iops_min, rate); |
| } |
| } |
| } |
| } |
| |
| td->rate_bytes = bytes; |
| td->rate_blocks = iops; |
| memcpy(&td->lastrate, now, sizeof(*now)); |
| return 0; |
| } |
| |
| static inline int runtime_exceeded(struct thread_data *td, struct timeval *t) |
| { |
| if (!td->o.timeout) |
| return 0; |
| if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000) |
| return 1; |
| |
| return 0; |
| } |
| |
| /* |
| * When job exits, we can cancel the in-flight IO if we are using async |
| * io. Attempt to do so. |
| */ |
| static void cleanup_pending_aio(struct thread_data *td) |
| { |
| struct list_head *entry, *n; |
| struct io_u *io_u; |
| int r; |
| |
| /* |
| * get immediately available events, if any |
| */ |
| r = io_u_queued_complete(td, 0); |
| if (r < 0) |
| return; |
| |
| /* |
| * now cancel remaining active events |
| */ |
| if (td->io_ops->cancel) { |
| list_for_each_safe(entry, n, &td->io_u_busylist) { |
| io_u = list_entry(entry, struct io_u, list); |
| |
| /* |
| * if the io_u isn't in flight, then that generally |
| * means someone leaked an io_u. complain but fix |
| * it up, so we don't stall here. |
| */ |
| if ((io_u->flags & IO_U_F_FLIGHT) == 0) { |
| log_err("fio: non-busy IO on busy list\n"); |
| put_io_u(td, io_u); |
| } else { |
| r = td->io_ops->cancel(td, io_u); |
| if (!r) |
| put_io_u(td, io_u); |
| } |
| } |
| } |
| |
| if (td->cur_depth) |
| r = io_u_queued_complete(td, td->cur_depth); |
| } |
| |
| /* |
| * Helper to handle the final sync of a file. Works just like the normal |
| * io path, just does everything sync. |
| */ |
| static int fio_io_sync(struct thread_data *td, struct fio_file *f) |
| { |
| struct io_u *io_u = __get_io_u(td); |
| int ret; |
| |
| if (!io_u) |
| return 1; |
| |
| io_u->ddir = DDIR_SYNC; |
| io_u->file = f; |
| |
| if (td_io_prep(td, io_u)) { |
| put_io_u(td, io_u); |
| return 1; |
| } |
| |
| requeue: |
| ret = td_io_queue(td, io_u); |
| if (ret < 0) { |
| td_verror(td, io_u->error, "td_io_queue"); |
| put_io_u(td, io_u); |
| return 1; |
| } else if (ret == FIO_Q_QUEUED) { |
| if (io_u_queued_complete(td, 1) < 0) |
| return 1; |
| } else if (ret == FIO_Q_COMPLETED) { |
| if (io_u->error) { |
| td_verror(td, io_u->error, "td_io_queue"); |
| return 1; |
| } |
| |
| if (io_u_sync_complete(td, io_u) < 0) |
| return 1; |
| } else if (ret == FIO_Q_BUSY) { |
| if (td_io_commit(td)) |
| return 1; |
| goto requeue; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * The main verify engine. Runs over the writes we previously submitted, |
| * reads the blocks back in, and checks the crc/md5 of the data. |
| */ |
| static void do_verify(struct thread_data *td) |
| { |
| struct fio_file *f; |
| struct io_u *io_u; |
| int ret, min_events; |
| unsigned int i; |
| |
| /* |
| * sync io first and invalidate cache, to make sure we really |
| * read from disk. |
| */ |
| for_each_file(td, f, i) { |
| if (!(f->flags & FIO_FILE_OPEN)) |
| continue; |
| if (fio_io_sync(td, f)) |
