| /******************************************************************************/ |
| #ifdef JEMALLOC_H_TYPES |
| |
| /* |
| * RUN_MAX_OVRHD indicates maximum desired run header overhead. Runs are sized |
| * as small as possible such that this setting is still honored, without |
| * violating other constraints. The goal is to make runs as small as possible |
| * without exceeding a per run external fragmentation threshold. |
| * |
| * We use binary fixed point math for overhead computations, where the binary |
| * point is implicitly RUN_BFP bits to the left. |
| * |
| * Note that it is possible to set RUN_MAX_OVRHD low enough that it cannot be |
| * honored for some/all object sizes, since when heap profiling is enabled |
| * there is one pointer of header overhead per object (plus a constant). This |
| * constraint is relaxed (ignored) for runs that are so small that the |
| * per-region overhead is greater than: |
| * |
| * (RUN_MAX_OVRHD / (reg_size << (3+RUN_BFP)) |
| */ |
| #define RUN_BFP 12 |
| /* \/ Implicit binary fixed point. */ |
| #define RUN_MAX_OVRHD 0x0000003dU |
| #define RUN_MAX_OVRHD_RELAX 0x00001800U |
| |
| /* Maximum number of regions in one run. */ |
| #define LG_RUN_MAXREGS 11 |
| #define RUN_MAXREGS (1U << LG_RUN_MAXREGS) |
| |
| /* |
| * The minimum ratio of active:dirty pages per arena is computed as: |
| * |
| * (nactive >> opt_lg_dirty_mult) >= ndirty |
| * |
| * So, supposing that opt_lg_dirty_mult is 5, there can be no less than 32 |
| * times as many active pages as dirty pages. |
| */ |
| #define LG_DIRTY_MULT_DEFAULT 5 |
| |
| typedef struct arena_chunk_map_s arena_chunk_map_t; |
| typedef struct arena_chunk_s arena_chunk_t; |
| typedef struct arena_run_s arena_run_t; |
| typedef struct arena_bin_info_s arena_bin_info_t; |
| typedef struct arena_bin_s arena_bin_t; |
| typedef struct arena_s arena_t; |
| |
| #endif /* JEMALLOC_H_TYPES */ |
| /******************************************************************************/ |
| #ifdef JEMALLOC_H_STRUCTS |
| |
| /* Each element of the chunk map corresponds to one page within the chunk. */ |
| struct arena_chunk_map_s { |
| #ifndef JEMALLOC_PROF |
| /* |
| * Overlay prof_ctx in order to allow it to be referenced by dead code. |
| * Such antics aren't warranted for per arena data structures, but |
| * chunk map overhead accounts for a percentage of memory, rather than |
| * being just a fixed cost. |
| */ |
| union { |
| #endif |
| union { |
| /* |
| * Linkage for run trees. There are two disjoint uses: |
| * |
| * 1) arena_t's runs_avail_{clean,dirty} trees. |
| * 2) arena_run_t conceptually uses this linkage for in-use |
| * non-full runs, rather than directly embedding linkage. |
| */ |
| rb_node(arena_chunk_map_t) rb_link; |
| /* |
| * List of runs currently in purgatory. arena_chunk_purge() |
| * temporarily allocates runs that contain dirty pages while |
| * purging, so that other threads cannot use the runs while the |
| * purging thread is operating without the arena lock held. |
| */ |
| ql_elm(arena_chunk_map_t) ql_link; |
| } u; |
| |
| /* Profile counters, used for large object runs. */ |
| prof_ctx_t *prof_ctx; |
| #ifndef JEMALLOC_PROF |
| }; /* union { ... }; */ |
| #endif |
| |
| /* |
| * Run address (or size) and various flags are stored together. The bit |
| * layout looks like (assuming 32-bit system): |
| * |
| * ???????? ???????? ????---- ----dula |
| * |
| * ? : Unallocated: Run address for first/last pages, unset for internal |
| * pages. |
