blob: 49294b4a9288004b34f9559ab38902c2e87abb40 [file] [log] [blame]
package com.jme3.util;
/**
* The wrapper for the primitive type {@code int}.
* <p>
* As with the specification, this implementation relies on code laid out in <a
* href="http://www.hackersdelight.org/">Henry S. Warren, Jr.'s Hacker's
* Delight, (Addison Wesley, 2002)</a> as well as <a
* href="http://aggregate.org/MAGIC/">The Aggregate's Magic Algorithms</a>.
*
* @see java.lang.Number
* @since 1.1
*/
public final class FastInteger {
/**
* Constant for the maximum {@code int} value, 2<sup>31</sup>-1.
*/
public static final int MAX_VALUE = 0x7FFFFFFF;
/**
* Constant for the minimum {@code int} value, -2<sup>31</sup>.
*/
public static final int MIN_VALUE = 0x80000000;
/**
* Constant for the number of bits needed to represent an {@code int} in
* two's complement form.
*
* @since 1.5
*/
public static final int SIZE = 32;
/*
* Progressively smaller decimal order of magnitude that can be represented
* by an instance of Integer. Used to help compute the String
* representation.
*/
private static final int[] decimalScale = new int[] { 1000000000, 100000000,
10000000, 1000000, 100000, 10000, 1000, 100, 10, 1 };
/**
* Converts the specified integer into its decimal string representation.
* The returned string is a concatenation of a minus sign if the number is
* negative and characters from '0' to '9'.
*
* @param value
* the integer to convert.
* @return the decimal string representation of {@code value}.
*/
public static boolean toCharArray(int value, char[] output) {
if (value == 0)
{
output[0] = '0';
output[1] = 0;
return true;
}
// Faster algorithm for smaller Integers
if (value < 1000 && value > -1000) {
int positive_value = value < 0 ? -value : value;
int first_digit = 0;
if (value < 0) {
output[0] = '-';
first_digit++;
}
int last_digit = first_digit;
int quot = positive_value;
do {
int res = quot / 10;
int digit_value = quot - ((res << 3) + (res << 1));
digit_value += '0';
output[last_digit++] = (char) digit_value;
quot = res;
} while (quot != 0);
int count = last_digit--;
do {
char tmp = output[last_digit];
output[last_digit--] = output[first_digit];
output[first_digit++] = tmp;
} while (first_digit < last_digit);
output[count] = 0;
return true;
}
if (value == MIN_VALUE) {
System.arraycopy("-2147483648".toCharArray(), 0, output, 0, 12);
output[12] = 0;
return true;
}
int positive_value = value < 0 ? -value : value;
byte first_digit = 0;
if (value < 0) {
output[0] = '-';
first_digit++;
}
byte last_digit = first_digit;
byte count;
int number;
boolean start = false;
for (int i = 0; i < 9; i++) {
count = 0;
if (positive_value < (number = decimalScale[i])) {
if (start) {
output[last_digit++] = '0';
}
continue;
}
if (i > 0) {
number = (decimalScale[i] << 3);
if (positive_value >= number) {
positive_value -= number;
count += 8;
}
number = (decimalScale[i] << 2);
if (positive_value >= number) {
positive_value -= number;
count += 4;
}
}
number = (decimalScale[i] << 1);
if (positive_value >= number) {
positive_value -= number;
count += 2;
}
if (positive_value >= decimalScale[i]) {
positive_value -= decimalScale[i];
count++;
}
if (count > 0 && !start) {
start = true;
}
if (start) {
output[last_digit++] = (char) (count + '0');
}
}
output[last_digit++] = (char) (positive_value + '0');
output[last_digit] = 0;
count = last_digit--;
return true;
}
/**
* Determines the highest (leftmost) bit of the specified integer that is 1
* and returns the bit mask value for that bit. This is also referred to as
* the Most Significant 1 Bit. Returns zero if the specified integer is
* zero.
*
* @param i
* the integer to examine.
* @return the bit mask indicating the highest 1 bit in {@code i}.
* @since 1.5
*/
public static int highestOneBit(int i) {
i |= (i >> 1);
i |= (i >> 2);
i |= (i >> 4);
i |= (i >> 8);
i |= (i >> 16);
return (i & ~(i >>> 1));
}
/**
* Determines the lowest (rightmost) bit of the specified integer that is 1
* and returns the bit mask value for that bit. This is also referred
* to as the Least Significant 1 Bit. Returns zero if the specified integer
* is zero.
*
* @param i
* the integer to examine.
* @return the bit mask indicating the lowest 1 bit in {@code i}.