| break; |
| if (file_invalidate_cache(td, f)) |
| break; |
| } |
| |
| if (td->error) |
| return; |
| |
| td_set_runstate(td, TD_VERIFYING); |
| |
| io_u = NULL; |
| while (!td->terminate) { |
| int ret2; |
| |
| io_u = __get_io_u(td); |
| if (!io_u) |
| break; |
| |
| if (runtime_exceeded(td, &io_u->start_time)) { |
| put_io_u(td, io_u); |
| break; |
| } |
| |
| if (get_next_verify(td, io_u)) { |
| put_io_u(td, io_u); |
| break; |
| } |
| |
| if (td_io_prep(td, io_u)) { |
| put_io_u(td, io_u); |
| break; |
| } |
| |
| io_u->end_io = verify_io_u; |
| |
| ret = td_io_queue(td, io_u); |
| switch (ret) { |
| case FIO_Q_COMPLETED: |
| if (io_u->error) |
| ret = -io_u->error; |
| else if (io_u->resid) { |
| int bytes = io_u->xfer_buflen - io_u->resid; |
| |
| /* |
| * zero read, fail |
| */ |
| if (!bytes) { |
| td_verror(td, ENODATA, "full resid"); |
| put_io_u(td, io_u); |
| break; |
| } |
| io_u->xfer_buflen = io_u->resid; |
| io_u->xfer_buf += bytes; |
| requeue_io_u(td, &io_u); |
| } else { |
| ret = io_u_sync_complete(td, io_u); |
| if (ret < 0) |
| break; |
| } |
| continue; |
| case FIO_Q_QUEUED: |
| break; |
| case FIO_Q_BUSY: |
| requeue_io_u(td, &io_u); |
| ret2 = td_io_commit(td); |
| if (ret2 < 0) |
| ret = ret2; |
| break; |
| default: |
| assert(ret < 0); |
| td_verror(td, -ret, "td_io_queue"); |
| break; |
| } |
| |
| if (ret < 0 || td->error) |
| break; |
| |
| /* |
| * if we can queue more, do so. but check if there are |
| * completed io_u's first. |
| */ |
| min_events = 0; |
| if (queue_full(td) || ret == FIO_Q_BUSY) { |
| min_events = 1; |
| |
| if (td->cur_depth > td->o.iodepth_low) |
| min_events = td->cur_depth - td->o.iodepth_low; |
| } |
| |
| /* |
| * Reap required number of io units, if any, and do the |
| * verification on them through the callback handler |
| */ |
| if (io_u_queued_complete(td, min_events) < 0) |
| break; |
| } |
| |
| if (!td->error) { |
| min_events = td->cur_depth; |
| |
| if (min_events) |
| ret = io_u_queued_complete(td, min_events); |
| } else |
| cleanup_pending_aio(td); |
| |
| td_set_runstate(td, TD_RUNNING); |
| } |
| |
| /* |
| * Main IO worker function. It retrieves io_u's to process and queues |
| * and reaps them, checking for rate and errors along the way. |
| */ |
| static void do_io(struct thread_data *td) |
| { |
| struct timeval s; |
| unsigned long usec; |
| unsigned int i; |
| int ret = 0; |
| |
| td_set_runstate(td, TD_RUNNING); |
| |
| while ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->io_size) { |
| struct timeval comp_time; |
| long bytes_done = 0; |
| int min_evts = 0; |
| struct io_u *io_u; |
| int ret2; |
| |
| if (td->terminate) |
| break; |
| |
| io_u = get_io_u(td); |
| if (!io_u) |
| break; |
| |
| memcpy(&s, &io_u->start_time, sizeof(s)); |
| |
| if (runtime_exceeded(td, &s)) { |
| put_io_u(td, io_u); |
| break; |
| } |
| |
| ret = td_io_queue(td, io_u); |
| switch (ret) { |
| case FIO_Q_COMPLETED: |
| if (io_u->error) |