| * Small: Run page offset. |
| * Large: Run size for first page, unset for trailing pages. |
| * - : Unused. |
| * d : dirty? |
| * u : unzeroed? |
| * l : large? |
| * a : allocated? |
| * |
| * Following are example bit patterns for the three types of runs. |
| * |
| * p : run page offset |
| * s : run size |
| * c : (binind+1) for size class (used only if prof_promote is true) |
| * x : don't care |
| * - : 0 |
| * + : 1 |
| * [DULA] : bit set |
| * [dula] : bit unset |
| * |
| * Unallocated (clean): |
| * ssssssss ssssssss ssss---- ----du-a |
| * xxxxxxxx xxxxxxxx xxxx---- -----Uxx |
| * ssssssss ssssssss ssss---- ----dU-a |
| * |
| * Unallocated (dirty): |
| * ssssssss ssssssss ssss---- ----D--a |
| * xxxxxxxx xxxxxxxx xxxx---- ----xxxx |
| * ssssssss ssssssss ssss---- ----D--a |
| * |
| * Small: |
| * pppppppp pppppppp pppp---- ----d--A |
| * pppppppp pppppppp pppp---- -------A |
| * pppppppp pppppppp pppp---- ----d--A |
| * |
| * Large: |
| * ssssssss ssssssss ssss---- ----D-LA |
| * xxxxxxxx xxxxxxxx xxxx---- ----xxxx |
| * -------- -------- -------- ----D-LA |
| * |
| * Large (sampled, size <= PAGE_SIZE): |
| * ssssssss ssssssss sssscccc ccccD-LA |
| * |
| * Large (not sampled, size == PAGE_SIZE): |
| * ssssssss ssssssss ssss---- ----D-LA |
| */ |
| size_t bits; |
| #define CHUNK_MAP_CLASS_SHIFT 4 |
| #define CHUNK_MAP_CLASS_MASK ((size_t)0xff0U) |
| #define CHUNK_MAP_FLAGS_MASK ((size_t)0xfU) |
| #define CHUNK_MAP_DIRTY ((size_t)0x8U) |
| #define CHUNK_MAP_UNZEROED ((size_t)0x4U) |
| #define CHUNK_MAP_LARGE ((size_t)0x2U) |
| #define CHUNK_MAP_ALLOCATED ((size_t)0x1U) |
| #define CHUNK_MAP_KEY CHUNK_MAP_ALLOCATED |
| }; |
| typedef rb_tree(arena_chunk_map_t) arena_avail_tree_t; |
| typedef rb_tree(arena_chunk_map_t) arena_run_tree_t; |
| |
| /* Arena chunk header. */ |
| struct arena_chunk_s { |
| /* Arena that owns the chunk. */ |
| arena_t *arena; |
| |
| /* Linkage for the arena's chunks_dirty list. */ |
| ql_elm(arena_chunk_t) link_dirty; |
| |
| /* |
| * True if the chunk is currently in the chunks_dirty list, due to |
| * having at some point contained one or more dirty pages. Removal |
| * from chunks_dirty is lazy, so (dirtied && ndirty == 0) is possible. |
| */ |
| bool dirtied; |
| |
| /* Number of dirty pages. */ |
| size_t ndirty; |
| |
| /* |
| * Map of pages within chunk that keeps track of free/large/small. The |
| * first map_bias entries are omitted, since the chunk header does not |
| * need to be tracked in the map. This omission saves a header page |
| * for common chunk sizes (e.g. 4 MiB). |
| */ |
| arena_chunk_map_t map[1]; /* Dynamically sized. */ |
| }; |
| typedef rb_tree(arena_chunk_t) arena_chunk_tree_t; |
| |
| struct arena_run_s { |
| /* Bin this run is associated with. */ |
| arena_bin_t *bin; |
| |
| /* Index of next region that has never been allocated, or nregs. */ |
| uint32_t nextind; |
| |
| /* Number of free regions in run. */ |
| unsigned nfree; |
| }; |
| |
| /* |
| * Read-only information associated with each element of arena_t's bins array |
| * is stored separately, partly to reduce memory usage (only one copy, rather |
| * than one per arena), but mainly to avoid false cacheline sharing. |
| */ |
| struct arena_bin_info_s { |
| /* Size of regions in a run for this bin's size class. */ |
| size_t reg_size; |
| |
| /* Total size of a run for this bin's size class. */ |
| size_t run_size; |
| |
| /* Total number of regions in a run for this bin's size class. */ |
| uint32_t nregs; |
| |
| /* |