* @since 1.5
*/
public static int lowestOneBit(int i) {
return (i & (-i));
}
/**
* Determines the number of leading zeros in the specified integer prior to
* the {@link #highestOneBit(int) highest one bit}.
*
* @param i
* the integer to examine.
* @return the number of leading zeros in {@code i}.
* @since 1.5
*/
public static int numberOfLeadingZeros(int i) {
i |= i >> 1;
i |= i >> 2;
i |= i >> 4;
i |= i >> 8;
i |= i >> 16;
return bitCount(~i);
}
/**
* Determines the number of trailing zeros in the specified integer after
* the {@link #lowestOneBit(int) lowest one bit}.
*
* @param i
* the integer to examine.
* @return the number of trailing zeros in {@code i}.
* @since 1.5
*/
public static int numberOfTrailingZeros(int i) {
return bitCount((i & -i) - 1);
}
/**
* Counts the number of 1 bits in the specified integer; this is also
* referred to as population count.
*
* @param i
* the integer to examine.
* @return the number of 1 bits in {@code i}.
* @since 1.5
*/
public static int bitCount(int i) {
i -= ((i >> 1) & 0x55555555);
i = (i & 0x33333333) + ((i >> 2) & 0x33333333);
i = (((i >> 4) + i) & 0x0F0F0F0F);
i += (i >> 8);
i += (i >> 16);
return (i & 0x0000003F);
}
/**
* Rotates the bits of the specified integer to the left by the specified
* number of bits.
*
* @param i
* the integer value to rotate left.
* @param distance
* the number of bits to rotate.
* @return the rotated value.
* @since 1.5
*/
public static int rotateLeft(int i, int distance) {
if (distance == 0) {
return i;
}
/*
* According to JLS3, 15.19, the right operand of a shift is always
* implicitly masked with 0x1F, which the negation of 'distance' is
* taking advantage of.
*/
return ((i << distance) | (i >>> (-distance)));
}
/**
* Rotates the bits of the specified integer to the right by the specified
* number of bits.
*
* @param i
* the integer value to rotate right.
* @param distance
* the number of bits to rotate.
* @return the rotated value.
* @since 1.5
*/
public static int rotateRight(int i, int distance) {
if (distance == 0) {
return i;
}
/*
* According to JLS3, 15.19, the right operand of a shift is always
* implicitly masked with 0x1F, which the negation of 'distance' is
* taking advantage of.
*/
return ((i >>> distance) | (i << (-distance)));
}
/**
* Reverses the order of the bytes of the specified integer.
*
* @param i
* the integer value for which to reverse the byte order.
* @return the reversed value.
* @since 1.5
*/
public static int reverseBytes(int i) {
int b3 = i >>> 24;
int b2 = (i >>> 8) & 0xFF00;
int b1 = (i & 0xFF00) << 8;
int b0 = i << 24;
return (b0 | b1 | b2 | b3);
}
/**
* Reverses the order of the bits of the specified integer.
*
* @param i
* the integer value for which to reverse the bit order.
* @return the reversed value.
* @since 1.5
*/
public static int reverse(int i) {
// From Hacker's Delight, 7-1, Figure 7-1
i = (i & 0x55555555) << 1 | (i >> 1) & 0x55555555;
i = (i & 0x33333333) << 2 | (i >> 2) & 0x33333333;
i = (i & 0x0F0F0F0F) << 4 | (i >> 4) & 0x0F0F0F0F;
return reverseBytes(i);
}
/**
* Returns the value of the {@code signum} function for the specified
* integer.
*
* @param i
* the integer value to check.
* @return -1 if {@code i} is negative, 1 if {@code i} is positive, 0 if
* {@code i} is zero.
* @since 1.5
*/
public static int signum(int i) {
return (i == 0 ? 0 : (i < 0 ? -1 : 1));
}
/**
* Returns a {@code Integer} instance for the specified integer value.
* <p>
* If it is not necessary to get a new {@code Integer} instance, it is
* recommended to use this method instead of the constructor, since it
* maintains a cache of instances which may result in better performance.
*
* @param i
* the integer value to store in the instance.
* @return a {@code Integer} instance containing {@code i}.
* @since 1.5
*/
public static Integer valueOf(int i) {
if (i < -128 || i > 127) {
return new Integer(i);
}
return valueOfCache.CACHE [i+128];
}
static class valueOfCache {
/**
* <p>
* A cache of instances used by {@link Integer#valueOf(int)} and auto-boxing.
*/
static final Integer[] CACHE = new Integer[256];
static {
for(int i=-128; i<=127; i++) {
CACHE[i+128] = new Integer(i);
}
}
}
}