| ret = -io_u->error; |
| else if (io_u->resid) { |
| int bytes = io_u->xfer_buflen - io_u->resid; |
| |
| /* |
| * zero read, fail |
| */ |
| if (!bytes) { |
| td_verror(td, ENODATA, "full resid"); |
| put_io_u(td, io_u); |
| break; |
| } |
| |
| io_u->xfer_buflen = io_u->resid; |
| io_u->xfer_buf += bytes; |
| requeue_io_u(td, &io_u); |
| } else { |
| fio_gettime(&comp_time, NULL); |
| bytes_done = io_u_sync_complete(td, io_u); |
| if (bytes_done < 0) |
| ret = bytes_done; |
| } |
| break; |
| case FIO_Q_QUEUED: |
| /* |
| * if the engine doesn't have a commit hook, |
| * the io_u is really queued. if it does have such |
| * a hook, it has to call io_u_queued() itself. |
| */ |
| if (td->io_ops->commit == NULL) |
| io_u_queued(td, io_u); |
| break; |
| case FIO_Q_BUSY: |
| requeue_io_u(td, &io_u); |
| ret2 = td_io_commit(td); |
| if (ret2 < 0) |
| ret = ret2; |
| break; |
| default: |
| assert(ret < 0); |
| put_io_u(td, io_u); |
| break; |
| } |
| |
| if (ret < 0 || td->error) |
| break; |
| |
| /* |
| * See if we need to complete some commands |
| */ |
| if (ret == FIO_Q_QUEUED || ret == FIO_Q_BUSY) { |
| min_evts = 0; |
| if (queue_full(td) || ret == FIO_Q_BUSY) { |
| min_evts = 1; |
| |
| if (td->cur_depth > td->o.iodepth_low) |
| min_evts = td->cur_depth - td->o.iodepth_low; |
| } |
| |
| fio_gettime(&comp_time, NULL); |
| bytes_done = io_u_queued_complete(td, min_evts); |
| if (bytes_done < 0) |
| break; |
| } |
| |
| if (!bytes_done) |
| continue; |
| |
| /* |
| * the rate is batched for now, it should work for batches |
| * of completions except the very first one which may look |
| * a little bursty |
| */ |
| usec = utime_since(&s, &comp_time); |
| |
| rate_throttle(td, usec, bytes_done); |
| |
| if (check_min_rate(td, &comp_time)) { |
| if (exitall_on_terminate) |
| terminate_threads(td->groupid); |
| td_verror(td, ENODATA, "check_min_rate"); |
| break; |
| } |
| |
| if (td->o.thinktime) { |
| unsigned long long b; |
| |
| b = td->io_blocks[0] + td->io_blocks[1]; |
| if (!(b % td->o.thinktime_blocks)) { |
| int left; |
| |
| if (td->o.thinktime_spin) |
| __usec_sleep(td->o.thinktime_spin); |
| |
| left = td->o.thinktime - td->o.thinktime_spin; |
| if (left) |
| usec_sleep(td, left); |
| } |
| } |
| } |
| |
| if (!td->error) { |
| struct fio_file *f; |
| |
| i = td->cur_depth; |
| if (i) |
| ret = io_u_queued_complete(td, i); |
| |
| if (should_fsync(td) && td->o.end_fsync) { |
| td_set_runstate(td, TD_FSYNCING); |
| |
| for_each_file(td, f, i) { |
| if (!(f->flags & FIO_FILE_OPEN)) |
| continue; |
| fio_io_sync(td, f); |
| } |
| } |
| } else |
| cleanup_pending_aio(td); |
| } |
| |
| static void cleanup_io_u(struct thread_data *td) |
| { |
| struct list_head *entry, *n; |
| struct io_u *io_u; |
| |
| list_for_each_safe(entry, n, &td->io_u_freelist) { |
| io_u = list_entry(entry, struct io_u, list); |
| |
| list_del(&io_u->list); |
| free(io_u); |
| } |
| |
| free_io_mem(td); |
| } |
| |
| /* |