| * Offset of first bitmap_t element in a run header for this bin's size |
| * class. |
| */ |
| uint32_t bitmap_offset; |
| |
| /* |
| * Metadata used to manipulate bitmaps for runs associated with this |
| * bin. |
| */ |
| bitmap_info_t bitmap_info; |
| |
| /* |
| * Offset of first (prof_ctx_t *) in a run header for this bin's size |
| * class, or 0 if (config_prof == false || opt_prof == false). |
| */ |
| uint32_t ctx0_offset; |
| |
| /* Offset of first region in a run for this bin's size class. */ |
| uint32_t reg0_offset; |
| }; |
| |
| struct arena_bin_s { |
| /* |
| * All operations on runcur, runs, and stats require that lock be |
| * locked. Run allocation/deallocation are protected by the arena lock, |
| * which may be acquired while holding one or more bin locks, but not |
| * vise versa. |
| */ |
| malloc_mutex_t lock; |
| |
| /* |
| * Current run being used to service allocations of this bin's size |
| * class. |
| */ |
| arena_run_t *runcur; |
| |
| /* |
| * Tree of non-full runs. This tree is used when looking for an |
| * existing run when runcur is no longer usable. We choose the |
| * non-full run that is lowest in memory; this policy tends to keep |
| * objects packed well, and it can also help reduce the number of |
| * almost-empty chunks. |
| */ |
| arena_run_tree_t runs; |
| |
| /* Bin statistics. */ |
| malloc_bin_stats_t stats; |
| }; |
| |
| struct arena_s { |
| /* This arena's index within the arenas array. */ |
| unsigned ind; |
| |
| /* |
| * Number of threads currently assigned to this arena. This field is |
| * protected by arenas_lock. |
| */ |
| unsigned nthreads; |
| |
| /* |
| * There are three classes of arena operations from a locking |
| * perspective: |
| * 1) Thread asssignment (modifies nthreads) is protected by |
| * arenas_lock. |
| * 2) Bin-related operations are protected by bin locks. |
| * 3) Chunk- and run-related operations are protected by this mutex. |
| */ |
| malloc_mutex_t lock; |
| |
| arena_stats_t stats; |
| /* |
| * List of tcaches for extant threads associated with this arena. |
| * Stats from these are merged incrementally, and at exit. |
| */ |
| ql_head(tcache_t) tcache_ql; |
| |
| uint64_t prof_accumbytes; |
| |
| /* List of dirty-page-containing chunks this arena manages. */ |
| ql_head(arena_chunk_t) chunks_dirty; |
| |
| /* |
| * In order to avoid rapid chunk allocation/deallocation when an arena |
| * oscillates right on the cusp of needing a new chunk, cache the most |
| * recently freed chunk. The spare is left in the arena's chunk trees |
| * until it is deleted. |
| * |
| * There is one spare chunk per arena, rather than one spare total, in |
| * order to avoid interactions between multiple threads that could make |
| * a single spare inadequate. |
| */ |
| arena_chunk_t *spare; |
| |
| /* Number of pages in active runs. */ |
| size_t nactive; |
| |
| /* |
| * Current count of pages within unused runs that are potentially |
| * dirty, and for which madvise(... MADV_DONTNEED) has not been called. |
| * By tracking this, we can institute a limit on how much dirty unused |
| * memory is mapped for each arena. |
| */ |
| size_t ndirty; |
| |
| /* |
| * Approximate number of pages being purged. It is possible for |
| * multiple threads to purge dirty pages concurrently, and they use |
| * npurgatory to indicate the total number of pages all threads are |
| * attempting to purge. |
| */ |
| size_t npurgatory; |
| |
| /* |
| * Size/address-ordered trees of this arena's available runs. The trees |