| * "randomly" fill the buffer contents |
| */ |
| static void fill_rand_buf(struct io_u *io_u, int max_bs) |
| { |
| int *ptr = io_u->buf; |
| |
| while ((void *) ptr - io_u->buf < max_bs) { |
| *ptr = rand() * 0x9e370001; |
| ptr++; |
| } |
| } |
| |
| static int init_io_u(struct thread_data *td) |
| { |
| unsigned long long buf_size; |
| struct io_u *io_u; |
| unsigned int max_bs; |
| int i, max_units; |
| char *p; |
| |
| if (td->io_ops->flags & FIO_SYNCIO) |
| max_units = 1; |
| else |
| max_units = td->o.iodepth; |
| |
| max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]); |
| buf_size = (unsigned long long) max_bs * (unsigned long long) max_units; |
| buf_size += page_mask; |
| if (buf_size != (size_t) buf_size) { |
| log_err("fio: IO memory too large. Reduce max_bs or iodepth\n"); |
| return 1; |
| } |
| |
| td->orig_buffer_size = buf_size; |
| |
| if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) |
| td->orig_buffer_size = (td->orig_buffer_size + td->o.hugepage_size - 1) & ~(td->o.hugepage_size - 1); |
| else if (td->orig_buffer_size & page_mask) |
| td->orig_buffer_size = (td->orig_buffer_size + page_mask) & ~page_mask; |
| |
| if (allocate_io_mem(td)) |
| return 1; |
| |
| p = ALIGN(td->orig_buffer); |
| for (i = 0; i < max_units; i++) { |
| io_u = malloc(sizeof(*io_u)); |
| memset(io_u, 0, sizeof(*io_u)); |
| INIT_LIST_HEAD(&io_u->list); |
| |
| io_u->buf = p + max_bs * i; |
| if (td_write(td) || td_rw(td)) |
| fill_rand_buf(io_u, max_bs); |
| |
| io_u->index = i; |
| io_u->flags = IO_U_F_FREE; |
| list_add(&io_u->list, &td->io_u_freelist); |
| } |
| |
| io_u_init_timeout(); |
| |
| return 0; |
| } |
| |
| static int switch_ioscheduler(struct thread_data *td) |
| { |
| char tmp[256], tmp2[128]; |
| FILE *f; |
| int ret; |
| |
| if (td->io_ops->flags & FIO_DISKLESSIO) |
| return 0; |
| |
| sprintf(tmp, "%s/queue/scheduler", td->sysfs_root); |
| |
| f = fopen(tmp, "r+"); |
| if (!f) { |
| td_verror(td, errno, "fopen"); |
| return 1; |
| } |
| |
| /* |
| * Set io scheduler. |
| */ |
| ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f); |
| if (ferror(f) || ret != 1) { |
| td_verror(td, errno, "fwrite"); |
| fclose(f); |
| return 1; |
| } |
| |
| rewind(f); |
| |
| /* |
| * Read back and check that the selected scheduler is now the default. |
| */ |
| ret = fread(tmp, 1, sizeof(tmp), f); |
| if (ferror(f) || ret < 0) { |
| td_verror(td, errno, "fread"); |
| fclose(f); |
| return 1; |
| } |
| |
| sprintf(tmp2, "[%s]", td->o.ioscheduler); |
| if (!strstr(tmp, tmp2)) { |
| log_err("fio: io scheduler %s not found\n", td->o.ioscheduler); |
| td_verror(td, EINVAL, "iosched_switch"); |
| fclose(f); |
| return 1; |
| } |
| |
| fclose(f); |
| return 0; |
| } |
| |
| static int clear_io_state(struct thread_data *td) |
| { |
| struct fio_file *f; |
| unsigned int i; |
| int ret; |
| |
| td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0; |
| td->this_io_bytes[0] = td->this_io_bytes[1] = 0; |
| td->zone_bytes = 0; |
| td->rate_bytes = 0; |
| td->rate_blocks = 0; |
| td->rw_end_set[0] = td->rw_end_set[1] = 0; |
| |
| td->last_was_sync = 0; |
| |
| for_each_file(td, f, i) |
| td_io_close_file(td, f); |
| |
| ret = 0; |
| for_each_file(td, f, i) { |
| ret = td_io_open_file(td, f); |
| if (ret) |
| break; |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * Entry point for the thread based jobs. The process based jobs end up |
| * here as well, after a little setup. |
| */ |
| static void *thread_main(void *data) |
| { |
| unsigned long long runtime[2]; |
| struct thread_data *td = data; |
| unsigned long elapsed; |
| int clear_state; |
| |
| if (!td->o.use_thread) |
| setsid(); |
| |
| td->pid = getpid(); |
| |
| INIT_LIST_HEAD(&td->io_u_freelist); |
| INIT_LIST_HEAD(&td->io_u_busylist); |
| INIT_LIST_HEAD(&td->io_u_requeues); |
| INIT_LIST_HEAD(&td->io_log_list); |
| |
| if (init_io_u(td)) |
| goto err_sem; |
| |
| if (fio_setaffinity(td) == -1) { |
| td_verror(td, errno, "cpu_set_affinity"); |
| goto err_sem; |
| } |
| |
| if (init_iolog(td)) |
| goto err_sem; |
| |
| if (td->ioprio) { |
| if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) { |
| td_verror(td, errno, "ioprio_set"); |
| goto err_sem; |
| } |
| } |
| |
| if (nice(td->o.nice) == -1) { |
| td_verror(td, errno, "nice"); |
| goto err_sem; |
| } |
| |
| if (td->o.ioscheduler && switch_ioscheduler(td)) |
| goto err_sem; |
| |
| td_set_runstate(td, TD_INITIALIZED); |
| fio_sem_up(startup_sem); |
| fio_sem_down(td->mutex); |
| |
| /* |
| * the ->mutex semaphore is now no longer used, close it to avoid |
| * eating a file descriptor |
| */ |
| fio_sem_remove(td->mutex); |
| |
| if (!td->o.create_serialize && setup_files(td)) |
| goto err; |
| |
| if (td_io_init(td)) |
| goto err; |
| |
| if (open_files(td)) |
| goto err; |
| |
| if (init_random_map(td)) |
| goto err; |
| |
| if (td->o.exec_prerun) { |
| if (system(td->o.exec_prerun) < 0) |
| goto err; |
| } |
| |
| fio_gettime(&td->epoch, NULL); |
| memcpy(&td->timeout_end, &td->epoch, sizeof(td->epoch)); |
| getrusage(RUSAGE_SELF, &td->ts.ru_start); |
| |
| runtime[0] = runtime[1] = 0; |
| clear_state = 0; |
| while (td->o.loops--) { |
| fio_gettime(&td->start, NULL); |
| memcpy(&td->ts.stat_sample_time, &td->start, sizeof(td->start)); |
| |
| if (td->o.ratemin) |
| memcpy(&td->lastrate, &td->ts.stat_sample_time, sizeof(td->lastrate)); |
| |
| if (clear_state && clear_io_state(td)) |
| break; |
| |
| prune_io_piece_log(td); |
| |
| do_io(td); |
| |
| clear_state = 1; |
| |
| if (td_read(td) && td->io_bytes[DDIR_READ]) { |
| if (td->rw_end_set[DDIR_READ]) |
| elapsed = utime_since(&td->start, &td->rw_end[DDIR_READ]); |
| else |
| elapsed = utime_since_now(&td->start); |
| |
| runtime[DDIR_READ] += elapsed; |
| } |
| if (td_write(td) && td->io_bytes[DDIR_WRITE]) { |
| if (td->rw_end_set[DDIR_WRITE]) |
| elapsed = utime_since(&td->start, &td->rw_end[DDIR_WRITE]); |
| else |