| * are used for first-best-fit run allocation. The dirty tree contains |
| * runs with dirty pages (i.e. very likely to have been touched and |
| * therefore have associated physical pages), whereas the clean tree |
| * contains runs with pages that either have no associated physical |
| * pages, or have pages that the kernel may recycle at any time due to |
| * previous madvise(2) calls. The dirty tree is used in preference to |
| * the clean tree for allocations, because using dirty pages reduces |
| * the amount of dirty purging necessary to keep the active:dirty page |
| * ratio below the purge threshold. |
| */ |
| arena_avail_tree_t runs_avail_clean; |
| arena_avail_tree_t runs_avail_dirty; |
| |
| /* bins is used to store trees of free regions. */ |
| arena_bin_t bins[NBINS]; |
| }; |
| |
| #endif /* JEMALLOC_H_STRUCTS */ |
| /******************************************************************************/ |
| #ifdef JEMALLOC_H_EXTERNS |
| |
| extern ssize_t opt_lg_dirty_mult; |
| /* |
| * small_size2bin is a compact lookup table that rounds request sizes up to |
| * size classes. In order to reduce cache footprint, the table is compressed, |
| * and all accesses are via the SMALL_SIZE2BIN macro. |
| */ |
| extern uint8_t const small_size2bin[]; |
| #define SMALL_SIZE2BIN(s) (small_size2bin[(s-1) >> LG_TINY_MIN]) |
| |
| extern arena_bin_info_t arena_bin_info[NBINS]; |
| |
| /* Number of large size classes. */ |
| #define nlclasses (chunk_npages - map_bias) |
| |
| void arena_purge_all(arena_t *arena); |
| void arena_prof_accum(arena_t *arena, uint64_t accumbytes); |
| void arena_tcache_fill_small(arena_t *arena, tcache_bin_t *tbin, |
| size_t binind, uint64_t prof_accumbytes); |
| void *arena_malloc_small(arena_t *arena, size_t size, bool zero); |
| void *arena_malloc_large(arena_t *arena, size_t size, bool zero); |
| void *arena_palloc(arena_t *arena, size_t size, size_t alloc_size, |
| size_t alignment, bool zero); |
| size_t arena_salloc(const void *ptr); |
| void arena_prof_promoted(const void *ptr, size_t size); |
| size_t arena_salloc_demote(const void *ptr); |
| void arena_dalloc_bin(arena_t *arena, arena_chunk_t *chunk, void *ptr, |
| arena_chunk_map_t *mapelm); |
| void arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk, void *ptr); |
| void arena_stats_merge(arena_t *arena, size_t *nactive, size_t *ndirty, |
| arena_stats_t *astats, malloc_bin_stats_t *bstats, |
| malloc_large_stats_t *lstats); |
| void *arena_ralloc_no_move(void *ptr, size_t oldsize, size_t size, |
| size_t extra, bool zero); |
| void *arena_ralloc(void *ptr, size_t oldsize, size_t size, size_t extra, |
| size_t alignment, bool zero); |
| bool arena_new(arena_t *arena, unsigned ind); |
| void arena_boot(void); |
| |
| #endif /* JEMALLOC_H_EXTERNS */ |
| /******************************************************************************/ |
| #ifdef JEMALLOC_H_INLINES |
| |
| #ifndef JEMALLOC_ENABLE_INLINE |
| size_t arena_bin_index(arena_t *arena, arena_bin_t *bin); |
| unsigned arena_run_regind(arena_run_t *run, arena_bin_info_t *bin_info, |
| const void *ptr); |
| prof_ctx_t *arena_prof_ctx_get(const void *ptr); |
| void arena_prof_ctx_set(const void *ptr, prof_ctx_t *ctx); |
| void *arena_malloc(size_t size, bool zero); |
| void arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr); |
| #endif |
| |
| #if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_ARENA_C_)) |
| JEMALLOC_INLINE size_t |
| arena_bin_index(arena_t *arena, arena_bin_t *bin) |