| elapsed = utime_since_now(&td->start); |
| |
| runtime[DDIR_WRITE] += elapsed; |
| } |
| |
| if (td->error || td->terminate) |
| break; |
| |
| if (td->o.verify == VERIFY_NONE) |
| continue; |
| |
| if (clear_io_state(td)) |
| break; |
| |
| fio_gettime(&td->start, NULL); |
| |
| do_verify(td); |
| |
| runtime[DDIR_READ] += utime_since_now(&td->start); |
| |
| if (td->error || td->terminate) |
| break; |
| } |
| |
| update_rusage_stat(td); |
| td->ts.runtime[0] = runtime[0] / 1000; |
| td->ts.runtime[1] = runtime[1] / 1000; |
| td->ts.total_run_time = mtime_since_now(&td->epoch); |
| td->ts.io_bytes[0] = td->io_bytes[0]; |
| td->ts.io_bytes[1] = td->io_bytes[1]; |
| |
| if (td->ts.bw_log) |
| finish_log(td, td->ts.bw_log, "bw"); |
| if (td->ts.slat_log) |
| finish_log(td, td->ts.slat_log, "slat"); |
| if (td->ts.clat_log) |
| finish_log(td, td->ts.clat_log, "clat"); |
| if (td->o.write_iolog_file) |
| write_iolog_close(td); |
| if (td->o.exec_postrun) { |
| if (system(td->o.exec_postrun) < 0) |
| log_err("fio: postrun %s failed\n", td->o.exec_postrun); |
| } |
| |
| if (exitall_on_terminate) |
| terminate_threads(td->groupid); |
| |
| err: |
| if (td->error) |
| printf("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror); |
| close_files(td); |
| close_ioengine(td); |
| cleanup_io_u(td); |
| options_mem_free(td); |
| td_set_runstate(td, TD_EXITED); |
| return (void *) (unsigned long) td->error; |
| err_sem: |
| fio_sem_up(startup_sem); |
| goto err; |
| } |
| |
| /* |
| * We cannot pass the td data into a forked process, so attach the td and |
| * pass it to the thread worker. |
| */ |
| static int fork_main(int shmid, int offset) |
| { |
| struct thread_data *td; |
| void *data, *ret; |
| |
| data = shmat(shmid, NULL, 0); |
| if (data == (void *) -1) { |
| int __err = errno; |
| |
| perror("shmat"); |
| return __err; |
| } |
| |
| td = data + offset * sizeof(struct thread_data); |
| ret = thread_main(td); |
| shmdt(data); |
| return (int) (unsigned long) ret; |
| } |
| |
| /* |
| * Run over the job map and reap the threads that have exited, if any. |
| */ |
| static void reap_threads(int *nr_running, int *t_rate, int *m_rate) |
| { |
| struct thread_data *td; |
| int i, cputhreads, pending, status, ret; |
| |
| /* |
| * reap exited threads (TD_EXITED -> TD_REAPED) |
| */ |
| pending = cputhreads = 0; |
| for_each_td(td, i) { |
| int flags = 0; |
| |
| /* |
| * ->io_ops is NULL for a thread that has closed its |
| * io engine |
| */ |
| if (td->io_ops && !strcmp(td->io_ops->name, "cpuio")) |
| cputhreads++; |
| |
| if (!td->pid || td->runstate == TD_REAPED) |
| continue; |
| if (td->o.use_thread) { |
| if (td->runstate == TD_EXITED) { |
| td_set_runstate(td, TD_REAPED); |
| goto reaped; |
| } |
| continue; |
| } |
| |
| flags = WNOHANG; |
| if (td->runstate == TD_EXITED) |
| flags = 0; |
| |
| /* |
| * check if someone quit or got killed in an unusual way |
| */ |
| ret = waitpid(td->pid, &status, flags); |
| if (ret < 0) { |
| if (errno == ECHILD) { |
| log_err("fio: pid=%d disappeared %d\n", td->pid, td->runstate); |
| td_set_runstate(td, TD_REAPED); |
| goto reaped; |
| } |
| perror("waitpid"); |
| } else if (ret == td->pid) { |
| if (WIFSIGNALED(status)) { |
| int sig = WTERMSIG(status); |
| |
| if (sig != SIGQUIT) |
| log_err("fio: pid=%d, got signal=%d\n", td->pid, sig); |
| td_set_runstate(td, TD_REAPED); |
| goto reaped; |
| } |
| if (WIFEXITED(status)) { |
| if (WEXITSTATUS(status) && !td->error) |
| td->error = WEXITSTATUS(status); |
| |
| td_set_runstate(td, TD_REAPED); |
| goto reaped; |
| } |
| } |
| |
| /* |
| * thread is not dead, continue |
| */ |
| continue; |
| reaped: |
| if (td->o.use_thread) { |
| long ret; |
| |
| if (pthread_join(td->thread, (void *) &ret)) |
| perror("pthread_join"); |
| } |
| |
| (*nr_running)--; |
| (*m_rate) -= td->o.ratemin; |
| (*t_rate) -= td->o.rate; |
| |
| if (td->error) |
| exit_value++; |
| } |
| |
| if (*nr_running == cputhreads && !pending) |
| terminate_threads(TERMINATE_ALL); |
| } |
| |
| /* |
| * Main function for kicking off and reaping jobs, as needed. |
| */ |
| static void run_threads(void) |
| { |
| struct thread_data *td; |
| unsigned long spent; |
| int i, todo, nr_running, m_rate, t_rate, nr_started; |
| |
| if (fio_pin_memory()) |
| return; |
| |
| if (!terse_output) { |
| printf("Starting "); |
| if (nr_thread) |
| printf("%d thread%s", nr_thread, nr_thread > 1 ? "s" : ""); |
| if (nr_process) { |
| if (nr_thread) |
| printf(" and "); |
| printf("%d process%s", nr_process, nr_process > 1 ? "es" : ""); |
| } |
| printf("\n"); |
| fflush(stdout); |
| } |
| |
| signal(SIGINT, sig_handler); |
| signal(SIGALRM, sig_handler); |
| |
| todo = thread_number; |
| nr_running = 0; |
| nr_started = 0; |
| m_rate = t_rate = 0; |
| |
| for_each_td(td, i) { |
| print_status_init(td->thread_number - 1); |
| |
| if (!td->o.create_serialize) { |
| init_disk_util(td); |
| continue; |
| } |
| |
| /* |
| * do file setup here so it happens sequentially, |
| * we don't want X number of threads getting their |
| * client data interspersed on disk |
| */ |
| if (setup_files(td)) { |
| exit_value++; |
| if (td->error) |
| log_err("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror); |
| td_set_runstate(td, TD_REAPED); |
| todo--; |
| } |
| |
| init_disk_util(td); |
| } |
| |
| set_genesis_time(); |
| |
| while (todo) { |
| struct thread_data *map[MAX_JOBS]; |
| struct timeval this_start; |
| int this_jobs = 0, left; |
| |
| /* |
| * create threads (TD_NOT_CREATED -> TD_CREATED) |
| */ |
| for_each_td(td, i) { |
| if (td->runstate != TD_NOT_CREATED) |
| continue; |
| |
| /* |
| * never got a chance to start, killed by other |
| * thread for some reason |
| */ |
| if (td->terminate) { |
| todo--; |
| continue; |
| } |
| |
| if (td->o.start_delay) { |
| spent = mtime_since_genesis(); |
| |
| if (td->o.start_delay * 1000 > spent) |
| continue; |
| } |
| |