| { |
| size_t binind = bin - arena->bins; |
| assert(binind < NBINS); |
| return (binind); |
| } |
| |
| JEMALLOC_INLINE unsigned |
| arena_run_regind(arena_run_t *run, arena_bin_info_t *bin_info, const void *ptr) |
| { |
| unsigned shift, diff, regind; |
| size_t size; |
| |
| /* |
| * Freeing a pointer lower than region zero can cause assertion |
| * failure. |
| */ |
| assert((uintptr_t)ptr >= (uintptr_t)run + |
| (uintptr_t)bin_info->reg0_offset); |
| |
| /* |
| * Avoid doing division with a variable divisor if possible. Using |
| * actual division here can reduce allocator throughput by over 20%! |
| */ |
| diff = (unsigned)((uintptr_t)ptr - (uintptr_t)run - |
| bin_info->reg0_offset); |
| |
| /* Rescale (factor powers of 2 out of the numerator and denominator). */ |
| size = bin_info->reg_size; |
| shift = ffs(size) - 1; |
| diff >>= shift; |
| size >>= shift; |
| |
| if (size == 1) { |
| /* The divisor was a power of 2. */ |
| regind = diff; |
| } else { |
| /* |
| * To divide by a number D that is not a power of two we |
| * multiply by (2^21 / D) and then right shift by 21 positions. |
| * |
| * X / D |
| * |
| * becomes |
| * |
| * (X * size_invs[D - 3]) >> SIZE_INV_SHIFT |
| * |
| * We can omit the first three elements, because we never |
| * divide by 0, and 1 and 2 are both powers of two, which are |
| * handled above. |
| */ |
| #define SIZE_INV_SHIFT ((sizeof(unsigned) << 3) - LG_RUN_MAXREGS) |
| #define SIZE_INV(s) (((1U << SIZE_INV_SHIFT) / (s)) + 1) |
| static const unsigned size_invs[] = { |
| SIZE_INV(3), |
| SIZE_INV(4), SIZE_INV(5), SIZE_INV(6), SIZE_INV(7), |
| SIZE_INV(8), SIZE_INV(9), SIZE_INV(10), SIZE_INV(11), |
| SIZE_INV(12), SIZE_INV(13), SIZE_INV(14), SIZE_INV(15), |
| SIZE_INV(16), SIZE_INV(17), SIZE_INV(18), SIZE_INV(19), |
| SIZE_INV(20), SIZE_INV(21), SIZE_INV(22), SIZE_INV(23), |
| SIZE_INV(24), SIZE_INV(25), SIZE_INV(26), SIZE_INV(27), |
| SIZE_INV(28), SIZE_INV(29), SIZE_INV(30), SIZE_INV(31) |
| }; |
| |
| if (size <= ((sizeof(size_invs) / sizeof(unsigned)) + 2)) |
| regind = (diff * size_invs[size - 3]) >> SIZE_INV_SHIFT; |
| else |
| regind = diff / size; |
| #undef SIZE_INV |
| #undef SIZE_INV_SHIFT |
| } |
| assert(diff == regind * size); |
| assert(regind < bin_info->nregs); |
| |
| return (regind); |
| } |
| |
| JEMALLOC_INLINE prof_ctx_t * |
| arena_prof_ctx_get(const void *ptr) |
| { |
| prof_ctx_t *ret; |
| arena_chunk_t *chunk; |
| size_t pageind, mapbits; |
| |
| cassert(config_prof); |
| assert(ptr != NULL); |
| assert(CHUNK_ADDR2BASE(ptr) != ptr); |
| |
| chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr); |
| pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT; |
| mapbits = chunk->map[pageind-map_bias].bits; |
| assert((mapbits & CHUNK_MAP_ALLOCATED) != 0); |
| if ((mapbits & CHUNK_MAP_LARGE) == 0) { |
| if (prof_promote) |
| ret = (prof_ctx_t *)(uintptr_t)1U; |
| else { |
| arena_run_t *run = (arena_run_t *)((uintptr_t)chunk + |
| (uintptr_t)((pageind - (mapbits >> PAGE_SHIFT)) << |
| PAGE_SHIFT)); |
| size_t binind = arena_bin_index(chunk->arena, run->bin); |
| arena_bin_info_t *bin_info = &arena_bin_info[binind]; |
| unsigned regind; |
| |
| regind = arena_run_regind(run, bin_info, ptr); |
| ret = *(prof_ctx_t **)((uintptr_t)run + |
| bin_info->ctx0_offset + (regind * |
| sizeof(prof_ctx_t *))); |
| } |
| } else |
| ret = chunk->map[pageind-map_bias].prof_ctx; |
| |
| return (ret); |
| } |
| |
| JEMALLOC_INLINE void |
| arena_prof_ctx_set(const void *ptr, prof_ctx_t *ctx) |