| if (td->o.stonewall && (nr_started || nr_running)) |
| break; |
| |
| /* |
| * Set state to created. Thread will transition |
| * to TD_INITIALIZED when it's done setting up. |
| */ |
| td_set_runstate(td, TD_CREATED); |
| map[this_jobs++] = td; |
| nr_started++; |
| |
| if (td->o.use_thread) { |
| if (pthread_create(&td->thread, NULL, thread_main, td)) { |
| perror("thread_create"); |
| nr_started--; |
| break; |
| } |
| } else { |
| if (!fork()) { |
| int ret = fork_main(shm_id, i); |
| |
| exit(ret); |
| } |
| } |
| fio_sem_down(startup_sem); |
| } |
| |
| /* |
| * Wait for the started threads to transition to |
| * TD_INITIALIZED. |
| */ |
| fio_gettime(&this_start, NULL); |
| left = this_jobs; |
| while (left && !fio_abort) { |
| if (mtime_since_now(&this_start) > JOB_START_TIMEOUT) |
| break; |
| |
| usleep(100000); |
| |
| for (i = 0; i < this_jobs; i++) { |
| td = map[i]; |
| if (!td) |
| continue; |
| if (td->runstate == TD_INITIALIZED) { |
| map[i] = NULL; |
| left--; |
| } else if (td->runstate >= TD_EXITED) { |
| map[i] = NULL; |
| left--; |
| todo--; |
| nr_running++; /* work-around... */ |
| } |
| } |
| } |
| |
| if (left) { |
| log_err("fio: %d jobs failed to start\n", left); |
| for (i = 0; i < this_jobs; i++) { |
| td = map[i]; |
| if (!td) |
| continue; |
| kill(td->pid, SIGTERM); |
| } |
| break; |
| } |
| |
| /* |
| * start created threads (TD_INITIALIZED -> TD_RUNNING). |
| */ |
| for_each_td(td, i) { |
| if (td->runstate != TD_INITIALIZED) |
| continue; |
| |
| td_set_runstate(td, TD_RUNNING); |
| nr_running++; |
| nr_started--; |
| m_rate += td->o.ratemin; |
| t_rate += td->o.rate; |
| todo--; |
| fio_sem_up(td->mutex); |
| } |
| |
| reap_threads(&nr_running, &t_rate, &m_rate); |
| |
| if (todo) |
| usleep(100000); |
| } |
| |
| while (nr_running) { |
| reap_threads(&nr_running, &t_rate, &m_rate); |
| usleep(10000); |
| } |
| |
| update_io_ticks(); |
| fio_unpin_memory(); |
| } |
| |
| int main(int argc, char *argv[]) |
| { |
| long ps; |
| |
| /* |
| * We need locale for number printing, if it isn't set then just |
| * go with the US format. |
| */ |
| if (!getenv("LC_NUMERIC")) |
| setlocale(LC_NUMERIC, "en_US"); |
| |
| if (parse_options(argc, argv)) |
| return 1; |
| |
| if (!thread_number) { |
| log_err("Nothing to do\n"); |
| return 1; |
| } |
| |
| ps = sysconf(_SC_PAGESIZE); |
| if (ps < 0) { |
| log_err("Failed to get page size\n"); |
| return 1; |
| } |
| |
| page_size = ps; |
| page_mask = ps - 1; |
| |
| if (write_bw_log) { |
| setup_log(&agg_io_log[DDIR_READ]); |
| setup_log(&agg_io_log[DDIR_WRITE]); |
| } |
| |
| startup_sem = fio_sem_init(0); |
| |
| set_genesis_time(); |
| |
| disk_util_timer_arm(); |
| |
| run_threads(); |
| |
| if (!fio_abort) { |
| show_run_stats(); |
| if (write_bw_log) { |
| __finish_log(agg_io_log[DDIR_READ],"agg-read_bw.log"); |
| __finish_log(agg_io_log[DDIR_WRITE],"agg-write_bw.log"); |
| } |
| } |
| |
| fio_sem_remove(startup_sem); |
| return exit_value; |
| } |