| { |
| arena_chunk_t *chunk; |
| size_t pageind, mapbits; |
| |
| cassert(config_prof); |
| assert(ptr != NULL); |
| assert(CHUNK_ADDR2BASE(ptr) != ptr); |
| |
| chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr); |
| pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT; |
| mapbits = chunk->map[pageind-map_bias].bits; |
| assert((mapbits & CHUNK_MAP_ALLOCATED) != 0); |
| if ((mapbits & CHUNK_MAP_LARGE) == 0) { |
| if (prof_promote == false) { |
| arena_run_t *run = (arena_run_t *)((uintptr_t)chunk + |
| (uintptr_t)((pageind - (mapbits >> PAGE_SHIFT)) << |
| PAGE_SHIFT)); |
| arena_bin_t *bin = run->bin; |
| size_t binind; |
| arena_bin_info_t *bin_info; |
| unsigned regind; |
| |
| binind = arena_bin_index(chunk->arena, bin); |
| bin_info = &arena_bin_info[binind]; |
| regind = arena_run_regind(run, bin_info, ptr); |
| |
| *((prof_ctx_t **)((uintptr_t)run + bin_info->ctx0_offset |
| + (regind * sizeof(prof_ctx_t *)))) = ctx; |
| } else |
| assert((uintptr_t)ctx == (uintptr_t)1U); |
| } else |
| chunk->map[pageind-map_bias].prof_ctx = ctx; |
| } |
| |
| JEMALLOC_INLINE void * |
| arena_malloc(size_t size, bool zero) |
| { |
| tcache_t *tcache; |
| |
| assert(size != 0); |
| assert(QUANTUM_CEILING(size) <= arena_maxclass); |
| |
| if (size <= SMALL_MAXCLASS) { |
| if ((tcache = tcache_get()) != NULL) |
| return (tcache_alloc_small(tcache, size, zero)); |
| else |
| return (arena_malloc_small(choose_arena(), size, zero)); |
| } else { |
| /* |
| * Initialize tcache after checking size in order to avoid |
| * infinite recursion during tcache initialization. |
| */ |
| if (size <= tcache_maxclass && (tcache = tcache_get()) != NULL) |
| return (tcache_alloc_large(tcache, size, zero)); |
| else |
| return (arena_malloc_large(choose_arena(), size, zero)); |
| } |
| } |
| |
| JEMALLOC_INLINE void |
| arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr) |
| { |
| size_t pageind; |
| arena_chunk_map_t *mapelm; |
| tcache_t *tcache = tcache_get(); |
| |
| assert(arena != NULL); |
| assert(chunk->arena == arena); |
| assert(ptr != NULL); |
| assert(CHUNK_ADDR2BASE(ptr) != ptr); |
| |
| pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT; |
| mapelm = &chunk->map[pageind-map_bias]; |
| assert((mapelm->bits & CHUNK_MAP_ALLOCATED) != 0); |
| if ((mapelm->bits & CHUNK_MAP_LARGE) == 0) { |
| /* Small allocation. */ |
| if (tcache != NULL) |
| tcache_dalloc_small(tcache, ptr); |
| else { |
| arena_run_t *run; |
| arena_bin_t *bin; |
| |
| run = (arena_run_t *)((uintptr_t)chunk + |
| (uintptr_t)((pageind - (mapelm->bits >> |
| PAGE_SHIFT)) << PAGE_SHIFT)); |
| bin = run->bin; |
| if (config_debug) { |
| size_t binind = arena_bin_index(arena, bin); |
| UNUSED arena_bin_info_t *bin_info = |
| &arena_bin_info[binind]; |
| assert(((uintptr_t)ptr - ((uintptr_t)run + |
| (uintptr_t)bin_info->reg0_offset)) % |
| bin_info->reg_size == 0); |
| } |
| malloc_mutex_lock(&bin->lock); |
| arena_dalloc_bin(arena, chunk, ptr, mapelm); |
| malloc_mutex_unlock(&bin->lock); |
| } |
| } else { |
| size_t size = mapelm->bits & ~PAGE_MASK; |
| |
| assert(((uintptr_t)ptr & PAGE_MASK) == 0); |
| |
| if (size <= tcache_maxclass && tcache != NULL) { |
| tcache_dalloc_large(tcache, ptr, size); |
| } else { |
| malloc_mutex_lock(&arena->lock); |
| arena_dalloc_large(arena, chunk, ptr); |
| malloc_mutex_unlock(&arena->lock); |
| } |
| } |
| } |
| #endif |
| |
| #endif /* JEMALLOC_H_INLINES */ |
| /******************************************************************************/ |